
Nonlinear Optimization

Benny Yakir

May 25, 2010

2

Chapter 1

Background

1.1 Introduction

The general optimization problem has the form:

min
x∈Rd

f(x)

subject to:

gi(x) = 0 i = 1, . . . ,me

gi(x) ≤ 0 i = me + 1, . . . ,m
xl ≤ x ≤ xu

In particular, if m = 0, the problem is called an unconstrained optimization
problem. In this course we intend to introduce and investigate algorithms
for solving this problem. Algorithms will be programmed and implemented
using the R computational environment, which will be introduced in class.

We intend to cover the following topics:

Basic properties of solutions and algorithms: In this section we con-
sider the abstract notion of an iterative algorithm and and discuss the
convergence of descending algorithms to a solution.

Basic R: Here we introduce the basic features and structure of the R sys-
tem.

Line search methods: Here we deal with algorithms for finding the mini-
mum in the case where d = 1. These algorithms are the basic building
blocks for solving more complex optimization problems.

3

4 CHAPTER 1. BACKGROUND

Properties of solutions in unconstarint minimization: In this section
we discuss sufficient and necesary conditions that solutions to an op-
timization problem must obey.

The method of steepest descent: In each iteration, a line search is per-
formed in the direction of the steepest descent.

Newton and Quasi-Newton methods: In the Newton method the func-
tion is approximated (locally) by a quadratic form. The direction of
the search is chosen based on this form. Quasi-Newton methods re-
place the Hessian with terms which are easier to evaluate.

Properties of solutions in constraint minimization: The conditions that
were considered for unconstrained problems are modified in order to
deal with constraints. The Lagrange multipliers and the Kuhn-Tucker
conditions will be discussed.

Lagrange methods: These methods are based on the Lagrange first-order
conditions of a solution. The method is applied for quadratic pro-
gramming.

Sequential Quadratic Programming: At each iteration the function and
Lagrange multipliers are approximated by a quadratic programming
problem.

Optimization in statistical settings: In the closing part of the course
we will discuss special algorithms for optimization that are commonly
used in statistical problems.

1.2 Global Convergence of Descending Algorithms

The algorithms we will typically consider are iterative descending algo-
rithms. By iterative we mean, roughly, that the algorithm generates a series
of points, each point being calculated on the basis of the points preceding it.
By descending we mean that the sequence of values of some function, cal-
culated at the points generated by the algorithm, is a monotone decreasing
sequence. More precisely, we define:

Algorithm: An algorithm A is a mapping that assigns, to each point, a
subset of the space.

Solution set: An identified subset Γ of the space.

1.2. GLOBAL CONVERGENCE OF DESCENDING ALGORITHMS 5

Iterative algorithm: The specific sequence is constructed by choosing a
point in the subset and iterating the process. Thus algorithm generates
a series of points, and each point is calculated on the basis of the points
preceding it.

Descending algorithm: There exists a continuous function Z such that
if A is the algorithm and Γ is the solution set then

1. If x 6∈ Γ and y ∈ A(x), then Z(y) < Z(x).

2. If x ∈ Γ and y ∈ A(x), then Z(y) ≤ Z(x).

Globally convergent algorithm: An algorithm is globally convergent if,
for any starting point, it generates a sequence that converges to a point
in the solution set.

A closed map: A point-to-set map A is said to be closed at x if 1+2 ⇒ 3,
where

1. xk → x.

2. yk ∈ A(xk) and yk → y.

3. y ∈ A(x).

The map A is closed if it is closed at each point of the space.

Example: Suppose for x ∈ R we define A(x) = [−|x|/2, |x|/2]. Starting at
x0 = 100, each of the sequences

100, 50, 25, 12,−6,−2, 1, 1/2, . . .
100,−40, 20,−5,−2, 1, 1/4, 1/8, . . .
100, 10, 1/16, 1/100,−1/1000, 1/10000, . . .

might be generated from iterative application of the algorithm. The given
algorithm is closed.

Example: If A is point-to-point and continuous them A is closed.

Theorem 1.2.1. If A is a descending iterative algorithm which is closed
outside of the solution set Γ and if the sequence of points is contained in a
compact set then any converging subsequence converges to a solution.

6 CHAPTER 1. BACKGROUND

1.3 Rate of convergence

We say that an algorithm converges at rate p at least to a solution x∗ if

lim sup
n

‖xn+1 − x∗‖
‖xn − x∗‖p

<∞,

where ‖ · ‖ is an appropriate norm. Note that the rate of convergence when
p = 1 is actually exponential.

1.4 Homework

1. Define the point-to-set mapping on Rn by

A(x) = {y : y′x ≤ b},

where b is a fixed constant. Is A closed?

2. Consider the iterative process

xn+1 =
1
2

(
xn +

a

xn

)
,

where a > 0. Assuming the process converges, to what does it con-
verge? What is the order of convergence.

Chapter 2

Basic R

Many sources for learning R are available on the web. A good source can be
found at: http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
Below is a short introduction to some of the basic features of R. We recom-
mend that you consult a more comprehensive text.

2.1 Starting and quitting R

After installing R under the Windows operating system an icon will be added
to the desktop. Double clicking on that icon will open the window of the R
system, which contains the R Console sub-window. We found it convenient
to have a separate working directory for each project. It is convenient to
copy the R icon into that directory and to set the working directory by
coping its path (in double quotes) in the appropriate box ("start in:") in
the Shortcuts slip of the Properties of the icon (which can be selected by
right-clicking the icon.)

The R language is an interactive expression-oriented programming lan-
gauge. The elementary commands may consist of expressions, which are
immediately evaluated, printed to the standard output and lost. Alterna-
tively, expressions can be assigned to object, which store the evaluation of
the expression. In the later case the result is not printed out to the screen.
These objects are accessible for the duration of the session, and are lost at
the end of the session, unless they are actively stored. At the end of the
session the user is prompted to store the entire workspace image, including
all objects that were created during the session. If “Yes” is selected then
the objects used in the current session will be available in the next. If “No”
is selected then only objects from the last saved image will remain.

7

8 CHAPTER 2. BASIC R

Help can be found via the “Help” menu at the upper bar. Convenient
possibilities are “Search help...” and ”R functions (text)...”. The
former opens a window for searching the help files for an appropriate string.
The latter can be used in order to produce the help page when the name
of the function help is sought for is known. The searching for help can be
conducted with a web browser using the “Help html” option.

2.2 Matrices

Consider the following example that involves a magic matrix:

> A <- matrix(c(16,3,2,13,5,10,11,8,9,6,7,12,4,15,14,1),
+ 4,4,byrow=TRUE)
> A

[,1] [,2] [,3] [,4]
[1,] 16 3 2 13
[2,] 5 10 11 8
[3,] 9 6 7 12
[4,] 4 15 14 1
> sum(A)
[1] 136
> colSums(A)
[1] 34 34 34 34
> rowSums(A)
[1] 34 34 34 34
> sum(diag(A))
[1] 34
> A[1,4]+A[2,3]+A[3,2]+A[4,1]
[1] 34
> sum(A[outer(1:4,1:4,"+")==5])
[1] 34

We learn from this example that:

• Matrices can be created with the function ”matrix”.

• Memory is allocated automatically.

• The function “c” concatenates objects into a vector.

• Arguments of a function can be assigned either by location or by name.

2.2. MATRICES 9

• The default method of creating matrices from vectors is column by
column.

• The assignment operator is “<- ”.

• A matrix is also a vector.

• The function “diag extracts or replace the diagonal of a matrix.

• Items within a matrix can be referred to via the indexing system.

Consider next:

> B <- rbind(matrix(ceiling(10*runif(10)),2),
+ matrix(rnorm(10),2))
> B

[,1] [,2] [,3] [,4] [,5]
[1,] 5.000000 5.0000000 3.000000 2.0000000 7.00000000
[2,] 1.000000 9.0000000 6.000000 10.0000000 7.00000000
[3,] -1.049742 -0.2892459 -1.725665 1.1280271 -0.60114631
[4,] -0.813596 -1.9501419 -1.089035 0.1293922 0.09231302
>

Which tells us that:

• One can generate random numbers.

