
Chapter 1

Background

1.1 General Introduction

The goal of this course is to explore a selected collection of statistical inferential
tools. The common feature of all tools is their dependence on the availability of
computers for implementation. Other than that common trait, the procedures may
differ from each other in the context in which they may be implemented, in the goals
of the the inference, in the interpretation of the outcomes, or in any other aspect.

We would initiate the discussion of each procedure by providing a brief mo-
tivation, followed by a description of the actual implementation of the procedure,
typical situations in which one may apply the procedure, and the interpretation of
outcomes. We would attempt to investigate the statistical properties of the proce-
dure and compare its performance, when possible, to those of more classical ones.
For the comparison we may apply theoretical probabilistic computations or use com-
puterized simulations.

We would follow the basic paradigm of mathematical statistics which sep-
arates between the implementation of statistical tool to a specific dataset and the
discussion of the statistical properties of the tools, which is carried out in the context
of all datasets that could have emerged, and not only the one observed. (For exam-
ple, in statistical testing the procedure can be: “Compute the standardized mean
and reject the null hypothesis if the outcome is larger than 1.645.” When carried
out for the given experiment the decision may be to reject or not, depending on the
actual outcome. When considered over all possible outcomes one may talk about
the significance level, the power function, etc.)

The investigation of the probabilistic properties of a procedure may, and in
this course will be, conducted via simulations. This, in principle, will be carried out
by simulating independent copies of datasets, applying the procedure to each copy,
and the investigation of the resulting distribution of the outcomes of the procedure.
Hence, for example, if the sample size is 100, we may simulate 100 observations,
compute the standardized mean of the simulated sample and store it. The simu-
lation may be iterated a large number of times, say 100,000 times, and result in
100,000 numbers. If the simulation was carried out under the conditions of the null
distribution then one may compute the relative frequency of the numbers that are
larger than 1.645 in order to obtain (an approximation) of the significance level. If
the simulation was done under given values of the alternative parameters one may
obtain the power for those given values.
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It should be noted that some procedures, the bootstrap for example, may use
simulation as part of their implementation on a given dataset. Still, this simulation
is not related to the investigation of the properties of the statistic. Hence, if one is
interested in properties such as power or MSE one still needs to produce independent
copies datasets as above and apply the bootstrap procedure to each, including the
simulation step which is part of the procedure.

Occasionally, in order to save time, we may simulate directly sufficient statis-
tics, using their actual or approximated distribution. Still, the basic paradigm holds.

Notice that when we simulate datasets we do some under given conditions
and for given parameter values. This knowledge is not available for the applied
statistician in the field, who gets a dataset and is required to make inference using it.
Hence, the inference tool may not assume knowledge of parameter values. However,
we as theoretical statistician, may ask the question: “What would have been the
statistical properties of the procedure if the state of nature is such and such?” and
carry out computations or simulations for the given state. Thus, for example, if we
want to investigate an estimator that is used by the applied statistician we may carry
out the simulations for parameter values of our choice, “hand over” the simulated
dataset to the practical statistician and see, on the average, how closely the estimator
she compute hits the target unknown to her. This experiment we can repeat many
times in order to assess, for example, her mean squared error.

1.2 Introduction to R

R is a freely distributed software for data analysis. In order to introduce R let us
quote the first paragraphs from the manual Introduction to R by W. N. Venables,
D. M. Smith and the R Development Core Team. (The full document, as well as
access to the installation of the software itself, are available online at http://cran.r-
project.org/ ):

“R is an integrated suite of software facilities for data manipulation,
calculation and graphical display. Among other things it has

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data
analysis,

• graphical facilities for data analysis and display either directly at
the computer or on hardcopy, and

• a well developed, simple and effective programming language (called
S) which includes conditionals, loops, user defined recursive func-
tions and input and output facilities. (Indeed most of the system
supplied functions are themselves written in the S language.)

The term environment is intended to characterize it as a fully planned
and coherent system, rather than an incremental accretion of very spe-
cific and inflexible tools, as is frequently the case with other data analysis
software.
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R is very much a vehicle for newly developing methods of interactive
data analysis. It has developed rapidly, and has been extended by a
large collection of packages. However, most programs written in R are
essentially ephemeral, written for a single piece of data analysis.”

R may be obtained as a source code or installed using a pre-compiled code
on the Linux, Mackintosh and the Windows operating systems. Programming in
R for this book was carried out under Windows. You may find more detailed
information regarding the installation of R on the Windows operating system at
http://www.biostat.jhsph.edu/ kbroman/Rintro/Rwin.html.

After installing R under the Windows operating system an icon will be added
to the desktop. Double clicking on that icon will open the window of the R system,
which contains the R Console sub-window. We found it convenient to have a sepa-
rate working directory for each project. It is convenient to copy the R icon into that
directory and to set the working directory by coping its path (in double quotes) in
the appropriate box ("start in:") in the Shortcuts slip of the Properties of the
icon (which can be selected by right-clicking the icon.)

The R language is an interactive expression-oriented programming language.
The elementary commands may consist of expressions, which are immediately eval-
uated, printed to the standard output and lost. Alternatively, expressions can be
assigned to object, which store the evaluation of the expression. In the later case
the result is not printed out to the screen. These objects are accessible for the du-
ration of the session, and are lost at the end of the session, unless they are actively
stored. At the end of the session the user is prompted to store the entire workspace
image, including all objects that were created during the session. If “Yes” is selected
then the objects used in the current session will be available in the next. If “No” is
selected then only objects from the last saved image will remain.

