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Abstract

In this work we consider some problems of modeling the behavior of animal

populations. In the first part, we introduce and discuss a coagulation process,

in which a finite population of particles coagulate to form larger groups. We

discuss the quality of approximation by Smoluchowski equations in this con-

text. In the second part, we interprate the coagulation process as a model for

the social behavior of large mammas (e.g. lions), and discuss the question of

when is this model indeed adequate to the population ’demand’ of being in

some desired group size. In the third part, we discuss a completely different

topic. We consider a multi staged decision process under uncertainty condi-

tions. Our conclusion is that developing an optimal strategy is not of great

importance, and satisfactory results might be accomplished by much simpler

strategies requiring significantly less memory resources.
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List of symbols and abbreviations

N − population size

D − maximal group size

t − time

ΩN − state space

ΩN,D − state space of truncated process

AN,D − set of absorbing states

η0 − solitary state

ni(η) − number of groups of size i in η

#η − lexicographic order of η

ψ(i, j) − coagulation rate

Ψ(i, j; η) − total merging intensity

Π(t) − state space probability distribution

Π − state space probability distribution at infinity

f(i;N) − group size distribution

B − transition rate matrix

C − transition probability matrix

F − quality probability distribution

µ − quality expectation

MF − maximal value of F

T − number of search steps

ST − a strategy for an T steps process

XT − expected score of the T steps process

xi − expected score with i steps remaining

A(α) − conditional expectation constant

B(α) − probability constant

C − cost per turn
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Chapter 1

Introduction and literature survey
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1.1 Literature Survey

1.1.1 Background on Lions

Lions (Panthera leo) are often viewed as an example of a specie possessing a

high level of group cooperation. Unlike all other big cats, they live in groups

where all members of the group are helping each other even at the expense of

their own well being. While cooperative behavior may offer some significant

benefits to group member, living in a group have many costs for the individual

as well (such as inner-group competition on food, higher diseases carriage

etc.) However, since animals are rarely truly altruistic, when combining the

payments and benefits of living in a group we expect the individuals to belong

to groups of sizes which give the best overall influence. Thus, the common

situation of relatively small groups sizes occurring in nature is interpreted as

the result of a balanced equilibrium , between forces tending to live alone and

forces tending to belong to larger groups.

Data about the serengeti lions behavior, including their group sizes can

be found in ??. This data has been analyzed by many researchers, trying to

propose models explaining the data collected.

In ??, it is stated that the optimal group size of a group of hunting lions

is correlated with the pray’s size. Moreover, the optimal size for hunting as

concerning kg. food/ lion is smaller that the typical group size in nature. The

authors suggest several explanations, such as maximizing the reproductive

success or to protecting kills from scavengers. Similar results and conclusions

are found also in ??.

In ??, it is shown that hyeanas presence may influence optimal group size

among lions, due to their attempts to ’steal’ pray from lions. Larger group size

yields greater success probability when defending the kills against hyeanas.

In contrary to the great effort which was dedicated to the question of de-

termining the optimal group size for lions, there were not much consideration

for modeling an individual’s behavior which leads to grouping of optimal or
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close to optimal sizes. This article tries to fill this gap by proposing a model

for lions grouping, provided that the optimal or desired group size is already

given.

1.1.2 Background on birds

1.1.3 The secretary problem

The problem known as the secretary problem has a known and reach history

of research. A good reference could be found in ??

5



Chapter 2

On Smoluchowski Equations for

Coagulation Processes with Multiple

Absorbing States
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Abstract

Smoluchowski coagulation equations propose a model for the stochastic time

evolution of a particles population in which particle clusters merge to form

larger clusters, at some given rates. These equations represent the dynamics

of the expected cluster size distribution. Since Smoluchowski equations were

not derived as a rigorous description of the underlying stochastic process, their

quality in this context is not obvious.

Here, we consider the case of a finite particles population and raise the fol-

lowing question: to what limit do the solutions of Smoluchowski equations

converge as t → ∞? In particular, we are concerned with the case where

the population size is N and the coagulation rates restrict the maximal group

sizes to D. For D = N , the stochastic process has only one absorbing state,

but if D < N it may have many absorbing states. We demonstrate here that

when the D ≈ N , the solutions of Smoluchowski equations do not converge,

as t → ∞, to the expected cluster size distribution, but when D ≪ N , the

convergence is to a limit which is close to the exact solution.

2.1 introduction

A Coagulation process (CP) describes the stochastic time evolution of a pop-

ulation of particles distributed into groups (clusters) which coagulate at rates

that depend only on the sizes of the interacting groups. Such processes and

their applications have been studied extensively (see [3] for a thorough review).

The process has been studied by means of the system of ODE’s

ċj =
1

2

j−1
∑

k=1

(Rj−k kcj−k ck) −
∞
∑

k=1

(Rj k cj ck) j = 1, 2, . . . (2.1)

In (2.1), cj = cj(t) denote the expected number of j-particle, and Rj k rep-

resents the coagulation rate of clusters of size j and k into clusters of size

7



j + k. These equations are named after Smoluchowski who formulated them

in 1916 and 1917. They involve various mathematical problems which have

been studied in many papers (see [3] for a review). When the coagulation

rates are positive (i.e., Rj k for i, j > 0) and the particles population is as-

sumed to be infinite, infinitely large clusters may appear at finite time (this

phenomenon is called gelation). Thus, although the system (2.1) is formally a

conservation law, the total mass is not always conserved. Further, under such

conditions, the global existence, uniqueness and positiveness, of the solutions

is not guaranteed.

The derivation of Smoluchowski equations is heuristic. Gueron [2] showed how

equations similar to 2.1 can be viewed as a deterministic approximation for

cj(t) if one ignores the effects of correlations. The consequences of neglecting

these correlations may be significant, and therefore the value of Smoluchowski

equations as an approximation for the expectation of the stochastic process is

not clear. To emphasize the difficulty of ignoring correlations, we mention the

case of coagulation-fragmentation processes where the model integral equation

(the continuous analog of Smoluchowski equations) was shown to deviate from

the exact solution [1].

In this paper we are concerned with the relation between the stochastic CP’s

and Smoluchowski equations for a finite particles population. For positive

coagulation rates, which are those studied in the literature, the stochastic

process has only one absorbing state: it always terminates with a single cluster

containing the whole population. However, when the coagulation rates bound

the largest cluster that can be generated, the CP may have many absorbing

states. In this context, our questions are the following: to what limit do the

solutions of Smoluchowski equations converge as t → ∞? Does this limit

approximate the expected steady state cluster size distribution? How are the

multiple absorbing states being accounted for?

8



2.2 The Coagulation Process

2.2.1 Preliminaries and definitions

Consider a population of N particles found at time t = 0, at the “solitary

state” where each particle forms a group of size 1. The population undergoes

stochastic evolution of coagulation events where any two groups can merge

into a larger one. This CP is a time-homogeneous interacting particle system

whose state space is (included in) the set Ω = ΩN = {η} of all partitions of N .

We denote a partition of N into ni summands of size i, i = 1, 2, . . . , N , by η =

(n1, n2, . . . , nN), where ni ≥ 0 and
N
∑

i=1

ini = N . In these notations, the initial

state at t = 0 is η0 = (N, 0, 0, . . . , 0). Assuming mass action kinetics, we model

the total merging intensity, Ψ(i, j; η), at the state η = (n1, n2, . . . , nN) ∈ ΩN

by

Ψ(i, j; η) = Ψ(i, j;ni, nj) = ψ(i, j) (ninj), i 6= j, 2 ≤ i+ j ≤ N,

Ψ(i, i; η) = Ψ(i, i;ni, ni) = ψ(i, i)
ni(ni − 1)

2
, 2 ≤ 2i ≤ N,

(2.2)

In 2.2, the rates of the infinitesimal (in time) transitions depend only on the

sizes of the interacting groups. For i and j such that 1 ≤ i, j ≤ N − 1 and

2 ≤ i+ j ≤ N , the merging rate of two groups of sizes i and j into one group

of size i + j is denoted by ψ(i, j), where ψ(i, j) is some function satisfying

ψ(i, j) = ψ(j, i) ≥ 0. The CP is a non-ergodic Markov chain on ΩN : from the

initial state η0, it eventually reaches an absorbing state.

We denote the set of all absorbing states of the process by A. For each state η,

we denote the probability of being in η at time t by πη(t), and the probability

of being in η when t → ∞ by πη. The CP is non-ergodic Markov chain, and

therefore the existence of such a limit is guaranteed. Clearly πη > 0 if and

only if η ∈ A.

9



Our study concerns the resulting expected groups size distribution f = f(i;N).

Here, f(i;N) denotes the expected number of groups of size i, when t → ∞.

The expected groups size distribution is given by

f(i;N) =
∑

η∈ΩN

πηni(η) =
∑

η∈A

πηni(η) i = 1, 2, . . . , N (2.3)

The time dependent groups size distribution is defined analogously. Note that

mass conservation implies

N
∑

i=1

if(i, N) = N (2.4)

To identify the states in ΩN we sort them lexicographically and use #η to

denote the ordinal number of the state η.

2.2.2 Coagulation processes with multiple absorbing states

Suppose the coagulation kernel is strictly positive, that is, ψ(i, j) > 0 for

i, j > 0 such that i+ j ≤ N . Then, independently of the initial condition, the

process terminates only when all the particles are found in one cluster of size

N . In other words, η = (0, 0, ..., 0, 1) is the only absorbing state.

D-truncated CP’s

We define here another class of CP’s, which we call D-truncated CP’s, where

ψ(i, j) > 0 ⇐⇒ i + j ≤ D for some D ≤ N . In D-truncated CP’s (starting

from η0) the size of a group never exceeds D. Accordingly, the process may

have many absorbing states as shown the following examples.