• Matrices may be combined together to form a new matrix.

Next,

> A*A
[,1] [,2] [,3] [,4]

[1,] 256 9 4 169
[2,] 25 100 121 64
[3,] 81 36 49 144
[4,] 16 225 196 1
> A%*%A

[,1] [,2] [,3] [,4]
[1,] 341 285 261 269
[2,] 261 301 309 285
[3,] 285 309 301 261
[4,] 269 261 285 341
> t(A)%*%A

10 CHAPTER 2. BASIC R

[,1] [,2] [,3] [,4]
[1,] 378 212 206 360
[2,] 212 370 368 206
[3,] 206 368 370 212
[4,] 360 206 212 378

What is the difference between the three cases?
Finally, consider the algebraic properties of the matrix:

> det(A)
[1] 4.86413e-13
> eigen(A)
$values
[1] 3.400000e+01 8.000000e+00 -8.000000e+00 -1.249098e-15

$vectors
[,1] [,2] [,3] [,4]

[1,] -0.5 -8.164966e-01 -4.082483e-01 0.2236068
[2,] -0.5 4.082483e-01 2.782422e-16 -0.6708204
[3,] -0.5 3.133596e-16 -4.082483e-01 0.6708204
[4,] -0.5 4.082483e-01 8.164966e-01 -0.2236068

2.3 Functions

Apart from the many functions that are available as part of the basic distri-
bution of R or are part of contributed packages one can easily write functions
for conducting specific tasks. Functions are stored as objects. The basic for-
mat of a function is: “fun.name <- function(args) expression”. The
function returns the evaluation of the expression. Alternatively, the out-
put of the function may be specified with the function “return”. Multiple
expressions can be combined with curly brackets. Default values for the
arguments may be set using the format “arg=value”.

> falling <- function(t,gravity=32) gravity*t^2/2
> falling(0:5)
[1] 0 16 64 144 256 400
> falling(0:5,8)
[1] 0 4 16 36 64 100

Consider another example.

2.4. GRAPHICS 11

> g <- function(x,a) 0.5*(x + a/x)
> x <- 1
> for(i in 1:10^2) x <- g(x,4)
> x
[1] 2

Observe that the function computed the square root of 4, which is 2. More
generaly, the iteration of the function will converge to the square root of the
second argument a. Let us wrap the algorithm for the computation of the
square root inside another function and add a stopping criteria:

> my.sqrt <- function(a,tol=0/10^6){
+ x0 <- x <- 1
+ d <- 10^6
+ while(d > tol){
+ x <- g(x0,a)
+ d <- abs(x-x0)
+ x0 <- x
+ }
+ return(x)
+ }
> my.sqrt(2)
[1] 1.414214
> sqrt(2)
[1] 1.414214

2.4 Graphics

R has many graphical abilities. Broadly speaking, plotting function may
either be high level or low level. The former type produces a plot:

> t <- seq(0,2*pi,length=100)
> y <- sin(t)
> plot(t,y,type="l")

and the latter type adds to an existing plot:

> y2 <- sin(t-0.25)
> lines(t,y2,col=2)
> y3 <- sin(t-0.5)
> lines(t,y3,col=3)

12 CHAPTER 2. BASIC R

Three dimensional plotting is also possible:

> y <- x <- seq(0,1,by=0.01)
> z <- outer(x,y,function(x,y) exp(- (x^2 + y^2)))
> contour(x,y,z)

Observe that:

• The function “seq” produces regular sequences.

• The “type” refers to the type of plotting (points, lines, etc.).

• Functions can be applied to vectors.

• Any binary function can be used in the function “outer”.

2.5 Homework

1. Let f(x) = ax2 − 2bx + c. Under which conditions does f has a
minimum? What is the minimizing x?

2. Let f(x) = x′Ax− 2b′x + c, with A an n× n matrix, b an n-vectors
and c a scaler. Under which conditions does f has a minimum? a
unique minimum? What is the minimizing x?

3. Write an R function that finds the location and value of the minimum
of a quadratic function.

4. Plot a contour plot of the function f with A =
(1 3
−1 2

)
, b =

(5
2

)
and c = 5. Mark, on the plot, the location of the minimum.

Chapter 3

Line search methods

We prepare for the consideration of algorithms for locating a local mini-
mum in the optimization problem with no constrains. All methods have in
common the basic structure: in each iteration a direction dn is chosen from
the current location xn. The next location, xn+1, is the minimum of the
function along the line that passes through xn in the direction dn. Before
discussing the different approaches for choosing directions, we will deal with
the problem of finding the minimum of a function of one variable, a problem
terms line search.

3.1 Fibonacci and Golden Section Search

These approaches assume only that the function is unimodal. Hence, if
the interval is divided by the points x0 < x1 < · · · < xN < xN+1 and we
find that, among these points, xk minimizes the function then the over-all
minimum is in the interval [xk−1, xk+1).

The Fibonacci sequence (Fn = Fn−1 + Fn−2, F0 = F1 = 1) is the basis
for choosing sequentially N points such that the discrepancy xk+1− xk−1 is
minimized. The length of the final interval is (xN+1 − x0)/FN .

The solution of the Fibonacci recursion is FN = AτN
1 +BτN

2 , where

τ1 =
1 +

√
5

2
= 1/0.618, τ2 =

1−
√

5
2

.

It follows that FN−1/FN ∼ 0.618, a number called the golden ratio, and
the rate of convergence of this line search approach is exponential with an
exponential rate that equals the log of this number. Note that the proposed
Fibonacci algorithm is linear.

13

14 CHAPTER 3. LINE SEARCH METHODS

The golden section is an approximation of the optimal procedure in which
a point is added between two previous points according to the golden ratio.
The asymptotic rate of the golden section is the same as that of the approach
based on the Fibonacci sequence. It is the standard algorithm in the initial
stage of a line search. At the vicinity of the solution it is replaced by an
algorithm with a higher rate of convergence.

3.2 Newton’s method

The best known method of line search is Newton’s method. Assume not
only that the function is continuous but that it is also smooth. Given the
first and second derivatives of the function at xn, one can write the Taylor
expansion:

f(x) ≈ q(x) = f(xn) + f ′(xn)(x− xn) + f ′′(xn)(x− xn)2/2.

The minimum of q(x) is obtained at

xn+1 = xn −
f ′(xn)
f ′′(xn)

.

(Note that this approach can be associated with the problem of finding the
zeros of the function g(x) = q′(x).)

We can expect that the solution of an iterative procedure of this type
will satisfy

x∗ = x∗ − f ′(x∗)
f ′′(x∗)

⇒ f ′(x∗) = 0.

We claim that the rate of convergence of the Newton algorithm is quadratic:

Theorem 3.2.1. Let the function g have a continuous second derivative
and let x∗ be such that g(x∗) = 0 and g′(x∗) 6= 0. Then the Newton method
converges with an order of convergence of at least two, provided that x0 is
sufficiently close to x∗.

Proof. Denote G(x) = x−f ′(x)/f ′′(x) and Let x∗ be a solution of G(x) = x.
A second order approximation of the drivative f ′ around xn produces:

f ′(xn)−f ′(x∗) = −[f ′(x∗)−f ′(xn)] = −
[
f ′′(xn)(x∗−xn)+

f (3)(x̃)
2

(x∗−xn)2
]
,

for some x̃ between xn and x∗. Therefore,

f ′(xn)− f ′(x∗)
f ′′(xn)

= (xn − x∗)− f (3)(x̃)
2f ′′(xn)

(x∗ − xn)2 .

3.3. APPLYING LINE-SEARCH METHODS 15

It follows, from the assumed continuity of the derivatives that

xn+1 − x∗ = xn − x∗ − f ′(xn)− f ′(x∗)
f ′′(xn)

≈ f (3)(x∗)
2f ′′(x∗)

(xn − x∗)2.

3.3 Applying line-search methods

Let us exemplify the problem of finding the minimum of a function on a line
with R.