Commands are separated either by a semi-colon (;), or by a newline. Consider
the following example, which we type into the R Console window:

> x <- c(1,2,3,4,5,6)
> x
[1] 1 2 3 4 5 6

Note that in the first line we created an object named x (a vector of length 6, which
stores the value 1 . . . , 6). In the second line we evaluated the expression x, which
printed out the actual values stored in x. In the formation of the object x we have
applied the concatenation function c. This function takes inputs and combine them
together to form a vector.

Once created, an object can be manipulated in order to create new objects.
Different operations and functions can applied to the object. The resulting objects,
in turn, can be stored with a new name or with the previous name. In the latter case,
the content of the object is replaced by the new content. Continue the example:

> x*2
[1] 2 4 6 8 10 12
> x
[1] 1 2 3 4 5 6
> x <- x*2
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> x
[1] 2 4 6 8 10 12

Observe that the original content of x was not changed due to the multiplication by
two. The change took place only when we deliberately assigned new values to the
object x.

Say we want to compute the average of the vector x. The function mean can
be applied to produce:

> mean(x)
[1] 7

A more complex issue is to compute the average of a subset of x, say the values
larger than 6. Selection of a sub-vector can be conducted by use of the vector index,
which is accessible by the use of square brackets next to the object. Indexing can be
implemented in several ways, including the standard indexing of a sequence using
integers. An alternative method of indexing, which is natural in many applications,
is via a vector with logical TRUE/FALSE components. Consider the following example:

> x > 6
[1] FALSE FALSE FALSE TRUE TRUE TRUE
> x[x > 6]
[1] 8 10 12
> mean(x[x > 6])
[1] 10

Observe that the vector x > 6 is a logical vector of the same length as the vector
x. Only the components of x parallel to the components with a TRUE value in the
logical indexing vector are selected. In the last line of the example the resulting
object is used as the input to the function mean, which produces the expected value
of 10.

For comparison consider a different example:

> x*(x > 6)
[1] 0 0 0 8 10 12
> mean(x*(x >6))
[1] 5

In this example we multiplied a vector of integers x with a vector of logical values (x
> 6). The result was a vector of length 6 with zero components where the logical
vector takes the value FALSE and the original values of x where the logical value takes
the value TRUE. Two points should be noted. First, observe that R can interpret a
product of a vector with integer components and a vector with logical components
in a reasonable way. Standard programming languages may have produced error
messages in such a circumstance. In this case, R translates the logical vector into
a vector with integer values — one for TRUE and zero for FALSE. The outcome, a
product of two vectors with integer components, is a vector of the same type. The
second point to make is that multiplication of two vectors is conducted term by
term. It is not the inner product between vectors. A different operator is used in R
in order to preform inner products.



1.3. BASIC STATISTICAL MODELS 5

1.3 Basic Statistical Models

The binomial model

Assume that the observations can be represented as a sequence of n binary outcomes.
The possible outcomes may be denoted a “success” or a “failure”. Such a sequence
is termed a sequence of Bernoulli trials if the probability of a “success” is the same
for all elements in the sequence and if the elements are statistically independent
of each other (i.e., the probability of “success” in one trial is not affected by the
outcomes in the other trials).

Denote by p be the probability of “success”and let the random variable X
denote the total number of successes among the n trials. Then X is said to have a
binomial distribution. The probability density function of X is given by:

f(x) = P(X = x) =
(

n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n.

The short notation X ∼ B(n, p) will be used in order to refer to this distribution.
It is well known that the expectation of X (i.e., the average value of X, denoted
“E(X)”) is equal to np and its variance (denoted “var(X)”) is equal to np(1 − p)
(with

√
np(1− p) the standard deviation of X).

The normal distribution

The normal distribution — also known as the Gaussian distribution — is the most
popular statistical model. The formula for the density of the normal distribution is
given by:

f(x) =
1√

2πσ2
e−(x−µ)2/(2σ2), x ∈ <,

which forms the famous bell shape. The parameter µ is the mean, or the location,
of the distribution and σ2 is its variance (σ is the standard deviation or the scale).
In particular, when µ = 0 and σ2 = 1 the distribution is called the standard normal
distribution. The density of the standard normal distribution is symbolized by: φ(x)
and the cumulative distribution function (cdf) is symbolized by

Φ(x) =
∫ x

−∞
φ(z)dz.

We denote the fact that X has a normal distribution with mean µ and variance σ2

by the notation X ∼ N(µ, σ2).
Statistics are quantities computed as functions of the observations. The dis-

tribution of a statistic can be quite complex. Surprisingly enough, in many occasions
it is the case that the distribution of the statistics resembles the bell shaped distri-
bution of the normal random variable, provided that the sample size is large enough
and the statistic is computed as an average or a function of averages. This observa-
tion will be stated more formally later in this chapter when we discuss the Central
Limit Theorem (CLT).
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The Poisson distribution

The Poisson distribution is useful in the context of counting the occurrences of rare
events. Like the binomial distribution, it takes integer values. Indeed, as we will see
later in this chapter, it can arise as an approximation of the binomial distribution
when p is small but n is large.

We say that a random variable X has a Poisson distribution with rate λ
(denoted X ∼ Poisson(λ)) if the probability function of X has the form

f(x) = e−λ λx

x!
, x = 0, 1, 2, . . . .

It follows that the expectation and the variance of X are both equal to λ.

1.4 Testing hypothesis

Statistics inference is used in order to detect and characterized meaningful signals
which may be hidden in a environment contaminated by random noise. Statistical
hypothesis testing is a typical step in the process of making inferences. In this step
one tries to answer the fundamental question: “Is there a signal at all?”. In other
words, can the observed data can be reasonably explained by a model for which
there is no signal but only noise?