2.2.3 Direct computation of the group size distribution

The group size distribution f(i;N) is a functional of the probability distri-

bution π. One way to compute f(i;N) is to compute π first, and to obtain

f(i;N) from (2.3).

10



To compute the probability distribution π we construct the transition rate

matrix B, whose entries are determined as follows. A transition accounting

for the coagulation of groups of size i 6= j moves the population from a state

η = (n1, n2, . . . , nN) to the state ξ = (n1, n2, . . . , ni − 1, . . . , nj − 1, . . . , ni+j +

1, . . . , nN). In this case, B(#η,#ξ) = ψ(i, j)ni(η)nj(η). A transition rep-

resenting the coagulation of two groups of size i moves the population from

a state η = (n1, n2, . . . , nN) to the state ξ = (n1, n2, . . . , ni − 2, . . . , n2i +

1, . . . , nN). In this case, B(#η,#ξ) = 1
2ψ(i, i)ni(η)(ni(η) − 1). For all other

pairs η, ξ such that η 6= ξ, the transition from η to ξ cannot occur, and there-

fore B(#η,#ξ) = 0. Since the rate of leaving the state η is the sum of all the

rates of transitions emanating from η, the diagonal entries of B are determined

by

B(#η,#η) = − ∑

η 6=ξ∈ΩN

B(#η,#ξ) (2.5)

With these definitions, the probability distribution π(t) is

π(t) = η0 × eBt (2.6)

To compute π (i.e., the limit as t → ∞) we generate a new matrix, C, in a

way that for any η 6= ξ, C(#η,#ξ) is the transition probability from η to ξ.

This is done in the following way:

1. If B(#η,#η) 6= 0, then row number #η in C is obtained by dividing row

number #η in B by −B(#η,#η).

2. If B(#η,#η) = 0, η is an absorbing state, and the entire row of B is

0. In this case we set C(#η,#η) = −1 and the other entries of this row

remain 0.

For each absorbing state η ∈ A we define 1η as a vector of length |ΩN |, whose

entries are 0 except for entry number #η which is set to be −1. We now

consider the linear system

S(η) : Cx = 1η (2.7)

11



and note that πη is the value of x#η0
in the solution of S(η). Thus, in order

to find π, we have to solve Cx = 1η, for every η ∈ A (this requires one

Gauss elimination with multiple free columns). The solution when the initial

condition is not η0 can be obtained from this system as well.

2.2.4 The Smoluchowski equations

Smoluchowski equations are an attempt to approximate the group size dis-

tribution by forming a self contained system of ODE’s with the unknowns

fi = fi(t), where fi “represents” f(i;N). Following [2], the exact evolution

equations for fi(t) read

dfi

dt
=

i−1
∑

k=1,k 6= i
2

fkfi−kψ(k, i− k) +
1

2
f i

2

(f i
2

− 1)ψ(
i

2
,
i

2
)(ieven)−

D−1
∑

k=1,k 6=i

fifkψ(i, k) − fi(fi − 1)ψ(i, i)(2i≤D) + CORRi, (i = 1, 2, . . . , D) (2.8)

with initial conditions f1 = N and fi = 0 otherwise. Here, CORRi are

the correlation terms, and so far, fi and f(i;N) are the same (see [2]). To

obtain a self contained system of equations (Smoluchowski type equations) for

the unknowns fi, we ignore the CORRi terms that depend explicitly on the

distribution πi.

For computing the equilibrium, we take dfi

dt
= 0, i = 1, 2, . . . , N , in (2.8) and

obtain a system of quadratic equations. Any steady state of the process is a

solution of this system.

The question we address here concerns the comparison between limit, when

t → ∞, of fi, the solution of the Smoluchowski system, and f(i;N), the

expected groups size distribution (which we can compute directly for small

populations).
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2.3 Example 1: CP with a small population and one

absorbing state

In our first example we take N = 5, and ψ(i, j) ≡ 1. The state space Ω5 has

7 states,listed in lexicographic order

Ω5 = {(0, 0, 0, 0, 1), (0, 1, 1, 0, 0), (1, 0, 0, 1, 0), (1, 2, 0, 0, 0),

(2, 0, 1, 0, 0), (3, 1, 0, 0, 0), (5, 0, 0, 0, 0)}

There is only one absorbing state, namely η = (0, 0, 0, 0, 1). The transition

rates matrix B is

B =







































0 0 0 0 0 0 0

1 −1 0 0 0 0 0

1 0 −1 0 0 0 0

0 2 1 −3 0 0 0

0 1 2 0 −3 0 0

0 0 0 3 3 −6 0

0 0 0 0 0 10 −10







































(2.9)

and the “normalized” matrix C is

C =







































−1 0 0 0 0 0 0

1 −1 0 0 0 0 0

1 0 −1 0 0 0 0

0 2
3

1
3 −1 0 0 0

0 1
3

2
3 0 −1 0 0

0 0 0 1
2

1
2
−1 0

0 0 0 0 0 1 −1







































(2.10)

For finite time, the group size distribution is calculated by using (2.9) and

(2.6). The steady state group size distribution (i.e., at t → ∞), computed by

(2.7), is fexact = (0, 0, 0, 0, 1) (it corresponds with having only one absorbing

state).
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The Smoluchowski equations for this case read

ḟ1(t) = −f1(t)(f1(t) − 1) − f1(t)f2(t) − f1(t)f3(t) − f1(t)f4(t)

ḟ2(t) = −f1(t)f2(t) − f2(t)(f2(t) − 1) +
1

2
f1(t)(f1(t) − 1) − f2(t)f3(t)

ḟ3(t) = −f1(t)f3(t) + f1(t)f2(t) − f2(t)f3(t)

ḟ4(t) =
1

2
f2(t)(f2(t) − 1) + f3(t)f1(t) − f1(t)f4(t)

ḟ5(t) = f1(t)f4(t) + f2(t)f3(t) (2.11)

with the initial conditions f1(0) = 5, f2(0) = f3(0) = f4(0) = f5(0) = 0.

The equations of (2.11) are, by definition, functionally dependent: adding up

i times equation number i, for i = 1, 2, . . . , 5, gives an identity ḟ1(t)+2ḟ2(t)+

3ḟ3(t) + 4ḟ4(t) + 5ḟ5(t) = 0, which reflects the fact that the system (2.11) is a

conservation law.

To compare the solution of Smoluchowski system (2.11) with the exact ex-

pected group size distribution, we solved (2.11) numerically. 2.1 shows the

trajectory of f2(t) (panel a), and f4(t) (panel b) for 0 ≤ t ≤ 30, compared

with the exact solution (which was obtained from (2.6) and the definition of

the expectation). As one can see, the wiggling solution of (2.11) is not a

good approximation to the exact solution. Further, note that the numerical

trajectory of (2.11) dips below 0, which renders it completely irrelevant.

Propagating the numerical trajectory of (2.11) to large t, enables us to ap-

proximate numerically the limit to which the system converges, and the result

is fSmoluchowski = (1, 0, 0, 0, 0.8). Recalling that the exact expected equilibrium

group size distribution is fexact = (0, 0, 0, 0, 1), we conclude that fSmoluchowski

is not a good approximation.
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2.4 Example 2: D-truncated CP (D ≈ N) CP with a

small population and multiple absorbing states

We now study a D-truncated CP. We take N = 5, D = 4, ψ(2, 3) = ψ(3, 2) =

ψ(1, 4) = ψ(4, 1) = 0, and ψ(i, j) = 1 for all other i, j. The state space is Ω5,

which was listed above. Unlike the case with Example 1, we have here two

absorbing states. These are

A = {η = (0, 1, 1, 0, 0), ξ = (1, 0, 0, 1, 0)}
The transition rates matrix B is

B =







































0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 2 1 −3 0 0 0

0 1 2 0 −3 0 0

0 0 0 3 3 −6 0

0 0 0 0 0 10−10







































(2.12)

and the normalized matrix C is

C =







































−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

0 2
3

1
3
−1 0 0 0

0 1
3

2
3 0 −1 0 0

0 0 0 1
2

1
2 −1 0

0 0 0 0 0 1 −1







































(2.13)

To compute the probability of being absorbed in η = (0, 1, 1, 0, 0) (the first

absorbing state of A), we set 1η = (0,−1, 0, 0, 0, 0, 0) and solve the system

S(η) : Cx = 1η. The solution is

x = (0, 1, 0,
2

3
,
1

3
,
1

2
,
1

2
) (2.14)
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From (2.14) it follows that πη = x7 = 1
2 . Recalling that there are only two

absorbing states, it follows that πξ = 1 − πη = 1
2 , i.e., the probability of being

absorbed in either one of the absorbing states equals 1
2
. The resulting steady

state group size distribution, computed by (2.3), is fexact = (0.5, 0.5, 0.5, 0.5, 0).

The Smoluchowski equations in this case read

ḟ1(t) = −f1(t)(f1(t) − 1) − f1(t)f2(t) − f1(t)f3(t)

ḟ2(t) = −f1(t)f2(t) − f2(t)(f2(t) − 1) +
1

2
f1(t)(f1(t) − 1)

ḟ3(t) = −f1(t)f3(t) + f1(t)f2(t)

ḟ4(t) =
1

2
f2(t)(f2(t) − 1) + f3(t)f1(t)

ḟ5(t) = 0 (2.15)

with the initial conditions f1(0) = 5, f2(0) = f3(0) = f4(0) = f5(0) = 0.