> humps <- function(x) 1/((x-0.3)^2+0.01)+1/((x-0.9)^2+0.04)-6
> x <- seq(-5,5,by=0.01)
> plot(x,humps(x),type="l")

The function doing line search is optimize:

> optimize(humps,c(0.3,1))
$minimum
[1] 0.6370261

$objective
[1] 11.25275
> abline(v=c(0.3,1),lty=2)

In the next exercise we try to trace down the steps of the algorithm:

> humps.plot <- function(x)
+ {
+ y <- 1/((x-0.3)^2 + 0.01) + 1/((x-0.9)^2+0.04) - 6
+ lines(x,y,col=2,type="h")
+ print(c(x,y))
+ return(y)
+ }
> i <- 1
> x <- seq(0.3,1,by=0.01)
> plot(x,humps(x),type="l")
> abline(v=c(0.3,1),lty=2)
> optimize(humps.plot,c(0.3,1))
[1] 0.5673762 12.9098442

16 CHAPTER 3. LINE SEARCH METHODS

[1] 0.7326238 13.7746201
[1] 0.4652476 25.1714186
[1] 0.6444162 11.2692834
[1] 0.6412996 11.2583212
[1] 0.6376181 11.2528668
[1] 0.6369854 11.2527543
[1] 0.6370261 11.2527542
[1] 0.6370668 11.2527551
[1] 0.6370261 11.2527542
$minimum
[1] 0.6370261

$objective
[1] 11.25275

Can you say at which stage it switched from the golden section to a different
algorithm?

3.4 Quadratic interpolation

Assume we are given x1 < x2 < x3 and the values of f(xi), i = 1, 2, 3, which
satisfy

f(x2) < f(x1) and f(x2) < f(x3).

The quadratic interpolation passing through these points is given by

q(x) =
3∑

i=1

f(xi)

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

.

The minimum of this function is obtained at the point

x4 =
1
2
β23f(x1) + β31f(x2) + β12f(x3)
γ23f(x1) + γ31f(x2) + γ12f(x3)

,

with βij = x2
i − x2

j and γij = xi − xj . An algorithm A : R3 → R3 can
be defined by such a pattern. If we start from an initial 3-points pattern
x = (x1, x2, x3) the algorithm A can be constructed in such a way that
A(x) has the same pattern. The algorithm is continuous, hence closed. It
is descending with respect to the function Z(x) = f(x1) + f(x2) + f(x3). If
follows that the algorithm converges to the solution set Γ = {x∗ : f ′(x∗i) =
0, i = 1, 2, 3.}. It can be shown that the order of convergence to the solution
is (approximately) 1.3. Unlike the Newton method, the algorithm does not
require knowledge of the derivatives of the function.

3.5. CUBIC FIT 17

3.5 Cubic fit

Given x1 and x2, together with f(x1), f ′(x1), f(x2) and f ′(x2), one can
consider a cubic interpolation of the form

q(x) = a0 + a1x+ a2x
2 + a3x

3.

The local minimum is determined by the solution of the equation

q′(x) = a1 + 2a2x+ 3a3x
2 = 0,

which satisfies
q′′(x) = 2a2x+ 6a3x > 0.

It follows that the appropriate interpolation is given by

x3 = x2 − (x2 − x1)
f ′(x2) + β2 − β1

f ′(x2)− f ′(x1) + 2β2
,

where

β1 = f ′(x1) + f ′(x2)− 3
f(x1)− f(x2)

x1 − x2

β2 = (β2
1 − f ′(x1)f ′(x2))1/2.

The order of convergence of this algorithm is 2 and it uses only first order
derivative.

3.6 Homework

1. Find the minimum of the function -humps. Use different ranges.

2. (a) Given f(xn), f ′(xn) and f ′(xn−1), show that

q(x) = f(x) + f ′(xn)(x− xn) +
f ′(xn−1)− f ′(xn)

xn−1 − xn
· (x− xn)2

2
,

has the same derivatives as f at xn and xn−1 and is equal to f
at xn.

(b) Construct a line search algorithm based on this quadratic fit.

3. What conditions on the values and derivatives at two points guarantee
that a cubic fit will have a minimum between the two points? Use
the answer to develop a search scheme that is globally convergent for
unimodal functions.

18 CHAPTER 3. LINE SEARCH METHODS

4. Consider the function

f(x, y) = ex(4x2 + 2y2 + 4xy + 2y + 1).

Use the function optimize to plot the function

g(y) = min
x
f(x, y).

Chapter 4

Conditions for Unconstraint
Solutions

4.1 First Order Necessary Conditions

Assume that the function f is defined over Ω ⊂ Rd.

Definition: A point x∗ ∈ Ω is said to be a relative minimum point or a local
minimum point of f if there is an ε > 0 such that f(x∗) ≤ f(x) for all
x such that ‖x−x∗‖ < ε. If the inequality is strict for all x 6= x∗ then
x∗ is said to be a strict relative minimum point.

Definition: A point x∗ ∈ Ω is said to be a global minimum point of f if
f(x∗) ≤ f(x) for all x ∈ Ω. If the inequality is strict for all x 6= x∗

then x∗ is said to be a strict global minimum point.

In practice, the algorithms we will consider in most of this course con-
verge to a local minimum. We may indicate in some cases how the global
minimum can be obtained.

Definition: Given x ∈ Ω, a vector d is a feasible direction at x if there
exists an ᾱ > 0 such that x + αd ∈ Ω for all 0 ≤ α ≤ ᾱ.

Theorem 4.1.1 (First-order necessary conditions.). Let f ∈ C1. If x∗ is
a relative minimum, then for any vector d which is feasible at x∗, we have
ḟ(x∗)′d ≥ 0. (ḟ(x∗) is the gradient, i.e. the vector of partial derivatives of
f at x∗.)

19

20 CHAPTER 4. CONDITIONS FOR UNCONSTRAINT SOLUTIONS

Proof. By a one-sided Taylor expansion of the function h(t) = f(x∗ + td),
which is defined in the interval [0, ᾱ], we obtain that h(t) = h(0) + th′(0) +
o(t). Since 0 is a relative minimum of h we obtain that th′(0) ≥ 0, for all
t small enough, which implies that h′(0) ≥ 0. The claim now follows from
the chain rule.

Corollary 4.1.1. If x∗ is a relative minimum and if x∗ ∈ Ω0 then ḟ(x∗) =
0.

Proof. If x∗ is an interior point then all directions are feasible. It follows
that ḟ(x∗)′d ≥ 0 and ḟ(x∗)′(−d) = −ḟ(x∗)′d ≥ 0. Hence, ḟ(x∗)′d = 0, for
all d ∈ Rd. In particular, ‖ḟ(x∗)‖2 = 0 and the claim follows.

Example: Consider the function f(x, y) = x2− xy+ y2− 3y, with Ω = R2.
From the first order conditions we get that x∗ = 1 and y∗ = 2. This is a
global minimum. (Why?)

Example: Consider the function f(x, y) = x2−x+y+xy, with Ω = (R+)2.
The global minimum is at x∗ = 0.5 and y∗ = 0. At this point, ḟ(0.5, 0) =
(0, 3/2)′.

Example: We observe g(x) at the points x1, . . . , xm. We want to approx-
imate the function with a polynomial of the form h(x) =

∑d−1
j=0 ajx

j , for
d < m. Consider the minimization problem

min
a∈Rd

m∑
k=1

[g(xk)− h(xk)]2 = min
a∈Rd

m∑
k=1

[g(xk)−
∑d−1

j=0 ajx
j
k]

2 = mina∈Rd f(a).

Let qij =
∑m

k=1(xk)i+j , bj =
∑m

k=1 g(xk)(xk)j and c =
∑m

k=1 g(xk)2. Then

f(a) = a′Qa− 2b′a + c,

and the first order conditions take the form Qa = b.

4.2 Second Order Necessary Conditions

Second order conditions deal with functions with continuous second partial
derivatives and uses the Hessian matrix f̈(x∗) of (mixed) partial derivatives.

Theorem 4.2.1 (Second-order necessary conditions.). Let f ∈ C2. Let
x∗ be a relative minimum. For any vector d which is feasible at x∗, if
ḟ(x∗)′d = 0 then d′f̈(x∗)d ≥ 0.