Assuming the statistical model has been selected, we describe the process of
testing statistical hypothesis by partitioning it into three formal steps: (i) Formu-
lation of the hypotheses, (ii) specification of the test, and (iii) reaching the final
conclusion. The first two steps are carried out based on the statistical model, and
in principal can be carried out prior to the collection of the observations. Only the
third step involves the analysis of the actual observations.

An example: testing genetic identity of affected siblings

Gene mapping involves an array of strategies for associating between expressed her-
itable traits and genes — the carrier of the genetic information for the formation of
proteins. One of these strategies, denoted the Affected Sib-Pairs (ASP) approach,
calls for the collection of a large number of nucleus families, each with a pair of
affected siblings which share the medical condition under investigation. Here we
will consider an artificial scenario where all the sibling pairs of are composed of
half-siblings, which share only one parent in common, and concentrate on a given
gene, which may or may not be associated with the disease. The aim is to test for
the presence of association.

The gene may be embodied in any one of several variant forms, called alleles.
Moreover, for autosome chromosomes an individual carries two homolog copies of
the gene, one inherited from the mother and the other from the father. Therefore,
each offspring carries two versions of the given gene, which may not be identical in
form. Still, one of the copies is an identical copy of one of the two homolog genes
in the common parent while the other is a copy of one of the homolog genes in the
other parent. Concentrate on the copies in the siblings which originated from the
common parent. Two possibilities emerge: Either, both siblings’ copies emerge from
a common source or else each was inherited from a different source. In the former
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case we say that the two copies are identical by decent (IBD) and in the latter case
we say that they are not. It is natural to model the IBD status of a given pair as
a Bernoulli trial, with and IBD event standing for “success”. Counting the number
of pairs for which an IBD occurred would produce a binomial random variable.

The standard laws, which govern segregation of genetic material form a parent
to an offspring, will produce IBD or not in equal probabilities. This is the expected
probability of success when the gene is not associated with the trait. When it is
associated, however, one may expect elevated level of sharing of genetic material
within the pair and thus elevated levels of IBD. Denote by p this probability of
IBD=1. A natural formulation of the statistical hypothesis is: H0 : p = 0.5 versus
H1 : p > 0.5. As a test statistic, one may use the number of pairs with an IBD
share, which we denote by X. Alternatively, one may standardize this statistic
by subtracting out the expectation and dividing by the standard deviation, both
computed under the null B(n, 0.5) distribution, where n is the total number of pairs
in the trial. The resulting statistic is:

Zn =
X − n/2√

n/4
.

A standard recommendation is to use a threshold of 1.645. Values of the test statistic
above that threshold lead to the rejection of the null hypothesis and to the conclusion
that an association is present.

Let us investigate the significance level of the proposed test. Assume that a
total of n = 100 pairs were collected. Then the results of the test may look like this:

> n <- 100
> X <- rbinom(1,n,0.5)
> X
[1] 44
> Z <- (X-n/2)/sqrt(n/4)
> Z
[1] -1.2
> Z > 1.645
[1] FALSE

Observe that the number of pairs which share an IBD copy of the gene was 44. This
result was generated using the function rbinom, which simulates the binomial dis-
tribution. The first argument of the function is the number of independent copies to
produce; a single copy in our case. The second argument is the number of Bernoulli
trials. In this example, the number is n, which was assigned a value of 100. The
third argument is the probability of success. The statistic Z was computed by stan-
dardizing the statistic X. It obtained in this case the negative value -1.2. Obviously,
the null hypothesis is not rejected. Note that the function rbinom simulates ran-
dom occurrences of a binomial random variable. Running the same code again may
produce different outcomes.

In order to evaluate the significance level of the test it is not enough to
simulate a single trial. Consider the following code:

> X <- rbinom(10^6,n,0.5)
> Z <- (X-n/2)/sqrt(n/4)
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> mean(Z > 1.645)
[1] 0.044226

Observe that the function rbinom produces in this case one million independent
copies of the binomial distribution, all stored in a vector X of that length. Each of
the components of the vector X is then standardized in the same way as the single
number was in the previous example. The result is the vector Z, which contains the
standardized values. The last line of code involves an application of the function
mean, which computes, as we have previously seen, the average value of its input.
Note that the input here is a vector with logical TRUE/FALSE components. A com-
ponent takes the value TRUE if the null hypothesis is rejected and FALSE when it is
not. When introduced to the function mean, the logical values are translated into
numerical values: one for TRUE and zero for FALSE. As a result, the function mean
produces the relative frequency of rejecting the null hypothesis, which is an approx-
imation of the significance level. Observe, that the resulting number is 0.044226,
which is close, but not identical, to the expected significance of 0.05.