To compare the solution of (2.15) with the exact expected group size distri-

bution, the system (2.15) was solved numerically. Fig. 2 shows the numerical

trajectory of f2(t) (panel a), and f4(t) (panel b) for 0 ≤ t ≤ 30, compared

with the exact solution. As with the previous example, the wiggling solution

of (2.15) is not a good approximation to the exact solution, and the numerical

trajectory of (2.15) dips below 0 .

By propagating the numerical solution of (2.15) to large t, we find (numeri-

cally) that the solution of the Smoluchowski system converges to fSmoluchowski =

(1, 0, 0, 1, 0). It fails to approximate the exact solution fexact = (0.5, 0.5, 0.5, 0.5, 0).

Moreover, it is easy to check (by substitution) that the exact solution fexact =

(0.5, 0.5, 0.5, 0.5, 0) does not even satisfy the Smoluchowski equilibrium equa-

tions.

Note that in the given example, the numerical solution of Smoluchowski system

converges to one of the two absorbing states (1, 0, 0, 1, 0), whereas the expected

equilibrium group size distribution is a nontrivial linear combination of them.

16



However, in general, the Smoluchowski system does not necessarily converge

to an absorbing state. For example, with the initial condition fSmoluchowski =

(3, 1, 0, 0, 0), the solution of (2.15) converges to ≈ (0, 1, 0.5787, 0.3159, 0). This

solution is not an absorbing state and not even a linear combination of the

two absorbing states.

2.5 Example 3: D-truncated CP (D ≪ N) with a large

population and multiple absorbing states and

Here we study a D-truncated CP with a large population andD ≪ N . We take

N = 100, D = 3, ψ(1, 1) = ψ(1, 2) = ψ(2, 1) = 1 with ψ(i, j) = 0 otherwise.

Here, we cannot use Ω100 directly because it too large. However, the relevant

state space (containing only states with group of size not exceeding 3) has

only 884 states (we do not list these states here). Also, there are 18 absorbing

states, listed in lexicographic order:

A = {(0, 2, 32), (0, 5, 30), (0, 8, 28), (0, 11, 26), (0, 14, 24), (0, 17, 22),

(0, 20, 20), (0, 23, 18), (0, 26, 16), (0, 29, 14), (0, 32, 12), (0, 35, 10),

(0, 38, 8), (0, 41, 6), (0, 44, 4), (0, 47, 2), (0, 50, 0), (1, 0, 33)}
To compute π, we solve the 884×884 linear system (2.7) with 18 free columns

(one for each absorbing state). The resulting group size distribution is fexact =

(0.0091, 7.9031, 28.0616).

The Smoluchowski equations this case reads

ḟ1(t) = −f1(t)(f1(t) − 1) − f1(t)f2(t)

ḟ2(t) = −f1(t)f2(t) +
1

2
f1(t)(f1(t) − 1)

ḟ3(t) = f1(t)f2(t) (2.16)

with the initial conditions f1(0) = 100, f2(0) = f3(0) = 0. This system

was solved numerically, and the solution was propagated to large t in order
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to approximate the equilibrium group size distribution to which the Smolu-

chowski system converges as t → ∞. The resulting limit is fSmoluchowski =

(0.0000, 6.4703, 29.0198). This distribution is a fairly reasonable approxima-

tion to the exact solution (note also that if we substitute the exact solution

into the Smoluchowski equilibrium system, we get relatively small deviations

from zero.)

Larger populations

Our conjecture is that as the population size N grows, the Smoluchowski

equations (at least at equilibrium) provide a better approximation to the ex-

act expected group size distribution. Verifying this conjecture is difficult be-

cause computing the exact solution directly is infeasible for large values of

N , due to the large state space and the corresponding dimensions of the

transition rates matrix. To replace the infeasible direct computation, we

used a Monte Carlo method to simulate the actual stochastic process (see

[2] for details). Simulation of the D-truncated CP with N = 900, D = 3,

ψ(1, 1) = ψ(1, 2) = ψ(2, 1) = 1 with ψ(i, j) = 0 otherwise, gave fexact =

(0.0000, 69.3329, 253.7781). The Smoluchowski system with these parameters

yields fsm = (0.0000, 67.9305, 254.7130), which is a good approximation of the

exact solution.

2.6 Concluding remarks

Smoluchowski equations are not a good model for D-truncated CP’s when

D ≈ N (or D = N). This is due to the correlation between relatively large

interacting groups (see [2] for details).

For small populations, we always have D ≈ N (or D = N), and we demon-

strated that Smoluchowski equations produce a poor approximation to the

stochastic CP. With nonpositive coagulation kernels, there are several absorb-
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ing states. The Smoluchowski system does not necessarily converge to the

exact solution, neither to one of the absorbing states, or to a linear combina-

tion of absorbing states, and the solutions are not positive. The same occurs

for strictly positive coagulation kernels.

For a large population and D ≪ N , we gave an example where the Smolu-

chowski system converges, as t → ∞, to a good approximation of the correct

solution. We conjecture that this is the case for finite populations withD ≪ N .

The classical study of CP’s deals with strictly positive coagulation kernels

and N = ∞, and is modeled by the infinite system of OD’s (2.1). Many of

the mathematical difficulties and phenomena associated with this model (e.g.,

violation of mass conservation) do not correspond to analogous phenomena in

a finite particles population. Note that the classical study allows for only one

absorbing state: one cluster containing the whole population. Therefore, in

our terminology, the classical Smoluchowski equations can be viewed as the

limit as N → ∞ of a D-truncated CP where D = N . Recalling that for finite

populations, the Smoluchowski equations for D-truncated CP’s with D = N

produce a poor approximation to the exact group size distribution, illustrates

an intrinsic difficulty.
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Figure 2.1: The numerical trajectory (solid line) f2(t) (panel a), and f4(t) (panel b), of the

Smoluchowski ODE system (2.11), compared with the exact expectation (dashed line). The

horizontal axis is time.

(a) -0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 (b) -0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

Figure 2.2: The numerical trajectory (solid line) f2(t) (panel a), and f4(t) (panel b), of the

Smoluchowski ODE system (2.15), compared with the exact expectation (dashed line). The

horizontal axis is time.
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Mixing through coagulation processes
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Abstract

This paper deals with an application of a stochastic model for coagulation

processes. A coagulation process describes a population ofN individuals which

are divided into groups that coagulate according to some given rates. The fact

that this process allows groups only to coagulate, assures that after some finite

time the population reaches one of the absorbing states of the state space. We

are interested in the expected final group size distribution.

Our study considers a situation where each individual “wishes“ to end up

as a member of a group of a desired size D. To this end, we define the special

class of bounded coagulation processes, where coagulation rates vanish if the

number of individuals in the two interacting groups exceeds D.

In cases where D 6 |N , the population cannot be partitioned into groups of

size D, and therefore the desire of some individuals cannot be accommodated.

In this context, we study the quality of coagulation processes with different

coagulation rates as a good mixing and partitioning strategy.
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3.1 introduction

Animal grouping is a very common phenomenon in nature. Although it has

been studied extensively, the factors that determine the typical group sizes

for various animal species are often not completely understood. This question

may have ecological and evolutionary significance, since it can be assumed

that characteristic group size distributions evolved to maximize some desired

fitness.

We consider here a situation where each individual “wishes” to be a mem-

ber of a (small) group of a desired size that is denoted by D. This might be

interpreted for example, as the optimal group size of a pack of lions. A reason-

able assumption is that the typical group size evolved as an optimizing balance

between the ability to defend the territory, and required food supply. There-

fore, at the individual’s level, an individual seeks a strategy that increases its

chances of becoming a member in a group of size D. At the population level,

at the steady state, we expect to see an approximately perfect partitioning of

the population into groups of size D.

Achieving perfect partitioning at the population level seems to require some

of cooperation or leadership at the individual level, but this is not always

known to be the case. We therefore seek a simple model that enables au-

tonomous partitioning of the population, based only on the local behavior of

the individuals, and without requiring knowledge on the population scale. To

this end, we study bounded coagulation processes. These are coagulation pro-

cesses in which coagulation rates vanish if the number of individuals in the

two interacting groups exceeds D. Our main question is whether this individ-

ual based behavior can lead to perfect or almost perfect distributions of the

population into groups. We also note that if D 6 |N , where N is the population

size, the population cannot be completely partitioned into groups of size D,

and the desire of some individuals cannot be accommodated. In such cases we

study the quality of coagulation processes with different coagulation rates as
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a good mixing and partitioning strategy.

The paper is organized as follows. Section 2 describes the basic coagulation

model. In section 3 we present three approaches for computing the stationary

distribution. The first two are a direct Markov Chain approach which is accu-

rate but not practical for large populations. The second approach is a Monte

Carlo method which provides a good approximation for the distribution, by

means of collecting the statistics of simulations. The third approach uses the

Smoluchowski type equations, which are based on a heuristic argument [2], [1].

We show here that the quality of the resulting approximation varies, and in

some cases can be poor.