4.3. HOMEWORK 21

Proof. Consider a one-sided second-order Taylor expansion of the function
h(t) = f(x∗+ td), which is defined in the interval [0, ᾱ]. One obtains in this
case that h(t) = h(0) + th′(0) + t2h′′(0)/2 + o(t2). By assumption and the
chain rule h′(0) = 0. Hence, since 0 is a relative minimum of h we obtain
that t2h′′(0)/2 ≥ 0, for all t small enough, which implies that h′′(0) ≥ 0.
The claim now follows from an iterative application of the chain rule.

Corollary 4.2.1. If x∗ is a relative minimum and if x∗ ∈ Ω0 then
ḟ(x∗)′d = 0 and d′f̈(x∗)d ≥ 0 for all d.

Proof. Straightforward.

Example: Consider the function f(x, y) = x3−x2y+2y2, with Ω = (R+)2.
The first order conditions are

3x2 − 2xy = 0, −x2 + 4y = 0.

There are two solutions: (0, 0) and (6, 9). However, the second is not a
relative minimum since the Hessian matrix

f̈(6, 9) =
[

18 −12
−12 4

]
is not positive semi-definite.

Theorem 4.2.2 (Second-order sufficient conditions.). Let f ∈ C2. Assume
that x∗ ∈ Ω0. If ḟ(x∗) = 0 and f̈(x∗) is positive definite then x∗ is a strict
relative minimum.

Proof. See Problem 2.4.1.

4.3 Homework

1. Prove Theorem 4.2.2.

2. To approximate the function g over the interval [0, 1] by a polynomial
h of degree n (or less), we use the criterion

f(a) =
∫ 1

0
[g(x)− h(x)]2dx,

where a ∈ Rn+1 are the coefficients of h. Find the equations satisfied
by the optimal solution.

22 CHAPTER 4. CONDITIONS FOR UNCONSTRAINT SOLUTIONS

3. (a) Using first-order necessary conditions, find the minimum of the
function

f(x, y, z) = 2x2 + xy + y2 + yz + z2 − 6x− 7y − 8z + 9.

(b) Verify the point is a relative minimum by checking the second-
order conditions.

4. In control problem one is interested in finding numbers u0, . . . , un that
minimize the objective function

J =
n∑

k=0

{(x0 + u0 + · · ·+ uk−1)2 + u2
k},

for a given x0. Find the equations that determine the first order con-
ditions.

Chapter 5

The Method of Steepest
Decent

The method of steepest decent is a method of searching for the minimum of
a function of many variables f . In in each iteration of this algorithm a line
search is performed in the direction of the steepest decent of the function at
the current location. In other words,

xn+1 = xn − αnḟ(xn),

where αn is the nonnegative scalar that minimizes f(xn − αḟ(xn)). It can
be shown that relative to the solution set {x∗ : ḟ(x∗) = 0}, the algorithm is
descending and closed, thus converging.

5.1 The rate of convergence in the quadratic case

Assume

f(x) =
1
2
x′Qx− x′b =

1
2
(x− x∗)′Q(x− x∗)− 1

2
x∗′Qx∗,

were Q a positive definite and symmetric matrix and x∗ = Q−1b is the
minimizer of f . Note that in this case ḟ(x) = Qx− b. and

f(xn − αḟ(xn)) =
1
2
(xn − αḟ(xn))′Q(xn − αḟ(xn))− (xn − αḟ(xn))′b

=
α2

2
(ḟ(xn))′Q(ḟ(xn))− α(ḟ(xn))′(Qxn − b) +

1
2
x′nQxn − x′nb

23

24 CHAPTER 5. THE METHOD OF STEEPEST DECENT

which is minimized at

αn =
ḟ(xn)′ḟ(xn)
ḟ(xn)′Qḟ(xn)

.

It follows, since
xn+1 − x∗ = xn − x∗ − αnḟ(xn)

and
Q(xn − x∗) = ḟ(xn) =⇒ xn − x∗ = Q−1ḟ(xn)

that
1
2
(xn+1 − x∗)′Q(xn+1 − x∗) =

1
2
(xn − x∗)′Q(xn − x∗)− 2αnf(xn)′ḟ(xn) + α2

nḟ(xn)′Qḟ(xn)

=
{

1− (ḟ(xn)′ḟ(xn))2

ḟ(xn)′Qḟ(xn)ḟ(xn)′Q−1ḟ(xn)

}
× 1

2
(xn − x∗)′Q(xn − x∗) .

Observe that we have used the fact that

(xn − x∗)′Q(xn − x∗) = f(xn)′Q−1ḟ(xn) .

The corrolary of the following theorem will establish the linear conver-
gence of the Steepest Decent Algorithm:

Theorem 5.1.1 (Kantorovich inequality). Let Q be a positive definite and
symmetric matrix and let 0 < a = λ1 ≤ λ2 ≤ · · · ≤ λn = A be the eigenval-
ues. Then

(x′x)2

(x′Qx)(x′Q−1x)
≥ 4aA

(a+A)2
.

Proof: By a change of variables Q is diagonal. We assume it is. In which
case

(x′x)2

(x′Qx)(x′Q−1x)
=

(
∑d

i=1 x
2
i)

2

(
∑d

i=1 λix2
i)(

∑d
i=1 x

2
i /λi)

.

Denoting ξi = x2
i /

∑d
j=1 x

2
j the above becomes

=
1/

∑d
i=1 ξiλi∑d

i=1(ξi/λi)
=
φ(ξ1, . . . , ξd)
ψ(ξ1, . . . , ξd)

.

The numerator is a point on the curve 1/x. The denominator is a convex
combination of points from that curve. The minimal ratio is achieved for
some λ = ξ1λ1 + ξdλd, where ξ1 + ξd = 1. Hence,

φ(ξ1, . . . , ξd)
ψ(ξ1, . . . , ξd)

≥ min
λ1≤λ≤λd

(1/λ)
(λ1 + λd − λ)/(λ1λd)

.

5.2. APPLYING THE METHOD IN R 25

The minimum is achieved when ξ1 = ξd = 1/2, and the proof follows.

Theorem 5.1.2. For the quadratic case

1
2
(xn+1 − x∗)′Q(xn+1 − x∗) ≤

(
A− a

A+ a

)2 1
2
(xn − x∗)′Q(xn − x∗).

Proof:

1− 4aA
(a+A)2

=
(
A− a

A+ a

)2

.

5.2 Applying the method in R

Let us investigate the application of the steepest decent method in the
quadratic setting. Consider the matrix Q and the vector b:

> Q <- matrix(c(0.78,-0.02,-0.12,-0.14,-0.02,0.86,-0.04,0.06,
+ -0.12,-0.04,0.72,-0.08,-0.14,0.06,-0.08,0.74),
+ 4,4,byrow=TRUE)
> Q

[,1] [,2] [,3] [,4]
[1,] 0.78 -0.02 -0.12 -0.14
[2,] -0.02 0.86 -0.04 0.06
[3,] -0.12 -0.04 0.72 -0.08
[4,] -0.14 0.06 -0.08 0.74
> b <- c(0.76,0.08,1.12,0.68)

We define the quadratic function quad using the matrix and the vector
and find the minimum of the function using R’s built-in general propose
optimizer optim:

> quad <- function(x,Q,b) t(x)%*%Q%*%x/2 - sum(x*b)
>
> optim(rep(1,4),quad,Q=Q,b=b)
$par
[1] 1.5349646 0.1220379 1.9751225 1.4129248

$value
[1] -2.174660

$counts
function gradient

26 CHAPTER 5. THE METHOD OF STEEPEST DECENT

217 NA

$convergence
[1] 0

$message
NULL

> solve(Q)%*%b
[,1]

[1,] 1.5349650
[2,] 0.1220096
[3,] 1.9751564
[4,] 1.4129555

In its default application the function optim takes as argument a function to
be minimized and an initial point and produces the minimizing value and the
value of the target function at that value. Extra arguments to the function
in the argument may be passed on using the “...” argument. Observe that
the function produces a minimizing value which is almost identical to the
theoretical value.