Let us investigate the power of the test. Consider, for example, the case when
the true probability of IBD of a pair is 0.55. What would be the power to detect
the discrepancy from the null hypothesis? In order to answer this question we will
run again the simulation of trails, this time under the conditions of the alternative
distribution:

> X <- rbinom(10^6,n,0.55)
> Z <- (X-n/2)/sqrt(n/4)
> mean(Z > 1.645)
[1] 0.241677

What if the probability of IBD was 0.60? or 0.65?
Next, we may consider estimation. Given the observed IBD relations in the

trial, what would be our guess regarding the probability of IBD? In this artificial
context the answer is straightforward – the relative frequency of IBD in our sam-
ple. A measurement of the efficiency of this estimation is the mean squared error
(MSE), which in this case, since the estimator is unbiased, is just the variance of the
estimator. If X is the total number of pairs the share IBD in our sample then the
estimator is X/n. We can get the bias and variance of the estimator via simulations:

> p.hat <- X/n
> mean(p.hat) - 0.55
[1] 8.086e-05
> var(p.hat)
[1] 0.002474823

Observe that the theoretical variance of our estimator is 0.55× 0.45/n compare this
to the results of the simulations:

> var(p.hat)/(0.55*0.45/n)
[1] 0.9999284
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1.5 Limit theorems

The rational behind the selection of 1.645 as a threshold in the above test is based
on the similarity between the standardized binomial distribution and the standard
normal distribution. The given threshold is the appropriate threshold in the normal
case. This similarity is justified by the Central Limit Theorem (CTL). In this section
we will formulate (without proof) the CLT in the context of sums of independent and
identically distributed (i.i.d.) random variables. Actually, the scope of the central
limit theorems is much wider. It includes multivariate distributions as well as sums
of non-identical and weakly-dependent random variables. When rare events are
considered, the Poisson distribution may provide a better approximation than the
normal. A Poisson limit theorem will be presented here in the context of binomial
random variables. Again, generalizations of the basic theorem in various directions
do exist.

The central limit theorem states that the distribution of a standardized sum of
independent and identically distributed random variables converges to the standard
normal distribution. More precisely (recall that Φ is the cdf of the standard normal
distribution):

Central Limit Theorem: Let X1, X2, . . . , be a sequence of i.i.d. ran-
dom variables. Denote the expectation of these random variables by µ
and the variance by σ2, which we assumed to be finite. Consider, for
each n, the random variable:

Zn =
∑n

i=1 Xi − nµ√
nσ2

=
√

n

σ
[X̄n − µ] =

1√
n

n∑

i=1

Xi − µ

σ
.

Then, for any −∞ < x < ∞,

lim
n→∞P(Zn ≤ x) = Φ(x).

As an example of the application of the central limit theorem consider the
binomial distribution. Recall that if X ∼ B(n, p) then X can be represented as a
sum of Bernoulli variables. Moreover, it is easy to see that the expectation of each
of these Bernoulli variables is p and the variance is p(1 − p). It can be concluded
that the distribution of Zn = (X − np)/

√
np(1− p) can be approximated by the

standard normal distribution. In particular, when n is large,

P(Zn > 1.645) ≈ 1− Φ(1.645) = 0.05.

The normal approximation works best when the distribution of independent
components Xi is closer to being symmetric. This will be the case, for example, in
Bernoulli trial when the probability of success is in the central part of the interval
[0, 1]. The approximation will produce less satisfactory results when the probability
of a success is closer to zero or to one. In such scenarios the Poisson approximation
will tend to produce better results. We can state the theorem which establishes the
Poisson approximation:

Poisson Approximation: Let Xn ∼ B(n, pn) be a sequence of binomial
random variables. Assume that the sequence of pn of success probabilities
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obeys the relation npn →n→∞ λ, where 0 < λ < ∞. Then, for any
x = 0, 1, 2, . . .,

lim
n→∞P(Xn = x) = e−λ λx

x!
.

Note that the requirement npn → λ is equivalent to stating that the probabil-
ity of of success, pn, converges to zero in a rate which is proportional to the number
of Bernoulli observations.

Let us demonstrate both the normal and the Poisson approximation in the
binomial setting. The following lines of code will produce the plot in Figure ??:

> n <- 100; p <- 0.5
> X <- rbinom(10^6,n,p)
> Z <- (X-n*p)/sqrt(n*p*(1-p))
> z <- seq(-4,4,by=0.01)
> plot(z,pnorm(z),type="l",col="red")
> lines(ecdf(Z))
> x <- z*sqrt(n*p*(1-p)) + n*p
> lines(z,ppois(x,n*p),type="s",col="blue")

The first three lines of code require no explanation. They are essentially identical to
the code which was used in order to generate the distribution of the test statistic.

In the forth line we generate a sequence of numbers, ranging between -4 and
4, in jumps of size 0.01. This sequences is generated with the aid of the function
seq. The first argument to the function is the starting point of the sequence and
the second argument is the ending point. The third argument is the jump size, and
it is introduced using the name of the argument: by. The rule in the introduction of
arguments to functions is that arguments may be set either by placing them in the
same order in which they appear in the definition of the function, or by using the
argument assignment format par name = par value. If not all preceding arguments
are assigned, then the argument must be assign using the argument assignment
format.

The subsequent line produces a plot. The function plot is a generic function
for making plots. In its simplest application it requires as input a sequence of x values
and a sequence of y values, both of the same length. It produces the appropriate
scatter plot of the points. This basic behavior may be modified by setting arguments.
For example, the argument type determines the plotting style. Setting its value to
"l" will result in sequential connecting the points by segments, which will produce
a line. Likewise, setting the argument col to "red" will color the line in the given
color. Observe that the y values are produced here by the function pnorm. This
function takes as input real values and produces as output the normal cdf at these
values. Execution of the code will result in opening of a graphical window within R
and the formation of the plot of the normal cdf over the range of z.

The function plot is considered to be a function of high-level plotting, since
it produces a plot independently. Lower-level plotting functions, on the other hand,
add features to existing plots. The function lines is a low-level function. In its
generic usage it adds lines to a plot. In its first appearance in this example it takes
as input the output of the function ecdf. This function calculates the empirical
distribution function from a set of observation – the vector Z in this case. The
empirical distribution is then added to the plot. Note that the empirical distribution
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is a step function with jumps, indicated as small circles, in the points where the
density has a point-mass. As a matter of fact, the application of the function lines
in this line is non-generic but is specific to output of the function ecdf.