In Section 4, we deal with bounded coagulation processes, where we cal-

culate number of individuals that actually find themselves in a group of size

D. We prove that bounded coagulation processes with an appropriate choice

of (local decision) kernels can lead to a stationary almost perfect distribution,

and conclude that such processes can become a grouping strategy. The proof

of existence of such kernels involves an upperbound which is sufficient but

not necessarily tight. We show by an example for small populations, that in

practice, much smaller bounds may be used in order to achieve satisfactory

results.
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3.2 Defining Coagulation processes:

The general coagulation process

Consider a population of N particles that is found, at time t = 0, at the

initial state where each particle forms a group of size 1. (This is called also

“solitary state”)The population undergos stochastic evolution (in time) of co-

agulation events where two groups can merge into a larger one. This stochastic

coagulation process (CP) is a time-homogeneous interacting particle system

whose state space is (included in) the set Ω = ΩN = {η} of all partitions

of N . For a given N , we denote a partition of N into ni summands of size

i, i = 1, 2, . . . , N , by η = [n1, n2, . . . , nN ]. Here, ni ≥ 0 and
N
∑

i=1

ini = N . The

initial state at t = 0 is, by our definition, denoted η0 = [N, 0, 0, . . . , 0]. As-

suming mass action kinetics, we model the total merging intensity, Ψ(i, j; η),

at the state η = [n1, . . . , nN ] ∈ ΩN by

Ψ(i, j; η) = Ψ(i, j;ni, nj) = ψ(i, j) (ninj), i 6= j, 2 ≤ i+ j ≤ N,

Ψ(i, i; η) = Ψ(i, i;ni, ni) = ψ(i, i)
ni(ni − 1)

2
, 2 ≤ 2i ≤ N,

(3.1)

In 3.1, the rates of the infinitesimal (in time) transitions depend only on the

sizes of the interacting groups. For i and j such that 1 ≤ i, j ≤ N − 1 and

2 ≤ i+j ≤ N , the merging rate of two groups of sizes i and j into one group of

size i+j is denoted by ψ(i, j), for some function satisfying ψ(i, j) = ψ(j, i) ≥ 0.

The CP is a (non ergodic) Markov chain on ΩN that starts from η0 and reaches

eventually an absorbing state.

The D-truncated coagulation processes

In this paper, we consider only D-truncated coagulation processes (DCP)

which are the special case of a CP, where the rates ψ(i, j) satisfy
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ψ(i, j) =











a(i, j), if i+ j ≤ D

0 otherwise
(3.2)

for some D > 0, and some symmetric function a(i, j) > 0. Obviously, since we

start from the solitary state, groups of size larger thanD are never generated in

a DCP. Therefore, we use hereafter an abbreviated notation for the states of a

DCP, namely η = (n1, n2, . . . , nD), where ni, i = 1, 2, . . . , D count the number

of i-groups in the state. For example, the initial solitary state is represented

as a vector of length D, namely η0 = (N, 0, 0, . . . , 0). We also denote the state

space of a DCP by ΩN,D. ΩN,D is the set of partitions of N whose summands

are bounded by D. Clearly, ΩN,D ⊆ ΩN . The set of absorbing states is

denoted by AN,D where AN,D ⊆ ΩN,D. A state η = (n1, n2, . . . , nD) ∈ ΩN,D is

an absorbing state if and only if it does not contain two groups of sizes i, j

with i+ j ≤ D, that is, ni × nj = 0 for all i, j such that i+ j ≤ D.

The group size probability

For each state η, we denote the probability of being in η at time t by πη(t),

and the probability of being in η when t → ∞ by πη. Clearly πη > 0 if and

only if η ∈ AN,D.

We define the group size probability f(i;N) as the probability of ending up

in a group of size i as t → ∞. If the DCP is absorbed in the state η =

(n1, n2, . . . , nD), the probability of being in a group of size i is ini

N
. Therefore

f(i;N) is defined by

f(i;N) =
i

N

∑

η∈ΩN

πηni(η) =
i

N

∑

η∈AN,D

πηni(η) i = 1, 2, . . . , D (3.3)

Relation 3.3, together with conservation of mass, imply that

D
∑

i=1

f(i, N) = 1 (3.4)
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Note that the last two relations still hold if we replace f and π by f(t) and

π(t) respectively.

3.2.1 Computing the group size probability directly

The group size probability f(i;N) is a functional of the probability distribution

π. Thus, one way to compute f(i;N) is to compute π first, and to obtain the

functional f(i;N) by using Eq. 3.3.

To compute the probability distribution π we construct the transition rate

matrix B, whose entries are determined as follows. A transition generated

by the coagulation of groups of size i 6= j moves the population from a state

η = (n1, n2, . . . , nD) to the state ξ = (n1, n2, . . . , ni − 1, . . . , nj − 1, . . . , ni+j +

1, . . . , nD). In this case, B(#η,#ξ) = ψ(i, j)ni(η)nj(η), where we use #η

to denote the ordinal number of the state η when the states in ΩN,D are

sorted lexicographically. A transition generated by the coagulation of two

groups of size i moves the population from a state η = (n1, n2, . . . , nD) to the

state ξ = (n1, n2, . . . , ni − 2, . . . , n2i + 1, . . . , nD). In this case, B(#η,#ξ) =
1
2ψ(i, i)ni(η)(ni(η)− 1). For all other pairs η, ξ such that η 6= ξ, the transition

from η to ξ is not allowed, and we therefore set B(#η,#ξ) = 0. Since the rate

of leaving the state η is the sum of all the rates of transitions emanating from

η, the diagonal of B is determined by

B(#η,#η) = − ∑

η 6=ξ∈ΩN,D

B(#η,#ξ) (3.5)

With these definitions, the probability distribution π(t) is

π(t) = η0 × eBt (3.6)

To compute π we generate a new matrix, C, in a way that for any η 6=
ξ, C(#η,#ξ) is the transition probability from η to ξ. This is done in the

following way:
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1. If B(#η,#η) 6= 0, then row number #η in C is obtained by dividing row

number #η in B by B(#η,#η).

2. If B(#η,#η) = 0, η is an absorbing state, and the entire row of B is 0. In

this case we set C(#η,#η) = −1 and the other entries of this row to be 0.

For each absorbing state η ∈ AN,D we define 1η as a vector of length |ΩN,D|,
whose entries are 0 except for entry number #η which is set to be −1. We

now consider the linear system

S(η) : Cx = 1η (3.7)

and note that πη is the value of x#η0
in the solution of S(η).

To illustrate, we provide the following example.

Example 1

We take N = 5, D = 4, and a(i, j) ≡ 1. The state space Ω5,4 and the two

absorbing states of A5,4, listed in lexicographic order, are

Ω5,4 = {(0, 1, 1, 0), (1, 0, 0, 1), (1, 2, 0, 0), (2, 0, 1, 0), (3, 1, 0, 0), (5, 0, 0, 0)}

A5,4 = {η = (0, 1, 1, 0), ξ = (1, 0, 0, 1)}

The transition rates matrix B is

B =































0 0 0 0 0 0

0 0 0 0 0 0

2 1 −3 0 0 0

1 2 0 −3 0 0

0 0 3 3 −6 0

0 0 0 0 10−10































(3.8)
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The “normalized” matrix C is

C =































−1 0 0 0 0 0

0 −1 0 0 0 0
2
3

1
3
−1 0 0 0

1
3

2
3 0 −1 0 0

0 0 1
2

1
2 −1 0

0 0 0 0 1 −1































(3.9)

We now compute the probability of being absorbed in η = (0, 1, 1, 0), i.e.,

the first absorbing state in A5,4. We set 1η = (−1, 0, 0, 0, 0, 0) and solve the

system S(η) : Cx = 1η. The solution is

x = (1, 0,
2

3
,
1

3
,
1

2
,
1

2
) (3.10)

From 3.10 it follows that πη = x6 = 1
2
, and thus πξ = 1 − πη = 1

2
. Therefore,

the absorption probability in either of the absorbing states is equal.

The resulting group size probability, computed by 3.3, is f = (0.1, 0.2, 0.3, 0.4).

3.2.2 Computing the group size probability via Monte Carlo sim-

ulations

The relevant state space ΩN,D , and therefore the matrix B, may be too large

for feasible implementation of the direct approach. Clearly, this occurs when

N is large, even if D remains relatively small. In such cases we can estimate

f(i;N) by means of Monte Carlo simulations where we do not need to store

or manipulate the matrix B. We briefly describe this procedure here.

We start the simulation from the initial state η0. Suppose that at some stage

we are at the state η. This state is connected, by a single transition, to at most
D(D−1)

2 other states, and we can compute the related transition probabilities

to these states. We simulate a legal transition by choosing a target state

at random, while accounting for the relative transition probabilities to the

connected states. We continue the procedure until hitting an absorbing state,
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and then restart the simulation from η0. The statistics of a large number of

such simulations gives us an estimate for f .

We note here that this simulation can also be used for estimating the expected

time to absorption, in the following manner. Suppose that we are currently in

the non-absorbing state η. The expected time to leaving η is the inverse of the

rate of leaving η, that is −1
B(#η,#η) . Thus, if we sum −1

B(#η,#η) over all the visited

states from the initial state until the simulation is stopped at an absorbing

state, we obtain the expected time to absorption of the specific route chosen

by the simulated realization of the CP. The statistics of a large number of such

simulations gives an estimate for the expected time until absorption.

3.2.3 The Smoluchowski type equations

Another method for computing the group size probability is implemented by

a system of ODE’s. As we illustrate here it gives unsatisfactory results. More

details can be found in [2]. Following [2], the Smoluchowski type equations for

the group size probability read

dfi

dt
= Ni

i−1
∑

k=1,k 6= i
2

fkfi−k

k(i− k)
ψ(k, i− k) + f i

2

(
2N

i
f i

2

− 1)ψ(
i

2
,
i

2
)(ieven)−

N
D−1
∑

k=1,k 6=i

fifk

k
ψ(i, k) − fi(

N

i
fi − 1)ψ(i, i)(2i≤D) + CORRi, (i = 1, 2, . . . , D)

(3.11)

where CORRi are the correlation terms. To obtain a self contained system

of equations for the unknowns fi we ignore the CORRi terms that depend

explicitly on the distribution πi. The initial conditions are f1 = 1 and fi = 0

otherwise.