Next we want to program the algorithm of steepest decent. For that we
need a function that computes the gradient:

> quad.grad <- function(x,Q,b) Q%*%x - b
>
> steepest.decent <- function(fun,grad,x,...)
+ {
+ g <- function(a,x,...) fun(x - a*grad(x,...),...)
+ opt <- optimize(g,c(0,10),x=x,...)
+ alpha <- opt$minimum
+ objective <- opt$objective
+ x <- x - alpha*grad(x,...)
+ return(list(x=x,alpha=alpha,objective=objective))
+ }
> steepest.decent(quad,quad.grad,rep(1,4),Q=Q,b=b)
$x

[,1]
[1,] 1.331422136
[2,] 0.005733593
[3,] 1.815808334

5.2. APPLYING THE METHOD IN R 27

[4,] 1.127470052

$alpha
[1] 1.274701

$objective
[,1]

[1,] -2.128281

Observe that functions can be treated as any other argument. Observe
also that we apply the line-search procedure optimmize in order to find the
minimizing value in the direction determined by the gradient.

Let us apply several iterations of the algorithm:

> xn <- x <- rep(1,4)
> fn <- quad(x,Q,b)
> for (i in 1:10)
+ {
+ out <- steepest.decent(quad,quad.grad,x,Q=Q,b=b)
+ x <- out$x
+ xn <- cbind(xn,x)
+ fn <- c(fn,out$obj)
+ }
> fn
[1] -1.430000 -2.128281 -2.171504 -2.174440 -2.174644 -2.174658 -2.174659
[8] -2.174660 -2.174660 -2.174660 -2.174660
> xn

xn
[1,] 1 1.331422136 1.4813488 1.5235040 1.5302238 1.5342309 1.5345837 1.5349140
[2,] 1 0.005733593 0.1700348 0.1144736 0.1250617 0.1215216 0.1222107 0.1219760
[3,] 1 1.815808334 1.9125511 1.9623510 1.9713649 1.9741493 1.9749043 1.9750791
[4,] 1 1.127470052 1.4000565 1.3926856 1.4122049 1.4114599 1.4129046 1.4128446

[1,] 1.5349357 1.5349614 1.5349628
[2,] 0.1220236 0.1220072 0.1220106
[3,] 1.9751387 1.9751506 1.9751551
[4,] 1.4129518 1.4129472 1.4129552

We can see that the algorithm converged to the minimizing value after 8
iterations.

An assessment of the rate of convergence of the algorithm can be ob-
tained via the examination of the extreme eigenvalues:

28 CHAPTER 5. THE METHOD OF STEEPEST DECENT

> eigen(Q)
$values
[1] 0.94 0.88 0.76 0.52

$vectors
[,1] [,2] [,3] [,4]

[1,] 5.773503e-01 5.773503e-01 9.313285e-16 5.773503e-01
[2,] -5.773503e-01 5.773503e-01 -5.773503e-01 7.530868e-16
[3,] 8.592302e-17 -5.773503e-01 -5.773503e-01 5.773503e-01
[4,] -5.773503e-01 9.761208e-16 5.773503e-01 5.773503e-01

> U <- eigen(Q)$vector
> L <- diag(eigen(Q)$val)
> U%*%t(U)

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 -2.918210e-17 -1.397266e-16 -1.099923e-16
[2,] -2.918210e-17 1.000000e+00 -1.318634e-16 -3.651837e-16
[3,] -1.397266e-16 -1.318634e-16 1.000000e+00 -1.780802e-16
[4,] -1.099923e-16 -3.651837e-16 -1.780802e-16 1.000000e+00
> t(U)%*%U

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 3.255039e-16 -2.019327e-16 2.976677e-16
[2,] 3.255039e-16 1.000000e+00 7.358552e-17 -5.778077e-18
[3,] -2.019327e-16 7.358552e-17 1.000000e+00 1.847481e-16
[4,] 2.976677e-16 -5.778077e-18 1.847481e-16 1.000000e+00
> L

[,1] [,2] [,3] [,4]
[1,] 0.94 0.00 0.00 0.00
[2,] 0.00 0.88 0.00 0.00
[3,] 0.00 0.00 0.76 0.00
[4,] 0.00 0.00 0.00 0.52
> U%*%L%*%t(U) - Q

[,1] [,2] [,3] [,4]
[1,] 1.110223e-16 -2.428613e-17 -1.387779e-17 -5.551115e-17
[2,] -2.775558e-17 -8.881784e-16 -2.914335e-16 -5.342948e-16
[3,] -8.326673e-17 -3.608225e-16 -3.330669e-16 -2.498002e-16
[4,] -1.110223e-16 -5.551115e-16 -2.498002e-16 -3.330669e-16
> ((0.94 - 0.52)/(0.94 + 0.52))^2
[1] 0.08275474

5.2. APPLYING THE METHOD IN R 29

5.2.1 Homework

1. Investigate the the performance of the steepest decent algorithm for

f(x, y) = 100(y − x2)2 + (1− x)2.

(a) Compute and program the gradient of the function.

(b) Apply the function steepest.decent in order to find the mini-
mum.

(c) Plot the function and the points produced by the algorithm.

(d) Why doesn’t the steepest decent algorithm converge?

30 CHAPTER 5. THE METHOD OF STEEPEST DECENT

Chapter 6

Newton and Quasi-Newton
Methods

6.1 Newton’s method

Based on the Taylor expansion

f(xn) ≈ f(xn) + ḟ(xn)′(x− xn) +
1
2
(x− xn)′f̈(xn)(x− xn)

one can derive, in the same spirit that led to the derivation that was pre-
sented in the case of the one-dimensional line-search problem, a multi-
dimensional Newton’s method:

xn+1 = xn − (f̈(xn))−1ḟ(xn).

Theorem 6.1.1 (Newton’s method). Assume the target function is in C3,
x∗ is a local minimum, and the Hessian f̈(x∗) is positive definite. If x0 is
close enough to x∗ then the order of convergence is at least 2.

Proof.

‖xn+1 − x∗‖ = ‖xn − x∗ − f̈(xn)−1ḟ(xn)‖
= ‖f̈(xn)−1[ḟ(x∗)− ḟ(xn)− f̈(xn)(x∗ − xn)]‖
≤ C‖xn − x∗‖2,

for some constant C.

A modification of this approach is to set

xn+1 = xn − αn(f̈(xn))−1ḟ(xn),

where αn minimizes the function f(xn − α(f̈(xn))−1ḟ(xn)).

31

32 CHAPTER 6. NEWTON AND QUASI-NEWTON METHODS

6.2 Extensions

Consider the approach of choosing

xn+1 = xn − αnSnḟ(xn),

where Sn is some symmetric and positive-definite matrix and αn is the non-
negative scalar that minimizes f(xn − αSnḟ(xn)). It can be shown that
when Sn is positive-definite the algorithm is descending.

Consider the quadratic case as an example:

f(x) =
1
2
x′Qx− x′b =

1
2
(x− x∗)′Q(x− x∗)− 1

2
x∗′Qx∗,

were Q a positive definite and symmetric matrix and x∗ = Q−1b is the
minimizer of f . Note that in this case ḟ(x) = Qx− b. and

f(xn−αSnḟ(xn)) =
1
2
(xn−αSnḟ(xn))′Q(xn−αSnḟ(xn))−(xn−αSnḟ(xn))′b,

which is minimized at

αn =
ḟ(xn)′Snḟ(xn)

ḟ(xn)′SnQSnḟ(xn)
.

It follows that

1
2
(xn+1 − x∗)′Q(xn+1 − x∗) ={

1− (ḟ(xn)′Snḟ(xn))2

ḟ(xn)′SnQSnḟ(xn)ḟ(xn)′Q−1ḟ(xn)

}
× 1

2
(xn − x∗)′Q(xn − x∗).

Theorem 6.2.1. For the quadratic case

1
2
(xn+1 − x∗)′Q(xn+1 − x∗) ≤

(
Bn − bn
Bn + bn

)2 1
2
(xn − x∗)′Q(xn − x∗),

where Bn and bn are the largest and smallest eigenvalues of SQ.