For comparison, we would like to add the cdf function of the Poisson distri-
bution to the plot. The vector x is the image of the vector z in the original scale of
the binomial random variable (the integers between zero and n). The cdf function
of the Poisson distribution in the original scale is computed with the aid of the
function ppois. The second argument to the function is the mean parameter of the
Poisson distribution, which we equate with the mean of the binomial distribution.
The function lines adds this cumulative distribution function to the plot. Like for
the function plot, the default behavior of the function lines can be modified. Here
we used the option type="s" in order to produce a step function and the option
col="blue" in order to paint it blue.

1.6 Correlation and regression

In most scientific experiments not one but several variables are measured. It is
of interest to quantify and assess the relationships between variables. A popular
summary statistic for the quantification of pairwise relationships is the covariance.
An alternative is the correlation, which is its standardized form.

Imagine that we are given a sample of n unrelated individuals, which express
some quantitative phenotype of interest. Concentrate on a target autosome gene and
assume that the phenotype and the alleles of the gene are measured. This produces
a phenotype measurement and a combination of two allele measurements for each
subject in the sample. For simplicity, let us suppose that the gene has only two
possible alleles, or versions of the gene, one denoted the wild type and the other the
mutated type. Use yi to symbolize the level of the phenotype for subject i and let xi

be the count of the number of mutated alleles for the same subject. Observe that yi

obtains numerical values and that xi may obtain the values 0, 1, or 2. The empirical
covariance between the phenotypic and genotypic measurement is defined by:

1
n

n∑

i=1

(yi − ȳ)(xi − x̄),

where ȳ and x̄ are the average values of the y’s and the x’s, respectively. The
correlation between the two measurements is obtained by dividing the above by the
product of the standard deviations of the two sequences. It takes the form:

ρ̂ =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)√

1
n

∑n
i=1(yi − ȳ)2

√
1
n

∑n
i=1(xi − x̄)2

.

The correlation coefficient is a quantification of dependence between two mea-
surements. It may obtain values in the range between -1 and 1. A value of 1 cor-
responds to an exact linear relation with a positive slope. Likewise, a value of -1
corresponds to an exact linear relation with a negative slope. When the value of
the coefficient is equal to zero we say that the two measurements are uncorrelated.
Independence between variables implied lack of correlation in the sense that the
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correlation coefficient will tend to take values closer to zero. (To be exact, the for-
mulation of lack of correlation is typically given in the context of the population, or
an infinite sample size. The covariance and the correlation coefficient are computed
then by taking expectations, instead of averages. In this setting independence be-
tween measurements implies that the correlation coefficient is equal exactly to zero.)

The covariance and correlation parameters are closely related to the popular
statistical model of linear regression, which may be used as a model for the relation
between the two measurements. Regression models sets one of the variables to be the
dependent variable and the other to be the independent, or explanatory, variables.
According to the model, the conditional expectation of the dependent variable is a
linear function of the explanatory variable. Typically, the model assumes that the
residuals are independent of the explanatory variable.

In the genetic example, linear regression is denoted the additive model. This
model proposes the relation:

yi = µ + αxi + ei.

The parameter µ is the expected value of the phenotype among wild-type homozy-
gote and the parameter α is the additive effect of the mutation on the phenotype.
The residual ei is a zero-mean random variable, which is independent of xi. In this
example we will take the distribution of the residuals to be normal, and denote its
variance by σ2. In the rest of this section we deal with testing for the presence of
the genetic effect. Later we will consider its estimation.

In the case where α = 0 we have that x and y are independent. This can be
interpreted as the gene not having an effect on the trait. In order to test for such
independence one may formulate the problem in terms of the hypotheses H0 : α = 0
versus H1 : α 6= 0, and look for an appropriate test statistic.

Let Z =
√

nρ̂ and consider U = Z2 = nρ̂2. Consideration, which will be given
in the next section and further discussed in the last section, will suggest using U as
a test statistic and will propose the chi-square distribution as an approximation of
its null distribution. Large values of U , which correspond to values of ρ̂ bounded
away from zero, are an indication for a non-zero value for the slope parameter α.
Consequently, the null hypothesis of independence between the phenotype and the
genotype measurements will be rejected when U is larger than the 95%-quintile of
the chi-square distribution on one degree of freedom.

Let us examine the statistical properties of this test. Consider a sample of size
n = 100. We generate the test statistic under the null assumption of independence
between y and x:

> n <- 100
> U <- numeric(length=10^4)
> for (i in 1:length(U))
+
{
+ x <- rbinom(n,2,0.3)
+ y <- rnorm(n,15,3)
+ U[i] <- n*cor(x,y)^2
+ }
> mean(U > qchisq(0.95,1))
[1] 0.0527
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Observe the use of the for loop. The indexing variable, to the left of the word “in”
inside the brackets, sequentially obtains as a value the components of the vector
to the right of that word. The expression following the brackets is evaluated for
each value of the indexing variable. Several expressions may be grouped together by
placing them between curly brackets. In this example we compute the test statistic
10,000 times. In each iteration x values are generated according to the binomial
distribution. The phenotypes are generated according to the normal distribution
with mean equals 15 and standard deviation of 3. The test statistic is formed by
squaring the correlation coefficient and multiplying the result by the sample size.
The result is stored in the vector U. The function qchisq computes the quintile of
the chi-square distribution. The simulated significance level is approximately equal
to the target value of 5%.