Solving 3.11, and computing the limit of the solution as t→ ∞, we may expect

to get a reasonable approximation for the stationary group size probability if

D ≪ N . This, however, is not the case if D and N are comparable.
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To illustrate, we use the data of the previous example, namely N = 5, D = 4,

and a(i, j) = 1. The resulting system of ODE’s reads

ḟ1(t) = −f1(t)(5f1(t) − 1) − 5

2
f1(t)f2(t) −

5

3
f1(t)f3(t)

ḟ2(t) = −5f1(t)f2(t) − f2(t)(
5

2
f2(t) − 1) + f1(t)(5f1(t) − 1)

ḟ3(t) = −5f1(t)f3(t) +
15

2
f1(t)f2(t)

ḟ4(t) = f2(t)(
5

2
f2(t) − 1) +

20

3
f3(t)f1(t) (3.12)

with the initial conditions f1(0) = 1, f2(0) = f3(0) = f4(0) = 0.

Numerical solution gives f = (0.2, 0, 0, 0.8), which does not approximate the

exact solution, f = (0.1, 0.2, 0.3, 0.4), detailed above.
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3.3 DCP as a grouping strategy

3.3.1 Kernel Quality

We assume here that all individuals in the population wish to be found, even-

tually, in a group of size D. With this intention in mind, we ask if the DCP

is a good mixing strategy, that is, what coagulation kernels lead to a “good”

group size probability?

From the definition, it is clear that the “ideal” group size probability is

fideal = (0, 0, 0, ..., 1), corresponding to the absorbing state ηideal = (0, 0, 0, ..., N
D

).

However, note that ηideal is a legal absorbing state if and only if D | N , and is

not accessible if D 6 |N . In such cases, the best possible group size probability,

denoted by fbest, is

fbest : f(i) =























NmodD
N

, if i = NmodD,

1 − NmodD
N

, if i = D,

0 otherwise.

(3.13)

Which corresponds to the absorbing state ηbest = (0, 0, ..., 0, 1, 0, ..., [N
D
]),

where the ′1′ is in the place NmodD.

As one can see , To assess the individual’s fitness resulting from a given co-

agulation kernel a = a(i, j) we need to define a quality function which is

maximized at fbest. We use here linear quality function.

Definition: Let αi, i = 1, 2, . . . , D be some nonnegative constants. Sup-

pose that a is the coagulation kernel leading to the steady state group size

probability f . The quality of the kernel a is defined by

S = S(a, α, f) =
D
∑

i=1

αifi (3.14)

Since individuals want to form large groups, up to the desired size D, it is

reasonable to choose αi that are monotonically increasing in i. Such choice,

however, does not guarantee that the quality S(a, α, f) is maximized at fbest.
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To illustrate, we take N = 5, D = 4, and a(i, j) = 1 as in 3.2.1, and choose

α = (0, 9, 10, 11). Here, fbest = (0.2, 0, 0, 0.8). Setting f 1 = (0, 0.4, 0.6, 0) we

can compute S(a, α, fbest) = 8.8 < 9.6 = S(a, α, f 1), so fbest does not attain

maximal quality. Therefore, we further restrict the weight α′s and prove the

following assertion.

Claim 1: Suppose that the weights αi, i = 1, 2, . . . , D are the values αi = A(i)

of a nonnegative convex function A defined on the interval [0, D] with A(0) =

0. Then, fbest maximizes the quality function defined in 3.14 over all possible

group size distributions.

Proof: Let η ∈ AN,D be an absorbing state and let f η be the corresponding

group size distribution (that is f η(i) = ini(η)
N

). Clearly, the set of all possible

group size distributions is the convex hull of the set H = {f η|η ∈ AN,D}. Due

to the given linearity of the quality function, the quality of any f ∈ Conv(H)

is the weighted average of the qualities of some elements in H. Therefore, it is

sufficient to show that for every η ∈ AN,D, we have S(a, α, f η) ≤ S(a, α, fbest).

Let η ∈ AN,D be an absorbing state. If all but maybe one of the groups in

η are of size D, then fbest = f η and we are done. Therefore, suppose that η

contains two groups of sizes k1, k2 < D. We consider two cases: if k1 + k2 > D

we replace these two groups with two other groups of sizes D, k1 + k2 − D.

Since A is convex and non-negative it can be shown that the resulting quality

cannot decrease. If on the other hand, k1 +k2 ≤ D, we replace the two groups

with one group of size k1 + k2. Now, let us extend the definition of αk by

defining α0 = 0. We can now reduce this case to the first case, by considering

the group of size k1+k2, and an empty group of size 0. As before, the resulting

quality cannot decrease. After a finite number of such steps, we finally reach

fbest, and therefore fbest has the maximal quality.

Two possible selections for αi are:

Q1 : αD = 1, αi = 0, ∀i 6= D, i = 1, 2, . . . , D (3.15)

34



With this quality function being in a group of size D is the only case that

gets credit, and the quality is the number of such groups. Being in any other

group is considered as equally bad. This quality function is weakly convex,

but fbest is still a strong maximum since there is only one absorbing state with

the maximal number of groups of size D.

Q2 : αi = iγ, i = 1, 2, . . . , D, γ ≥ 1 (3.16)

With this quality function being in a larger group gets a larger credit. We

assume that γ ≥ 1, to ensure the convexity of S. When γ = 1, the quality

function is simply the expected group size.

Example 2

We set N = 20 and D = 6. The initial state is η0 = (20, 0, 0, 0, 0, 0). The set

of absorbing states, A20,6, listed in lexicographic order is

A20,6 = {(0, 0, 0, 0, 4, 0), (0, 0, 0, 1, 2, 1), (0, 0, 0, 2, 0, 2), (0, 0, 0, 5, 0, 0),

(0, 0, 1, 0, 1, 2), (0, 0, 1, 3, 1, 0), (0, 1, 0, 0, 0, 3)}

Figure 3.1 shows the results obtained when using the three coagulation kernels

a(i, j) = 1, a(i, j) = i+ j, a(i, j) = ij.

We see that the coagulation kernels affect significantly the resulting group

size probability, and the resulting quality. Higher quality is attained when the

coagulation rates of large groups is larger than those of the smaller groups.

3.3.2 Coagulation kernels for maximizing quality

If D is fixed and N → ∞, we see from the definition of fbest that fD approaches

1, or, equivalently, that fbest → fideal in the infinity norm. We are therefore
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interested in finding kernels that lead to a stationary group size probability

where the value of fD is arbitrarily close to 1. In the following claim we prove

the existence of such kernels.

Claim 2: There exist a series of kernels {aN = aN (i, j)} such that when using

the kernel aN on the population size N , the resulting stationary group size

probability f(i;N) satisfies

lim
N→∞

fD = 1 (3.17)

Proof : Let N be arbitrary. We take some positive large U = U(N) whose

value is determined later, and define the kernel aN (i, j) by

aN (i, j) =























U i, if j = 1,

U j, if i = 1,
1
U

otherwise.

(3.18)

For i = 0, 1, . . . , [N
D

], we use ηi to denote the state ηi = (N −Di, 0, 0, ..., 0, i).

Let ξ0 be the state that corresponds to the best group size probability, that is

, ξ0 = (0, 0, . . . , 0, 1, 0, . . . , 0, [N
D

]). For every two states η, ξ ∈ ΩN,D let P (ξ | η)
be the conditional probability that the DCP reaches the state ξ, given that it

is now in η. Then,

P (ξ0 | η0) ≥ P (ξ0 | η[N
D

])
[N
D

]
∏

i=1

P (ηi | ηi−1) =
[N
D

]
∏

i=1

P (ηi | ηi−1) ≥ (P (η1 | η0))
[N
D

]

(3.19)

The last inequality holds because P (ηi | ηi−1) is monotonically increasing in i.

Since a(i, j) > 0 it is possible to get from η0 (the initial state) to η1. One possi-

ble way is by the following chain of coagulation events: (1, 1), (1, 2), . . . , (1, D−
1). Therefore,

P (η1 | η0) ≥ 1× U

U + 1
2(N − 3)

× U 2

U 2 + 1
2(N − 4)

× . . .× UD−2

UD−2 + 1
2(N −D)

≥
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



U

U + 1
2
(N − 3)





D

(3.20)

We conclude that

P (ξ0 | η0) ≥ (
U

U + 1
2(N − 3)

)N (3.21)

Clearly, for every ǫ = ǫ(N) > 0, we can find a value U = U(N) such that

P (ξ0 | η0) > 1− ǫ. Therefore, we have fD ≥ (1− ǫ)N−NmodD
N

. Determining, for

example ǫ(N) = 1
N

, we get

lim
N→∞

fD = 1 (3.22)

3.3.3 Efficiency

We showed that the maximal quality can be approached with an appropriate

choice of coagulation kernels. However, it turns out that with these kernels, the

expected time to a coagulation event ranges extremely from state to state. In

other words, if we normalize the kernel and make the sum of the a(i, j) values

1, the expected time to absorption would be very large. This happens, since

to achieve ’good’ kernels, we need to have more control on the coagulations

of groups, such that groups will be formed in the sizes, we require. This

causes a relatively large variation in the rates of ’good’ kernels, and therefore

a long time until absorption, while kernels which are more homogeneous result

shorter time until absorption but achieve poorer quality.

This discussion leads to the following definition:

Efficiency: The efficiency, ν, of the kernel a = a(i, j), normalized such that
D
∑

i≤j

a(i, j) = 1, is

ν =
1

E
(3.23)

where E is the expected time to absorption.
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Note that with no loss of generality, we can assume that the kernel is normal-

ized, because if all the a(i, j) values are multiplied by a constant C > 0, we

end up with the same CP but with rescaled time.