6.3 The Davidon-Fletcher-Powell (DFP) method

This is a rank-two correction procedure. The algorithm is initiated with the
starting point x0 and some initial positive-definite algorithm S0. In each
iteration:

6.3. THE DAVIDON-FLETCHER-POWELL (DFP) METHOD 33

1. Minimizes f(xn − αSnḟ(xn)) to obtain xn+1 and ḟ(xn+1). Define

∆nx = xn+1 − xn = −αnSnḟ(xn) ,
∆nḟ = ḟ(xn+1)− ḟ(xn) .

2. Set

Sn+1 = Sn +
(∆nx)(∆nx)′

(∆nx)′(∆nḟ)
− Sn(∆nḟ)(∆nḟ)′Sn

(∆nḟ)′Sn(∆nḟ)
.

3. Go to 1.

Theorem 6.3.1. For the DFP algorithm. If Sn is positive definite then so
is Sn+1.

Proof. Let
g(α) = f(xn − αSnḟ(xn)) .

By the chain rule we get that the derivative of g with respect to α is:

ġ(α) = −ḟ(xn − αSnḟ(xn))′Snḟ(xn) .

The minimizing αn is obtained by solving ġ(αn) = 0. It follows that

0 = ġ(αn) = −ḟ(xn − αnSnḟ(xn))′Snḟ(xn) = −ḟ(xn+1)′Snḟ(xn) .

Define ∆x = xn+1 − xn, ∆ḟ = ḟ(xn+1)− ḟ(xn). Since

Sn+1 = Sn +
(∆x)′(∆x)
(∆x)′(∆ḟ)

− Sn(∆ḟ)(∆ḟ)′Sn

(∆ḟ)′Sn(∆ḟ)
,

it follows that

y′Sn+1y = y′Sny −
(y′Sn(∆ḟ))2

(∆ḟ)′Sn(∆ḟ)
+

(y′(∆x))2

(∆x)′(∆ḟ)

= a′a− (a′b)2

b′b
+

(y′(∆x))2

(∆x)′(∆ḟ)
, (6.1)

where a = S
1/2
n y and b = S

1/2
n (∆ḟ).

We saw that, since xn+1 is computed by minimizing the function f in
the given direction, then (ḟ(xn))′Sn(ḟ(xn+1)) = 0. Observe that ∆x =
−αnSnḟ(xn). It can be concluded that

(∆x)′(∆ḟ) = −αn(ḟ(xn+1)−ḟ(xn))′Sn(ḟ(xn)) = αn(ḟ(xn))′Sn(ḟ(xn)) > 0 .

The first difference in (6.1) is strictly positive, unless y ∝ (∆ḟ). assume
it is. In which case the second term is proportional to (ḟ(xn))′Sn(ḟ(xn)),
thus positive.

34 CHAPTER 6. NEWTON AND QUASI-NEWTON METHODS

6.4 The Broyden-Flecher-Goldfarb-Shanno (BFGS)
method

In this method the Hessian is approximated and not the inverse thereof.
This is again a rank-two correction procedure. The algorithm starts with
some positive-definite algorithm H0 and an initial point x0:

1. Minimizes f(xn − αH−1
n ḟ(xn)) to obtain xn+1 and ḟ(xn+1). Define

∆nx = xn+1 − xn = −αnH
−1
n ḟ(xn) ,

∆nḟ = ḟ(xn+1)− ḟ(xn) .

2. Set

Hn+1 = Hn +
∆nḟ

′∆nḟ

∆nḟ ′∆nx
− Hn∆nx∆nx′Hn

∆nx′Hn∆nx
.

3. Go to 1.

6.5 Examples

Recall the quadratic function that was used in order to illustrate the algo-
rithm of steepest decent:

> Q <- matrix(c(0.78,-0.02,-0.12,-0.14,-0.02,0.86,-0.04,0.06,
+ -0.12,-0.04,0.72,-0.08,-0.14,0.06,-0.08,0.74),
+ 4,4,byrow=TRUE)
> b <- c(0.76,0.08,1.12,0.68)
> quad <- function(x,Q,b) t(x)%*%Q%*%x/2 - sum(x*b)
> quad.grad <- function(x,Q,b) Q%*%x - b
>
> solve(Q)%*%b

[,1]
[1,] 1.5349650
[2,] 0.1220096
[3,] 1.9751564
[4,] 1.4129555

Let us program a function that carries out a step of the DFP algorithm:

> DFP <- function(fun,grad,x,S,...)
+ {

6.5. EXAMPLES 35

+ g <- function(a,x,S,...) fun(x - a*S%*%grad(x,...),...)
+ opt <- optimize(g,c(0,10),x=x,S=S,...)
+ alpha <- opt$minimum
+ objective <- opt$objective
+ x1 <- x - alpha*S%*%grad(x,...)
+ dx <- x1-x
+ ddf <- grad(x1,...) - grad(x,...)
+ term1 <- dx %*% t(dx)/sum(dx*ddf)
+ term2 <- S %*% ddf %*% t(ddf) %*% S
+ term2 <- term2/as.numeric(t(ddf) %*% S %*% ddf)
+ S <- S + term1 - term2
+ x <- x1
+ return(list(x=x,S=S,alpha=alpha,objective=objective))
+ }

Test the program:

> x0 <- rep(1,4)
> S0 <- diag(4)
> DFP(quad,quad.grad,x0,S0,Q=Q,b=b)
$x

[,1]
[1,] 1.331422136
[2,] 0.005733593
[3,] 1.815808334
[4,] 1.127470052

$S
[,1] [,2] [,3] [,4]

[1,] 1.05568042 -0.1107316 0.1120896 0.04112339
[2,] -0.11073155 1.0252274 -0.1364487 -0.15002460
[3,] 0.11208958 -0.1364487 1.1873048 0.11304641
[4,] 0.04112339 -0.1500246 0.1130464 1.00648790

$alpha
[1] 1.274701

$objective
[,1]

[1,] -2.128281

and compare the convergence of the DFP algorithm to the steepest decent:

36 CHAPTER 6. NEWTON AND QUASI-NEWTON METHODS

> x <- xn <- x0
> S <- S0
> fn <- quad(x0,Q,b)
> for (i in 1:3)
+ {
+ out <- DFP(quad,quad.grad,x,S,Q=Q,b=b)
+ x <- out$x
+ S <- out$S
+ xn <- cbind(xn,x)
+ fn <- c(fn,out$obj)
+ }
> fn
[1] -1.430000 -2.128281 -2.174356 -2.174658
> xn

xn
[1,] 1 1.331422136 1.5131097 1.5355306
[2,] 1 0.005733593 0.1152711 0.1210948
[3,] 1 1.815808334 1.9727640 1.9736910
[4,] 1 1.127470052 1.4264535 1.4136988

Finally, compare the inverse of the hessian with its approximation after
convergence:

> S
[,1] [,2] [,3] [,4]

[1,] 1.3511501 0.06182109 0.32254369 0.25582426
[2,] 0.0618211 1.11110888 -0.03773244 -0.03450682
[3,] 0.3225437 -0.03773244 1.30214508 0.28169782
[4,] 0.2558243 -0.03450682 0.28169782 1.39402136
> solve(Q)

[,1] [,2] [,3] [,4]
[1,] 1.37442345 0.02417795 0.26223776 0.28641571
[2,] 0.02417795 1.17199430 0.05980861 -0.08398656
[3,] 0.26223776 0.05980861 1.45841001 0.20242915
[4,] 0.28641571 -0.08398656 0.20242915 1.43423206

6.6 Homework

1. Investigate the the performance of the DFP algorithm on the function

f(x, y) = 100(y − x2)2 + (1− x)2

6.6. HOMEWORK 37

that was investigated in the previous homework.

2. Investigate the rate of convergence of the algorithm

xn+1 = xn − [δI + (f̈(xn))−1]ḟ(xn).

What is the rate if δ is larger than the smallest eigenvalue of (f̈(x∗))−1?

3. Use the formula

[A+ ba′]−1 = A−1 − A−1ab′A−1

1 + b′A−1a
,

in order to get a direct updating formula for the inverse of Hn in the
BFGS method.

4. Read the help file on the function “optim”. Investigate the effect of
supplying the gradients with the parameter “gr” on the performance
of the procedure.