A more comprehensive description of the distribution of the test statistic
under the null distribution may be given in the form of a plot. A plot may be
created with the following code: using the code:

> u <- seq(0,30,length=100)
> plot(u,pchisq(u,1),type="l",ylab="probability")
> p <- (1:length(U))/length(U)
> U <- sort(U)
> lines(U,p,col=2)

The black line represents the theoretical cdf function of the chi-square distribution.
The red line represents the empirical distribution function of the simulated U statis-
tic. The green line represents the empirical distribution function of the statistic
when it is simulated under the alternative hypothesis. Note that the simulated red
line and the theoretical black line are practically identical. Observe that we have
not used the built-in function ecdf for plotting the empirical distribution function.
Instead, we wrote our own code, which applies the fact that the empirical distri-
bution function increments in steps of size equal to the reciprocal of the number of
observations. The steps occur at the observed values. In order to do the plot we
sorted the values of the vector U with the function sort. The resulting vector serves
as x values. The y values is a monotone vector in the range (0, 1] of the same length
as U, which is stored in an object named p.

Under the alternative hypothesis the value of α is different than zero. In
the following example we take it to be equal to 1.5. The simulation of U under
the alternative distribution is carried out exactly like the simulation under the null.
The only difference is in the expectations of the y values, which are taken to be a
functions of the x values. This is implemented by using different mean argument in
the function rnorm. The resulting power is about 0.89. The plot of the empirical
distribution of the test statistic under the given alternative is added as a green line
to the plot:

> for (i in 1:length(U))
+ {
+ x <- rbinom(n,2,0.3)
+ y <- rnorm(n,15+1.5*x,3)
+ U[i] <- n*cor(x,y)^2
+ }
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> mean(U > qchisq(0.95,1))
[1] 0.8898
> U <- sort(U)
> lines(U,p,col=3)

1.7 Likelihood-based inference

Tools for making statistical inference can be constructed in a variety of ways. Yet,
the practice in the statistical community, which is supported by solid theoretical
foundations, is to favor likelihood-based approaches.

The likelihood function is the distribution density function of the observa-
tions, interpreted as a function of the parameters that determine the distribution.
In many cases it is more convenient to consider the logarithm of the likelihood func-
tion, denoted the log-likelihood function. Either of these functions may be used in
order to identify good estimates of unknown parameters or in order to construct
efficient test statistics.

For example, if the observation has a binomial distribution then the log-
likelihood function takes the form:

`(p) = log
(

n

X

)
+ X log p + (n−X) log(1− p).

It is considered as a function of p, the probability of a success. The argument X is
the observed number of successes in the trial. An estimate of the unknown parame-
ter, as a function of the observation, may be obtained by maximizing the likelihood
function with respect to the parameter. The result is the maximum likelihood esti-
mate (MLE). Equivalently, the log-likelihood function may be used. The maximizer
can be found by equating the derivative of the log-likelihood to zero:

˙̀(p) =
X

p
− n−X

1− p
=

X − np

p(1− p)
= 0.

The MLE in this case turns out to be p̂ = X/n, the empirical frequency of successes
in the sample. Note that we have used the ‘dot’ notation to represent derivatives.

Testing

The log-likelihood function and its derivatives are a good source for finding efficient
test statistics. The motivation for this proposition is a well known lemma, attributed
to Neyman and Pearson, that states that the likelihood ratio is the most powerful
statistic for testing a given null distribution against a given alternative distribution.
The likelihood ratio statistic is computed as the ratio of the likelihood at the given
alternative divided by the likelihood at the given null value. Alternatively, the
difference of the log-likelihoods can be used. The null hypothesis is rejected when
the statistic is above a threshold; a threshold which is set by the null distribution
of the statistic.

For a composite hypotheses it is not clear which parameter values to use
in the log-likelihoods that form the difference. One approach, termed the gener-
alized likelihood ratio test (GLRT), is to use maximum likelihood estimates. One
of the log-likelihood functions is maximized over the entire space of parameters.
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This corresponds to plugging the MLE into the function. The other log-likelihood
is maximized over the subset of parameters that form the null hypothesis. This cor-
respond to plugging into the function the MLE for a sub-model that corresponds to
the null hypothesis. Considerations which are hinted for in the next section can be
used in order to show that under suitable regularity conditions the null distribution
of twice the log-likelihood difference is approximately chi-square when the sample
size is large. The number of degrees of freedom for the chi-square distribution is
the difference between the dimension of the space of parameters and the dimension
of the sub-space formed by the null hypothesis. For example, the GLRT for the
hypothesis H0 : p = 0.5 versus H1 : p 6= 0.5 in the binomial case is:

2(`(p̂)− `(0.5)) = 2n
[
p̂ log

p̂

0.5
+ (1− p̂) log

1− p̂

0.5

]
.

One degree of freedom is assigned to the asymptotic chi-square distribution. This
follows from the fact a single parameter is used, which corresponds to dimension
one. The null hypothesis contains only one point – a subspace of dimension zero.
The difference in the dimensions equals one.

A second approach for testing in a setting of composite hypothesis is termed
the Wald test. This test measures the distance between the unconstrained maxi-
mum likelihood estimate of the parameter and the estimate produced under the null
hypothesis. Again, under suitable regularity conditions it can be shown that, for
an appropriate definition of distance between estimates, the limiting distribution of
the statistic is chi-square. The number of degrees of freedom is, like before, the
difference in dimensions. In the binomial case the distance between the estimates
becomes 4n(p̂ − 0.5)2, which is equal to the square of the test statistic which we
have been using in the previous sections (for a one-sided, rather than a two-sided,
alternative).