As was mentioned before, it seems that raising the efficiency of a kernel reduces

the quality in the solution. Therefore one may ask if there is a point in trying

to find kernels with both good quality and efficiency. The next example shows

that although efficiency and quality are indeed anti correlated, raising one of

them does not necessarily reduces the other, therefore there are kernels that

are ’better’ then others with respect to both of this quantities, which gives a

motivation for trying to find such ’good’ kernels.

3.3.4 Example 3

Consider a DCP with D = 3, arbitrary N , and the quality function Q1.

We assume that a(1, 1) = β = 1−a(1, 2) = 1−a(2, 1). Note that the quality

is a monotonically decreasing function of β since increasing a(1, 2) increases

f2. However, the efficiency is not monotonically increasing in β. We computed

the efficiency ν, for the case of N = 100, using the monte carlo method ,

and found that ν = ν(β) has a local maximum in the interval β ∈ [0, 1)

Moreover, ν is not continuous from the left at β = 1. We propose a possible

interpretation to the latter phenomenon. Assume, for example, that N is even,

and let µ be the expected time to absorption when β = 1. Than for β = 1− ǫ

where ǫ→ 0, we get that the expected time until absorbing will be (1−O(ǫ))β

when a coagulation of 2 and 1 didn’t occur, while if such a coagulation did

occur (with probability O(ǫ)) we have to wait for another occurrence of such a

coagulation until absorbing (because N is even), and therefore in such a case

our expected time until absorbing will be O(1
ǫ
), so this case contributes O(1)

to the total expected time, and so when ǫ→ 0 we get β+O(1) which is larger

than β.

The following graphs show the quality and efficiency for N = 100.
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So, our conclusion is that there are kernels which are better than others with

respect to both quality and efficiency, thus there is a motivation for finding

such good kernels.

newpage

3.4 Conclusion

Our primary question in this paper was : Can one achieve an optimal group

size distribution via a DCP. We have shown that for the simplest model, i.e.

a constant kernel, this is not the case and the DCP yields unsatisfying results.

However, when choosing the kernel coefficient carefully, it is possible to con-

verge to the optimal group size distribution. Next, we introduced the term

efficiency of a kernel, which represent the time until the process converges, and

showed that ”optimal” kernels have poor efficiency. Thus, we raise the question

of the possibility of finding kernels which are both ’optimal’ and efficient.
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Chapter 4

Comparing strategies in a multi-staged

decision game
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Abstract

This paper deals with a decision game that can apply to various biological

situations. Through simple models, our goal is to investigate the connection

between the objective living conditions, and the need to develop complex and

sophisticated strategies in order to survive. Our main result is, that both

in comfortable and rough conditions, developing an optimal strategy is not of

great importance, and a relatively simple memoryless strategy, achieves results

almost as good as optimal, and therefore might be enough for surviving.
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4.1 Introduction

In various biological situations, an organism faces a stage on which he should

make a decision that would have great effect on it’s surviving chances, due to

influence on food amount, number of off springs , chances of escaping from a

predator etc.

As evolution and natural selection operate, we might expect the organism to

be able to decide the ’correct’ decision, that is, select the optimal strategy,

based on the knowledge it has when facing a certain situation. Here ’optimal’

means a strategy which maximizes, for example the expected amount of food

gained, or the expected number of off springs. However, the optimal strategy

is usually complex and developing a brain complex enough to perform such a

strategy has a cost. Therefore, if the difference between the gain from applying

an optimal strategy and from applying a simpler strategy is not large, it may

be not cost-effective to develop a sophisticated brain, and therefore relatively

primitive species might survive. On the contrary, if the different is large, then

developing a sophisticated brain is crucial for surviving, and in this case only

more advanced species may survive.

In order to demonstrate the above, we construct a model of a multi-staged

decision game a certain organism (bird in our case) plays. At each stage

the bird finds a place on which it is able to nest, and decides if it does indeed

takes this place, or keeps searching, as the bird’s goal is to find the best nesting

place possible, which means, for example, the highest expected number of off

springs. The difference between different situations or species will be achieved

by changing a single parameter of the game, which is the search cost per turn.

This parameter can also be treated as the rate on which the bird looses it’s

chances to reproduce. We compare the results obtained for two strategies, the

optimal (’smart’) strategy, and a more simple (’stupid’) strategy.

When examining the influence of search cost, our main conclusion is that if

there is a little or no cost at all involved in searching (living, moving) then
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there is no significant difference between the smart and the stupid strategies.

If there is a relatively large cost involved in searching then the smarter bird is

better.

Discrete multi staged decision games have been widely investigated in liter-

ature, as various models were proposed, many of which have interesting eco-

nomical, biological and social science interpretations. As an example, we bring

the well known problem of taking the max of T proposals, which are assumed

to have a linear order relation. At each stage, we may stop the game or pro-

ceed, and our goal is to maximize the probability of stopping at the maximal

proposal. It can be shown that the optimal strategy is not to stop at all in

the first a(T ) proposals, and then stop right after getting a proposal which is

better then the first a(T ), while a(T ) satisfy the asymptotic relation a(T ) ∼ T
e

as T → ∞. In our problem, however, we want to maximize the expected score,

and are not particularly interested in the best proposal.

In [1], a multi-staged decision game is discussed, on which at each step the

proposal is assumed to be normally distributed, with parameters µ and σ, and

the player can control those parameters. In this example the goal is maximizing

the surviving probability, which is the probability of the score to be above a

certain bound B , which is the amount of food crucial for surviving. Our

model differs since the bird cannot control the proposal’s distribution, since

we are interested in maximizing the expected score, and since in our model

the bird can choose only one proposal while in [1] it eats at each step.

In [3], the connection between body-size and foraging strategy is discussed.

In [4], it is assumed that different foraging strategies yields different searching

costs, and it is showed that for seed-harvester ants, the searching costs are so

small compared to the expected gain, that they can be neglected. However, in

this paper different strategies gives different searching times, so it is stated that

time is the main resource to be considered when comparing between different

strategies. In our game, however, the searching cost contains both the energy

spent and the price of time, and therefore it is important.
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4.2 Definition of the process

Consider the following decision game: a (virtual) bird is given a sequence of

T proposals. All proposals are drawn from a quality distribution function

denoted by F . We assume that the expectation µ of F , namely µ = E(F ) is

finite.

We denote MF = min {x | F (x) = 1}. If F is the distribution function of

a bounded random variable, then MF < ∞. The density function of F is

denoted by f .

A strategy for accepting/rejecting a proposal at each step, when the total

number of steps is T is denoted by ST . A strategy can be represented as

a sequence of nonnegative numbers (α0, α1, ..., αT) where in the k-th step,

1 ≤ k ≤ T , the proposal is accepted if it is at least αk.

When the maximal number of steps, T , is given we denote the expected score

attained by applying the strategy ST by XT = XT (ST ) (this is the utility

function).

xT
i = xi = xi(S

T ) is the conditional expected score attained by applying

the strategy ST when only i steps remain. When T is known we will use xi.

We are interested in maximizing the expected score, that is finding strate-

gies ST that maximizes XT (ST )
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4.3 Strategies for solution

We compare here two strategies: the “stupid” bird uses a constant bound

strategy and the “smart” bird uses an optimal strategy, which we define below.

4.3.1 The Stupid Bird

The stupid bird does not know how many steps are left in the game. Therefore,

it uses a single bound strategy, that is accepting any proposal whose score is no

less than some constant α. This implies ST = (α, α, . . . , α). For convenience,

we might call the strategy ST = (α, α, . . . , α), just α. We further assume

that (through evolutionary selection) the stupid bird it uses the value of α

that maximizes the total expectation from all possible single bound strategies.

Thus, for a given number of steps T , we seek to compute the optimal α which

is denoted α(T ). We define

A = A(α) =
∫ ∞

α
tf(t)dt (4.1)

and

B = B(α) = F (α) (4.2)

Let xk be the expected score, when there are exactly k steps left. At this stage,

the bird can choose to accept the proposal or to reject it. If the proposal is

accepted, with probability 1−B, the expected score is A
1−B

. If it is reject, with

probability B, the expected score is xk−1. We therefore obtain the following

recurrence relation:

xk(α) = A(α) +B(α)xk−1(α) (4.3)

with the initial condition x0(α) = µ. (We assume that in the last stage the

bird always accept the proposal). This yields
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xk(α) = A(α)
1 − B(α)k

1 − B(α)
+ µB(α)k, k = 1, 2, . . . , T. (4.4)

The optimal value of α = α(T ) which the stupid bird should use, is the value

that maximizes XT = XT (α) = xT (α).

More turns yields more opportunities for the bird therefore we expect XT

to be monotonically increasing with respect to T . Moreover, when the number

of turns approaches infinity, we expect the gain to be as close as we like to the

maximum possible value, MF . The proof for these observations is as following

: Assume, with no loss of generality, that E(F ) = 0. Then :

XT = A(α(T ))
1− B(α(T ))T

1 − B(α(T ))
≥

A(α(T − 1))
1 − B(α(T − 1))T

1 − B(α(T − 1))
≥

A(α(T − 1))
1 −B(α(T − 1))T−1

1 −B(α(T − 1))
= XT−1 (4.5)

Now, we know that there exists some X (possibly infinite) with XT ր X.