38 CHAPTER 6. NEWTON AND QUASI-NEWTON METHODS

Chapter 7

Conditions for Constraint
Minimization

The general (constrained) optimization problem has the form:

min
x∈Rd

f(x)

subject to:

gi(x) = 0 i = 1, . . . ,me

gi(x) ≤ 0 i = me + 1, . . . ,m
xl ≤ x ≤ xu

The first me constraints are called equality constraints and the last m−me

constraints are the inequality constraints.

7.1 Necessary conditions (equality constraints)

We assume first that me = m, i.e. all constraints are equality constraints.
Let x∗ be a solution of the optimization problem. Let g = (g1, . . . , gm).
Note that g is a (non-linear) transformation from Rd into Rm. The set
{x ∈ Rn : g(x) = 0} is a surface in Rn. This surface is approximated near
x∗ by x∗ +M , where

M = {y : ġ(x∗)′y = 0}.

In order for this approximation to hold, x∗ should be a regular point of the
constraint, i.e. (ġ1(x∗), . . . , ġm(x∗)) should be linearly independent.

39

40 CHAPTER 7. CONDITIONS FOR CONSTRAINT MINIMIZATION

Theorem 7.1.1 (Lagrange multipliers). Let x∗ be a local extremum point
of f subject to the constraint g = 0. Assume that x∗ is a regular point of
these constraints. Then there is a λ ∈ Rm such that

ḟ(x∗) + ġ(x∗)λ = ḟ(x∗) +
m∑

j=1

λj ġj(x∗) = 0.

Given λ, one can consider the Lagrangian:

l(x, λ) = f(x) + g(x)λ.

The necessary conditions can be formulated as l̇ = 0. The matrix of partial
second derivatives of l (with respect to x) at x∗ is

l̈x(x∗) = f̈(x∗) + g̈(x∗)λ = f̈(x∗) +
m∑

j=1

g̈j(x∗)λj

We say that this matrix is positive semidefinite over M if x′ l̈x(x∗)x ≥ 0, for
all x ∈M .

Theorem 7.1.2 (Second-order condition). Let x∗ be a local extremum point
of f subject to the constraint g = 0. Assume that x∗ is a regular point of
these constraints, and let λ ∈ Rm be such that

ḟ(x∗) + ġ(x∗)λ = ḟ(x∗) +
m∑

j=1

λj ġj(x∗) = 0.

Then the matrix l̈x(x∗) is positive semidefinite over M .

7.2 Examples

We now give some applications of the above theory.

Example 7.2.1. Minimize f(x, y, z) = xy+yz+xz, subject to x+y+z = 3.

The necessary conditions become:

y + z + λ = 0
x+ z + λ = 0
x+ y + λ = 0
x+ y + z = 3.

Solving this system gives x = y = z = 1, λ = −2.

7.2. EXAMPLES 41

Example 7.2.2. A discrete random variable takes the values x1, . . . , xd,
with probabilities p1, . . . , pd. For a given mean value m, find the distribution
which minimizes the entropy

f(p1, . . . , pd) = −
d∑

i=1

pi log(pi).

The problem can be formulated as

min f(p1, . . . , pd)

subject to:

d∑
i=1

pi = 1,
d∑

i=1

xipi = m

0 ≤ pi, i = 1, . . . , d.

Ignoring the inequality constraints, the Lagrangian becomes

l(p1, . . . , pd, λ1, λ2) =
d∑

i=1

{−pi log(pi) + λ1pi + λ2xipi} − λ1 −mλ2.

The necessary conditions are

− log(pi)− 1 + λ1 + λ2xi = 0, i = 1, . . . , d,

which leads to

pi = exp{(λ1 − 1) + λ2xi},
d∑

i=1

pi = 1,
d∑

i=1

xipi = m.

Note that the solution satisfies the inequality constraints.

Example 7.2.3. A chain is suspended between two hooks that are t meters
apart on a horizontal line. The chain consists of d links. Each link is 1
meter long (measured from the inside). What is the shape of the chain?

We intend to minimize the potential energy of the chain. We let link i a
xi distance horizontally and yi distance vertically. The potential energy of
a link is its weight times its vertical distance (from some reference point).
The potential energy of the chain is the sum of the potential energies of the
links. Take the top as the reference and assume that the mass of each link is

42 CHAPTER 7. CONDITIONS FOR CONSTRAINT MINIMIZATION

concentrated at the center of the link. The potential energy is proportional
to

f(y1, . . . , yd) = 0.5y1 + (y1 + 0.5y2) + · · ·+ (y1 + · · ·+ yd−1 + 0.5yd)

=
d∑

i=1

(d− i+ 0.5)yi.

The constraints are:
d∑

i=1

yi = 0,
d∑

i=1

xi =
d∑

i=1

√
1− y2

i = t.

The first order necessary conditions are

(d− i+ 0.5) + λ1 −
λ2yi

(1− y2
i)1/2

= 0, for i = 1, . . . , d,

which leads to the solution

yi = − d− i+ 0.5 + λ1

[λ2
2 + (d− i+ 0.5 + λ1)2]1/2

.

7.3 Necessary conditions (inequality constraints)

We now consider the case where me < m. Let x∗ be a solution of the
constrained optimization problem. A constraint gj is active at x∗ if gj(x∗) =
0 and it is inactive if gj(x∗) < 0. Note that all equality constraints are active.
Denote by J the set of all active constraints.

For the consideration of necessary conditions when inequality constraints
are present the definition of a regular point should be extended. We say now
that x∗ is regular if {ġj(x∗) : j ∈ J} are linearly independent.

Theorem 7.3.1 (Kuhn-Tucker Conditions). Let x∗ be a local extremum
point of f subject to the constraint gj(x) = 0, 1 ≤ j ≤ me and gj(x) ≤ 0,
me + 1 ≤ j ≤ m. Assume that x∗ is a regular point of these constraints.
Then there is a λ ∈ Rm such that λj ≥ 0, for all j > me, and

ḟ(x∗) +
m∑

j=1

λj ġj(x∗) = 0

m∑
j=me+1

λjgj(x∗) = 0.

7.4. SUFFICIENT CONDITIONS 43

Let

l̈x(x∗) = f̈(x∗) +
m∑

j=1

λj g̈j(x∗).

Theorem 7.3.2 (Second-order condition). Let x∗ be a local extremum point
of f subject to the constraint gj(x) = 0, 1 ≤ j ≤ me and gj(x) ≤ 0,
me +1 ≤ j ≤ m. Assume that x∗ is a regular point of these constraints, and
let λ ∈ Rm be such that λj ≥ 0, for all j > me, and

ḟ(x∗) +
m∑

j=1

λj ġj(x∗) = 0.

Then the matrix l̈x(x∗) is positive semidefinite on the tangent subspace of
the active constraints.

7.4 Sufficient conditions

Sufficient conditions are based on second-order conditions:

Theorem 7.4.1 (Equality constraints). Suppose there is a point x∗ satis-
fying g(x∗) = 0, and a λ ∈ Rm such that

ḟ(x∗) +
m∑

j=1

λj ġj(x∗) = 0.

Suppose also that the matrix l̈x(x∗) is positive definite on M . Then x∗ is a
strict local minimum for the constrained optimization problem.

Theorem 7.4.2 (Inequality constraints). Suppose there is a point x∗ that
satisfies the constraints. A sufficient condition for x∗ to be a strict local
minimum for the constrained optimization problem is the existence of a λ ∈
Rm such that λj ≥ 0, for me < j ≤ m, and

ḟ(x∗) +
m∑

j=1

λj ġj(x∗) = 0 (7.1)

m∑
j=me+1

λjgj(x∗) = 0, (7.2)

and the Hessian matrix l̈x(x∗) is positive on the subspace

M ′ = {y : ġj(x∗)′y = 0, j ∈ J}

where J = {j : gj(x∗) = 0, λj > 0}

44 CHAPTER 7. CONDITIONS FOR CONSTRAINT MINIMIZATION

Example 7.4.1. Consider the problem:

minimize 2x2 + 2xy + y2 − 10x− 10y
subject to x2 + y2 ≤ 5

3x+ y ≤ 6.