A third approach comes under the heading of the Lagrange multiplier test
or the score statistic. This test statistic uses the first and second derivatives of the
log-likelihood function. In the multi-parameter setting it uses the gradient vector
and the hessian matrix of the function, i.e. the vector of partial derivatives and the
matrix of mixed partial second derivatives. Give the likelihood function `(θ) we will
denote the gradient by ˙̀(θ) and the hessian by ῭(θ).

For the construction of the score statistic the maximum likelihood estimated
of the parameters under the null assumption is computed. Denote this estimate
by θ̂0. One ingredient in the test statistic is the gradient of the log-likelihood,
evaluated at the null MLE θ̂0: ˙̀

0 = ˙̀(θ̂0). A second ingredient is a matrix, which
is computed with the aid of the hessian matrix. One possibility is to consider
the Fisher information matrix, which is minus the expected value of the hessian.
An alternative is to use the empirical Fisher information matrix, which is simply
negative the computed hessian. Other approaches may use approximations of these
two information matrices. The second component in the construction of the score
statistic, denoted here by H, is the inverse of the information matrix, evaluated at
θ̂0. The score statistic itself is

U = ( ˙̀
0)′H( ˙̀

0).

Like before, it can be shown that the asymptotic null distribution of this statistic is
chi-square with number of degrees of freedom equal to the difference in dimensions.
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Let us consider the binomial model for the last time. The second derivative
of the log-likelihood function is given by:

῭(p) = −X

p2
− n−X

(1− p)2
.

Using p̂0 = 0.5 we obtain:

˙̀
0 = ˙̀(0.5) = 4(X − n/2), H = −1/E[῭(0.5)] = 1/(4n).

As a result we get:

( ˙̀
0)2 ×H =

16(X − n/2)2

4n
=

(
X − n/2√

n/4

)2

which produces again the square of the statistic that was proposed before.
For a more complex example, let us consider testing for a slope α in the

regression model which was introduced in the previous section. Observe that the
joint density function of the phenotype and the genotype of a subject, assuming the
binomial distribution for the genotype, is given by:

f(y, x) = f(y |x) · f(x) =
1√

2πσ2
e−

1
2σ2 (y−µ−αx)2 ·

(
2
x

)
px(1− p)2−x.

The parameters of this model are µ, α, σ2, and p. It follows that the log-likelihood
function of the entire sample is:

`(µ, α;σ2, p) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑

i=1

(yi − µ− αxi)2

+
n∑

i=1

log
(

2
x

)
+

( n∑

i=1

xi

)
log p +

(
2n−

n∑

i=1

xi

)
log(1− p).

For the simplicity of the exposition, let us assume that the parameters σ2 and
p are known. Taking partial derivatives with respect to the unknown parameters
produces the gradient:

˙̀ =
( ˙̀

µ
˙̀
α

)
=

1
σ2
·
( ∑n

i=1(yi − µ− αxi)∑n
i=1(yi − µ− αxi)xi

)
=

n

σ2
·
(

ȳ − µ− αx̄
yx− µx̄− αxx

)
.

Notice the notation that was adopted. The term yx stands for the average of the
product of the y and the x values and the term xx stands for the average of the
square of the x values. The hessian is produced by taking second partial derivatives:

῭=
( ῭

µµ
῭
µα

῭
µα

῭
αα

)
= − n

σ2

(
1 x̄
x̄ xx

)
.

Under the null hypothesis the slope parameter equals zero. The maximum
likelihood estimator of µ is then simply the average ȳ. Plugging these estimates into
the gradient and using the empirical Fisher information produces:

˙̀
0 =

n

σ2

(
0

yx− ȳx̄

)
, H = (−῭)−1 =

σ2

n(xx− x̄2)

(
xx −x̄
−x̄ 1

)
.
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Putting everything together we obtain the score statistic:

( ˙̀
0)′H( ˙̀

0) =
n(yx− ȳx̄)2

σ2(xx− x̄2)
= n(ρ̂)2 ×

(
yy − ȳ2

σ2

)
.

Note that the resulting statistic is almost identical to the test statistic that was
proposed in the previous section. The difference involves an extra factor, which is
the ratio between the estimate of the variance of the phenotype (under the null) and
the the actual variance. As a matter of fact, if we would have treated the parameter
σ2 itself as unknown then the resulting test statistic would coincide exactly with the
test statistic proposed in the previous section. The parameter space as considered
here is two-dimensional, since it includes two unknown parameters. Under the null
assumption the dimension is one, since only the mean µ is unknown. Consequently,
2-1=1 degrees of freedom should be used for the selection of a threshold based on
the chi-square distribution. The same difference will emerge in the case were σ2 is
also treated as an unknown parameter. The dimension of the full space is three.
The dimension of the null hypothesis is two and the difference is one.

1.7.1 Estimation

In the case where the null hypothesis is rejected one may be interested in the as-
sessment of the level of the effect, or, more generally, in estimating values of the
parameter. As mentioned before, a standard approach for finding estuimates is via
the maximization of the likelihood function. In many cases, candidate estimators
are solutions to the normal equation ˙̀(θ) = 0. For example, in the binomial case the
solution produces the estimate p̂. Likewize, in the regression problem the normal
equations:

˙̀(µ, α) =
n

σ2
·
(

ȳ − µ− αx̄
yx− µx̄− αxx

)
=

(
0
0

)
.

are solved by taking α̂ = (yx− x̄ȳ)/(xx− x̄2) = cov(x, y)/ var(x) and µ̂ = ȳ − α̂x̄.
Notice that this is the well known solution to the standard regression prob-

lem. Although the problem we describe differes from the standard formulation of
regression in which the covariates (x, in our case) are assumed to be non-random
whereas in the genetic situation they are. Still, the distribution of the covariate
does not depend on the unknown parameters µ and α. Hence, the derivatives of
the log-likelihoods coinside in oth cases. Observe, that the solutions to the normal
equations will not be identical once we introduce p, the frequency of the mutation
in the population, as an unknown quantity.