Clearly X ≤ MF . To show that equality holds, we suppose that X < MF . In

this case, F (MF ) − F (MF +X
2 ) = p > 0. Therefore, if we set α(T ) = MF +X

2 for

every T , we get

lim
T→∞

XT ≥ lim
T→∞

(1 − (1 − p)T )
MF +X

2
=
MF +X

2
> X (4.6)

which is a contradiction. Therefore XT ր ∞

4.3.2 The Smart Bird

The smart bird has complete information on the game, and therefore estab-

lishes an optimal strategy (that is a strategy that maximizes the expected

score XT for the T steps game). It can be easily shown (by induction),

that there exists a non-decreasing sequence of numbers : α0, α1, ..., αk, ... such
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that if there are exactly k steps remaining, the smart bird will accept a pro-

posal if it’s score is not smaller then αk. Note that this property implies

Xk(Sk) = Xk = xk = xk(ST ) for every T ≥ k. Therefore, in this section we

may use only the lower case xk.

For every natural T we wish to find the optimal strategy ST and the resulting

expected score xT . With the above notations, we use the dynamic program-

ming approach in order to get a recurrence formula for xT Suppose that there

are exactly k steps left in the game. The bird may accept or reject the current

proposal. If the proposal’s score is smaller than xk−1, the proposal must be

rejected, because the expected score when rejecting the proposal is greater

then the score of the proposal itself. For the same reason, the proposal must

be accepted if it’s score is greater then xk−1. Therefore, we get the relation

αk = xk−1. If the proposal is rejected, with probability B(xk−1), the expected

score is xk−1, while if it is accepted , with probability 1−B(xk−1), the expected

score is A(xk−1

1−B(xk−1)
. We therefore obtain the following recurrence formula :

xk = A(xk−1) +B(xk−1)xk−1

With the initial condition x0 = µ. (We assume that in the last stage the

proposal is always accepted)

The optimality of the smart bird’s strategy, can be easily shown by induction,

directly from the recurrence formula.

This recurrence formula, however, cannot be brought into a closed form in the

general case, and even in specific simple F distributions. Instead, it is often

possible to find at least an asymptotic expression for xT when T → ∞, as will

be shown later.

In similar to the stupid bird, here also the expected gain is monotonically

increasing to MF . Looking at the recurrence formula we get :

xk = A(xk−1) + B(xk−1)xk−1 =

(1 − F (xk−1))E(x/x > xk−1) + F (xk−1)xk−1 ≥
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(1 − F (xk−1))xk−1 + F (xk−1)xk−1 = xk−1 (4.7)

Therefore xk is non-decreasing. (It also follows that xk is strongly increasing

unless F (xk−1) = 1, that is, we have already reached the maximal value MF ).

Since the smart bird’s strategy is optimal, it is obvious that xk րMF because

this was the case for the sub-optimal strategy of the stupid bird.

Though a closed expression for xk cannot be obtained usually, it is possible to

set a bound on xk, which is valid for every F . If F is bounded, then MF <∞,

and xk is of course bounded since xk ≤ MF . If F is not bounded, then xk → ∞.

In order to establish an asymptotic bound, we first observe that the gain of

adding an extra turn, is monotonically decreasing with respect to the number

of steps left. This is proven in the following lemma

lemma : Define dk as the difference between two consecutive elements of the

series xk , that is dk = △(xk) = xk − xk−1. Then dk ց d for some real d. If

µ = E(F ) <∞ then dk ց 0.

proof : First we prove that dk is a decreasing sequence.

dk+1 = xk+1 − xk =
∫ ∞

xk

(t− xk) · f(t)dt <

∫ ∞

xk

(t− xk−1) · f(t)dt <
∫ ∞

xk−1

(t− xk−1) · f(t)dt =

xk − xk−1 = dk (4.8)

And therefore dk ց d for some real d. Now suppose that E(F ) <∞, then :

dk = xk − xk−1 =
∫ ∞

xk−1

(t− xk−1) · f(t)dt <
∫ ∞

xk−1

t · f(t)dt (4.9)

But xk րMF , therefore :

lim
k→∞

∫ ∞

xk

t · f(t)dt = 0 (4.10)

and therefore dk ց 0
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From the last lemma an asymptotic bound on xk can be easily derived, by the

following claim :

claim : If µ <∞ then xk

k
→ 0 as k → ∞.

proof : dk → 0 as k → ∞, therefore :

xk

k
=
x0 +

∑k
i=1 dk

k
→ ∞ (4.11)

This result implies that xk = o(k), meaning that the growing rate is sub-

linear. Examples of specific distributions which of course satisfy this property

are viewed in the next section.
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4.3.3 Example : The Uniform Distribution

In this example F is uniformly distributed on the interval [−1, 1], that is

f ∼ U [−1, 1]. Here we get :

A = A(α) =
1

4
(1 − α2) (4.12)

And

B = B(α) =
α+ 1

2
(4.13)

For the stupid bird we get :

xk(α) = 2α(1 − (
α2 − 1

α2
)k) (4.14)

Derivation and comparing to zero gives after simplifying :

2 − 2(
α2 − 1

α2
)k(1 +

4k

α2 − 1
) = 0 (4.15)

And we get a polynomial equation of degree k which we are unable to solve ana-

lytically. However, simulations shows that when T → ∞, then also T (1 − xT ) →
∞.

For the smart bird we get the following recursion formula :

xk =
(xk−1 + 1)

2

2

(4.16)

Next, we we show that 1 − xk ∼ 1
k
.

claim : as k → ∞, we have : 1 − xk ∼ 1
k

proof : write yk = 1 − xk, then the recursion formula becomes : yk = yk−1 −
yk−1

2
2.

Now assume that yk >
1
k
. Then :

yk+1 = yk −
yk

2

2
>

1

k
− 1

4k2
>

1

k
− 1

k(k + 1)
=

1

k + 1
(4.17)
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Assume now that yk <
4
k
. Then :

yk+1 = yk −
yk

2

2
<

4

k
− 4

k2
<

4

k
− 4

k(k + 1)
=

4

k + 1
(4.18)

And from these observations the claim is easily proved by induction. Compar-

ing the two birds shows that while the difference in expected score is relatively

small (it has one peak whose value is .025) the asymptotic behavior is different,

and in fact, we get :

lim
T→∞

1 − xT (smart)

1 − xT (stupid)
= 0 (4.19)
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4.3.4 Example : The Exponential Distribution

In this example F is exponentially distributed with parameter λ, that is f(t) =

λe−λt. Here we get :

A = A(α) = (α− 1

λ
)e−λα (4.20)

And

B = B(α) = 1 − e−λα (4.21)

For the smart bird we get the following recursion formula :

xk = xk−1 +
1

λ
e−λxk−1 (4.22)

Now, we show that xk ∼ ln(k).

claim : as k → ∞, we have : xk ∼ ln(k)

proof : Assume that xk >
1
λ

ln(k). Then :

xk+1 ≥
1

λ
ln(k) +

1

λk
>

1

λ
ln(k + 1) (4.23)

Assume now that xk <
2
λ

ln(k) Then :

xk+1 ≤
2

λ
ln(k) +

1

λk2
<

1

λ
ln(k + 1) (4.24)

And from these observations the claim is easily proved by induction.

For the stupid bird the formula we get is to complicated to be solved analyti-

cally. However, numerical solution shows that for a large number of steps the

gain of the stupid bird is at the same order of that of the smart bird. Thus, a

reasonable assumption is that both possess the same asymptotic behavior.
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4.3.5 Example : The Normal Distribution

In this example F is a standard normal distribution, that is f(t) ∼ T (0, 1).

Here we get :

A = A(α) = φ(α) (4.25)

And

B = B(α) = Φ(α) (4.26)

Where φ and Φ are, respectively the normal density and probability func-

tions.

For the smart bird we get the following recursion formula :

xk = xk−1 · Φ(xk−1) + φ(xk−1) (4.27)

We cannot solve this recurrence formula, but can give an upper bound to it’s

asymptotic behavior. when k → ∞, then xk is O(ln(k)). Let us prove it :

claim : as k → ∞, we have : xk = O(ln(k))

proof : Use the following asymptotic expansion :

1 − Φ(x) ∼ (
1

x
− 1

x3
) · φ(x), asx → ∞ (4.28)

Then we get :

xk+1 ∼ xk · (1 − 1

xk

+
1

x3
k

) · φ(xk) + φ(xk) = xk +
1√

2π · x2
k

e
−x2

k
2 (4.29)

From here it is obvious that xk grows more slowly than in the exponential

case, and therefore, xk = O(ln(k)) .

Like in the exponential case, we cannot solve analytically for the stupid

bird, but numerical solution shows the same phenomena of close results to the

smart bird for a large number of steps.

Those examples (and others) yields the following to observations : 1. The

asymptotic behavior of the smart and stupid birds benefits are the same 2.
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When F is bounded, the asymptotic behavior of the 2 differences MF − xk

(that is , the second term in the asymptotic expantion)is different for the two

birds, (where the term of the smart bird is of course smaller).