The MLE is asymptotically unbiased. The variance of the MLE estimator,
and more generally the covariance structure, can be assessed with the aid of the
second derivative of the log-likelihood function. Thereby, it can be shown that
under appropriate regularity conditions the covariance matrix of the MLE θ̂ is given
by the inverse of the fisher information matrix:

cov(θ̂) ≈ (− E[῭(θ)]
)−1 = H(θ) .

In the case of estimating the probability of success in the Binomial setting this
approximation boils down to

H(p) = p(1− p)/n ,
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which is the actual variance. In the regression we get that the consitional variance,
given the covariate x, is the well known result from the standard theory

H =
σ2

n(xx− x̄2)

(
xx −x̄
−x̄ 1

)
.

However, for the case of a random covariate we should also consider expectation with
respect to the distribution of the covariate to obtain the result. For large sample
size one may use the low of large numbers to set the approximation

var(α̂) ≈ σ2/[2np(1− p)] .

1.8 * The distribution of the score test

In the previous section we defined the statistic of the score test to be ( ˙̀
0)′H( ˙̀

0),
where ˙̀

0 is the derivative of the log-likelihood function, evaluated at the constraint
maximum likelihood estimate of the parameter, and H is the inverse of the Fisher
information matrix or an approximation thereof. In this section we bring an outline
of a proof that the approximate null distribution of this test statistic is chi-square .

Consider, as first exercise, the distribution of the gradient of the log-likelihood
function, evaluated at the actual value of the parameter. In many settings, includ-
ing the setting of independence sampling, the gradient is of the form of a sum of
independent terms. As such, it may be concluded from the Central Limit Theorem
that the distribution of the gradient is normal. If order of taking derivatives with
respect to θ and integrals with respect to the observations can be changed with
out changing the outcome then the expectation and variance of the gradient can be
easily evaluated. It can be shown that the expectation is the zero vector and the
variance is the matrix I(θ) of Fisher Information. Indeed, for the expectation:

E[ ˙̀(θ)] = E
ḟ(x)
f(x)

=
∫

ḟ(x)
f(x)

f(x) dx =
∂

∂θ

∫
f(x) dx =

∂

∂θ
1 = 0.

In a similar fashion the statement regarding the variance matrix can be concluded
from the fact that

῭(θ) =
f̈(x)
f(x)

− ˙̀(θ) ˙̀(θ)′

and that

E
f̈(x)
f(x)

=
∫

f̈(x)
f(x)

f(x) dx =
∂2

∂2θ

∫
f(x) dx =

∂2

∂2θ
1 = 0,

which leads to:

var( ˙̀(θ)) = E
[ ˙̀(θ) ˙̀(θ)′

]
= E

f̈(x)
f(x)

− E[῭(θ)] = I(θ).

Given θ0 ∈ H0. Consider the setting where the null hypothesis can be defined
locally by a linear constraint of the form {θ : Aθ = Aθ0}, for some matrix A of full
rank. Add the assumption that the log-likelihood function is well approximated in
the vicinity of θ0 by its second order Taylor expansion:

`(θ) ≈ `(θ0) + ˙̀(θ0)′(θ − θ0) +
1
2
(θ − θ0)′ ῭(θ0)(θ − θ0),
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that the gradient score function is well approximated by its first order Taylor ex-
pansion:

˙̀(θ) ≈ ˙̀(θ0) + ῭(θ0)(θ − θ0),

and that the inverse of the empirical information matrix is well approximated by H,
the inverse of the Fisher information matrix.

When the assumptions hold, then the problem of finding a constraint maxi-
mizer of the log-likelihood function is asymptotically equivalent to a solution of the
quadratic maximization problem. The target function in the quadratic problem is
the Taylor expansion of the log-likelihood function and constraint of belonging to the
null hypothesis is the linear constrain: A(θ − θ0) = 0. Application of the Lagrange
multiplier technique will produce the necessary condition:

˙̀(θ0) + ῭(θ0)(θ − θ0)−A′λ = 0,

for an appropriate vector of Lagrange multipliers λ. As a result, it may be concluded
that ˙̀

0 ≈ A′λ. In the case when the matrix that produces the quadratic form, the
empirical information matrix in our case, is invertible then the Lagrange multiplier
has an explicit form:

λ = [A(῭(θ0)−1)A′]−1A(`(θ0)−1) ˙̀(θ0),

which proposes the approximation: ˙̀
0 ≈ A′[AHA′]−1AH ˙̀(θ0), which relates ˙̀

0 to
˙̀(θ0). The matrix B = H1/2A′[AHA′]−1AH1/2 is a idempotent matrix with a
rank that equals the rank of A. The distribution of H1/2 ˙̀(θ0) is approximately the
distribution of independent standard normal random variables. It follows that the
distribution of

( ˙̀
0)′H( ˙̀

0) ≈ [H1/2 ˙̀(θ0)]′B[H1/2 ˙̀(θ0)]

is approximately chi-square with number of degrees of freedom equals to the rank
of A, as required.