The first assertion is proved under some conditions in the next section.
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In order to prove similarity in the asymptotic expansion of the two birds, we

need to demand certain conditions on the probability distribution function F .

claim : Suppose xk is the expected benefit of the smart bird when there are

k steps left. If :

lim
k→∞

B(xk)
k = q < 1 (4.30)

then the asymptotic behavior of the smart and stupid birds is the same. More-

over, if q = 0 in the last equation, then the ratio between the benefits of the

smart and stupid birds approaches 1 as k → ∞.

proof : Suppose, that for the stupid bird, when there are k steps left, our

strategy is to take α to be xk of the smart bird. (This is clearly a sub-optimal

strategy). Denote the expected profit from such a strategy by zk. Then :

zk = A(xk)
1 − B(xk)

k

1 − B(xk)
+µB(xk)

k ∼ A(xk)
1 − q

1 − B(xk)
+µq > (1− q)xk (4.31)

And, since 1 − q > 0, we have zk = O(xk) and therefore xk(stupid) =

O(xk(smart)). If q = 0, we get, of course : zk ∼ xk and therefore xk(stupid) ∼
xk(smart).

claim :

lim
T→∞

XT (smart)

XT (stupid)
= 1 (4.32)

proof : Let XT be the expected score of the smart bird when there are exactly

T steps left. Suppose that for the stupid bird, in the T steps game, we take

a modified sub-optimal α which is h · XT where 0 < h < 1 is an arbitrary

constant. (This strategy will, of course, bring benefit which is not more then

the stupid bird’s optimal strategy αT ). Now denote the expected benefit from

such a strategy by ZT . Also, define :

iT = min{i/Xi > h ·XT} (4.33)
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(Clearly, for T sufficiently large : 0 < iT < T ). Then :

ZT = (1−(B(XiT ))T−iT )E(x/x ≥ iT ) ≈ (1−(B(h ·XT ))T−iT )E(x/x ≥ h·XT ) >

(1 −
T
∏

i=iT

B(Xi))E(x/x ≥ h ·XT ) > (1 −
T
∏

i=iT

B(Xi))h ·XT . (4.34)

Now, we shall prove :

lim
T→∞

T
∏

i=iT

B(Xi) = 0 (4.35)

Define YT to be the maximum of T i.i.d R.V. with probability distribution

F . Then , clearly, XT < EYT (The bird can’t achieve the maximum since it

cannot go back to previous proposals). Therefore B(XT ) < B(EYT ). But :

1 −B(EYT ) = P (x ≥ EYT ) ≥ P (x ≥ YT , YT ≥ EYT )) =
1

T
P (YT ≥ EYT ) >

λ

T
(4.36)

For some λ > 0. Therefore, we get :

B(XT ) < B(EYT ) < 1 − λ

T
(4.37)

and therefore :

lim
T→∞

T
∏

i=iT

B(Xi) < lim
T→∞

T
∏

i=iT

(1 − λ

T
) = 0 (4.38)

The last limit is indeed 0 since iT
T

→ 0 as T → ∞. Now, for T sufficiently

large, ZT can be as close as we like to h ·XT , but h was an arbitrary constant.

Therefore, for larger and larger values of T we may select h to be closer and

closer to 1, and therefore, for T sufficiently large, ZT can be as close as we

like to XT , and therefore we conclude that the stupid birds expected gain can

be as close as we like to the smart’s one and the two birds are asymptotically

equivalent.

It can be easily verified that all the examples shown so far satisfy the claim’s

condition, and therefore, in all those examples the smart and stupid birds are

asymptotically equivalent.
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4.4 Generalizing the basic model

In this section we would like to extend the results obtained for the basic model

to some more complicated cases.

4.4.1 Bounded G

Suppose that G is not constant but bounded by T < ∞. Mark by r(n) the

probability that we have another step, when there is a total of n steps possible,

that is r(n) = P (x ≥ n | x ≥ n − 1) where x ∼ G. Let us start with the

smart bird this time. In the recurrence formula of the basic model we have to

replace xk−1 by xk−1r(n− k + 1) and the rest stays the same. The recurrence

formula now looks like this :

xk = A(xk−1 · r(n− k + 1)) +B(xk−1 · r(n− k+ 1))xk−1 · r(n− k+ 1) (4.39)

With x0 = 0.

For the stupid bird, in the same manner, we get :

xk = A(α · r(n− k + 1)) + B(α · r(n− k + 1))xk−1 · r(n− k + 1) (4.40)

With x0 = 0. Here we cannot obtain a closed formula for Xk as a function of

α, and therefore usually this function should be computed recursively when

knowing F , and only then we can proceed like in the basic model, that is find

an α which maximizes Xk(α)

A natural question concerning our game, is the influence of uncertainty on

the bird’s strategy and utility. More precisely, given that the expectation of

G remains constant, how does changing the variance affects the output of

the game. In all simulations done with uniform and binomial distributions,

it turned out that the larger the variance the smaller the bird gains. This

can be explained by the following intuitive argument : Increasing the variance

increase the probability of getting values which are far from the expectation.

However, since the differences series dk is monotonically decreasing, getting
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a very low number of steps has a more drastic affect on the payment then a

very high number of steps. Therefore, in the mean, the bird looses. For the

uniform distribution, it can be actually proved, at least for the smart bird,

that the best G is the constant G.

claim : For each k = 0, 1, ..., T − 1 Let G ∼ U [T − k, T + k] and mark by zk

the resulting XT+k. Then :

zk < z0, ∀k > 0 (4.41)

proof : Denote by Xi
⋆ the Xi we would have get from a game with constant

G, with i steps. Clearly, if in our game exactly i steps have occurred, the

bird’s payment is not larger than Xi
⋆, since the last value is the output of the

optimal strategy for the game with exactly i steps. Therefore, we get :

zk ≤ 1

2k + 1
·

T+k
∑

i=T−k

Xi
⋆ =

1

2k + 1
· (XT

⋆ +
k

∑

i=1

(XT+k
⋆ +XT+k

⋆)) (4.42)

But because dk is a decreasing sequence , we get :

XT+k
⋆ +XT+k

⋆ < 2XT
⋆ (4.43)

And the claim immediately follows.

4.4.2 Time dependent utility

Suppose that at the k-th turn, the utility distribution is Fk. If we set Ak and

Bk to be the A and B corresponding to Fk, then the smart’s bird’s formula

will be :

xk+1 = Ak+1(xk) +Bk+1 (4.44)

While for the stupid bird, we get :

xk+1 = Ak+1(α) +Bk+1(α)xk (4.45)

And we cannot express xk+1(α) in closed form as we did in the previous cases.
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4.4.3 Searching Cost

In this section we try to figure out how the results obtained for the smart and

stupid birds in the previous chapters, are changed when searching has a cost.

Suppose that for every turn that passes, the bird pays a constant amount of

utility (because waiting demands some of the bird’s resources ) - C. Then, for

the smart bird, our recursion formula becomes :

xk+1 = A(xk − C) + B(xk − C)(xk − C) (4.46)

Note that here xk is still monotonically increasing, but the limit is no longer

MF but smaller. In fact, it can be shown that the lim is always final even if

F is unbounded, as long as E(F ) <∞.

claim : If µ <∞ and C > 0 then :

lim
k→∞

xk <∞ (4.47)

proof : Clearly, xk is a monotonically increasing sequence, with x0 = µ. In

order to show that the limit is final it is enough to show that there exists a

final solution x > µ to the equation :

x = A(x− C) +B(x− C)(x− C) (4.48)

Or :

C =
∫ ∞

x−C
(t− x+ C)f(t)dt ≡ j(x) (4.49)

But, it is easy to see that j(x) is monotonically decreasing, and that

lim
x→∞ j(x) = 0

so for C small enough there is a finite solution to the equation, which is larger

than µ, and therefore the limit is finite. For larger values of C the limit is

surely finite because it is monotonically decreasing with respect to C.
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So, to conclude, we have shown that for the smart bird we have xk ր x <∞,

where x is the solution of the previous equation.

For the stupid bird, we get :

xk+1(α) = A(α) +B(α) · (xk − C), k = 1, 2, . . . , T. (4.50)

And the solution is :

XT (α) = xT (α) =
(A(α) − C ·B(α))(1 −B(α)T )

1 − B(α)
+B(α)T · (µ− C) (4.51)

Here, as in the case of no cost per turn, we have to find the optimal α and

then calculate XT . The limit of XT when T → ∞ will of course be also finite,

since it is smaller then the limit for the smart bird. When letting T approach

∞, and keeping a constant α, we get :

XT (α) → X(α) =
A(α) − C · B(α)

1 − B(α)
(4.52)

Define :

α∞ = lim
T→∞

α(T ) (4.53)

Then, from continuity :,

lim
T→∞

XT = X(α∞), (4.54)

And α∞ can be found from deviating X(α) and comparing to zero. Doing so,

we get the following equation :

0 = X ′(α) =
(−αf(α) − Cf(α))(1− B(α)) + f(α)(A(α)− CB(α))

(1 −B(α))2
=

f(α)(A(α) + α(B(α) − 1) − C)

(1 − B(α))2
(4.55)

We therefore get :

f(α) = 0 or C =
∫ ∞

α
(t− α)f(t)dt (4.56)

It can be shown by deviating X(α) further, that the left equation will give us

a saddle point, while the right one will give us the desired maximum. As we
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see the equation on the right is very similar to the one obtained for the smart

bird. Comparing the two equations yields :

α∞(stupid) = X(smart) − C (4.57)

Assigning in X(α) for the stupid bird, we get :

X(stupid) =
A(X(smart) − C) − CB(X(smart) − C)

1 − B(X(smart) − C)
=

X(smart) − (X(smart) − C)B(X(smart) − C) − CB(x(smart) − C)

1 − B(X(smart) − C)
=

X(smart)(1 − B(X(smart) − C))

1 − B(X(smart) − C)
= X(smart) (4.58)

And therefore, just like in the no-cost model, the smart and stupid strategies

yields similar results when T → ∞, meaning that the limit is the same for

both strategies, even though for every finite T , the smart strategy is of course

slightly better. This could suggest an explanation for success of relatively

simple species which don’t have the concept of time, and therefore have a

constant bound when deciding whether to accept a suggestion or not. It seems,

that after all, those species doesn’t lose much, compared to ideal species which

use the optimal strategy.
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Appendix: Description of the numerical procedure

The numerical procedure is:
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