The first order necessary conditions are

4x+ 2y − 10 + 2λ13 + 3λ2 = 0
2x+ 2y − 10 + 2λ1y + λ2 = 0

λ1 ≥ 0, λ2 ≥ 0
λ1(x2 + y2 − 5) = 0
λ2(3x+ y − 6) = 0.

One should check different subsets of active and inactive constraints. For
example, if we set J = {1} then

4x+ 2y − 10 + 2λ13 + 3λ2 = 0
2x+ 2y − 10 + 2λ1y + λ2 = 0

x2 + y2 = 5,

which has the solution x = 1, y = 2, λ1 = 1. This yields 3x + y = 5, and
hence the second constraint is satisfied. Thus, since λ1 > 0, we conclude
that this solution satisfies the first order necessary conditions.

7.5 Homework

1. Consider the constraints x1 ≥ 0, x2 ≥ 0 and x2 − (x1 − 1)2 ≤ 0. Show
that (1, 0) is feasible but not regular.

2. Find the rectangle of given perimeter that has greatest area by solv-
ing the first-order necessary conditions. Verify that the second-order
sufficient conditions are satisfied.

3. Three types of items are to be stored. Item A costs one dollar, item
B costs two dollars and item C costs 4 dollars. The demand for the
three items are independent and uniformly distributed in the range
[0, 3000]. How many of each type should be stored if the total budget
is 4,000 dollars?

7.5. HOMEWORK 45

4. Let A be an n×m matrix of rank m and let L be an n×n matrix that
is symmetric and positive-definite on the subspace M = {y : Ay = 0}.
Show that the (n+m)× (n+m) matrix[

L A′

A 0

]
is non-singular.

5. Maximize 14x− x2 + 6y − y2 + 7 subject to x+ y ≤ 2, x+ 2y ≤ 3.

46 CHAPTER 7. CONDITIONS FOR CONSTRAINT MINIMIZATION

Chapter 8

Quadratic Programming

The Lagrange methods for dealing with constrained optimization problem
are based on solving the Lagrange first-order necessary conditions. In par-
ticular, for solving the problem with equality constraints only:

minimize f(x)
subject to g(x) = 0,

the algorithms look for solutions of the problem:

ḟ(x) +
m∑

j=1

λj ġj(x) = 0

g(x) = 0,

8.1 Quadratic programming

An important special case is when the target function f is quadratic and
the constraints are linear:

minimize (1/2)x′Qx + x′c

subject to a′ix = bi, 1 ≤ i ≤ me

a′ix ≤ bi, me + 1 ≤ i ≤ m

with Q a symmetric matrix.

47

48 CHAPTER 8. QUADRATIC PROGRAMMING

8.1.1 Equality constraints

In the particular case where me = m the above becomes

minimize (1/2)x′Qx + x′c

subject to Ax = b.

and the Lagrange necessary conditions become

Qx +A′λ+ c = 0

Ax− b = 0.

This system is nonsingular if Q is positive definite on the subspace M =
{x : Ax = 0}. If Q is nonsingular then the solution becomes:

x = Q−1A′(AQ−1A′)−1[AQ−1c + b]−Q−1c

λ = −(AQ−1A′)−1[AQ−1c + b].

8.2 Quadratic Programming in R

Let us start with the implementation of quadratic programming with equal-
ity constraints. Consider the following example:

> Q.quad <- matrix(c(0.78,-0.02,-0.12,-0.14,-0.02,0.86,-0.04,0.06,
+ -0.12,-0.04,0.72,-0.08,-0.14,0.06,-0.08,0.74),
+ 4,4,byrow=TRUE)
> Q.quad

[,1] [,2] [,3] [,4]
[1,] 0.78 -0.02 -0.12 -0.14
[2,] -0.02 0.86 -0.04 0.06
[3,] -0.12 -0.04 0.72 -0.08
[4,] -0.14 0.06 -0.08 0.74
> b.quad <- c(0.76,0.08,1.12,0.68)
> A.cons <- matrix(c(1,1,1,1,1,1,-1,-1),nrow=2,byrow=TRUE)
> A.cons

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 -1 -1
> b.cons <- c(0,0)
> b.cons
[1] 0 0

8.2. QUADRATIC PROGRAMMING IN R 49

Observe that d = 4 in this example and m = me = 2. Next, construct a
the matrix and the vector which correspond to the solution of the normal
equations:

> V <- rbind(t(A.cons),matrix(0,nrow(A.cons),nrow(A.cons)))
> V <- cbind(rbind(Q.quad,A.cons),V)
> V

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.78 -0.02 -0.12 -0.14 1 1
[2,] -0.02 0.86 -0.04 0.06 1 1
[3,] -0.12 -0.04 0.72 -0.08 1 -1
[4,] -0.14 0.06 -0.08 0.74 1 -1
[5,] 1.00 1.00 1.00 1.00 0 0
[6,] 1.00 1.00 -1.00 -1.00 0 0
> u <- c(-b.quad,b.cons)
> u
[1] -0.76 -0.08 -1.12 -0.68 0.00 0.00
> solve(V,u)
[1] -0.3874113 0.3874113 -0.2429078 0.2429078 -0.7009397 0.2557270

We wrap it in a function that carries out quadratic programming with equal-
ity constraints:

> QP <- function(Q.quad,b.quad,A.cons,b.cons)
+ {
+ d <- length(b.quad)
+ m <- length(b.cons)
+ if(m==1) A.cons <- matrix(A.cons,nrow=1)
+ V <- rbind(t(A.cons),matrix(0,m,m))
+ V <- cbind(rbind(Q.quad,A.cons),V)
+ u <- c(-b.quad,b.cons)
+ xl <- solve(V,u)
+ x <- xl[1:d]
+ if(m >= 1) lam <- xl[1:m +d] else lam <- NA
+ return(list(x=x,lam=lam))
+ }
> QP(Q.quad,b.quad,A.cons,b.cons)
$x
[1] -0.3874113 0.3874113 -0.2429078 0.2429078
$lam
[1] -0.7009397 0.2557270

50 CHAPTER 8. QUADRATIC PROGRAMMING

Let us compare our program to the implementation of quadratic pro-
gramming in a contributed package to R. The package is called “quadprog”
and it can be installed from the CRAN mirror. (Go to “packages” in the
upper bar and select “Install package(s)”. Choose the appropriate pack-
age from the list.) We implement that function “solve.QP”. Consult its
help file first:

> library(quadprog)
> ?solve.QP

Applying the function in the same setting we considered produces:

> solve.QP(Q.quad,-b.quad,t(A.cons),b.cons,meq=2)
$solution
[1] -0.3874113 0.3874113 -0.2429078 0.2429078
$value
[1] -0.1851596
$unconstrainted.solution
[1] -1.5349650 -0.1220096 -1.9751564 -1.4129555
$iterations
[1] 3 0
$iact
[1] 1 2

Compare the result to the results we got:

> solve.QP(Q.quad,-b.quad,t(A.cons),b.cons,meq=2)$solution
[1] -0.3874113 0.3874113 -0.2429078 0.2429078
> QP(Q.quad,b.quad,A.cons,b.cons)$x
[1] -0.3874113 0.3874113 -0.2429078 0.2429078

8.2.1 Inequality constraints

For the general quadratic programming problem, the method of active set is
used. A working set of constraints Wn is updated in each iteration. The set
Wn contains all constraints that are suspected to satisfy an equality relation
at the solution point. In particular, it contains the equality constraints. An
algorithm for solving the general quadratic problem is:

1. Start with a feasible point x0 and a working set W0. Set n = 0

8.2. QUADRATIC PROGRAMMING IN R 51

2. Solve the quadratic problem

minimize (1/2)d′Qd + (c +Qxn)′d
subject to a′id = 0, i ∈Wn.

If d∗n = 0 go to 4.

3. Set xn+1 = αnd∗n, where

αn = min
a′

id
∗
n>0

{
1,
bi − a′ixn

a′id∗n

}
.

If αn < 1, adjoin the minimizing index above to Wn to form Wn+1.
Set n = n+ 1 and return to step 2.

4. Compute the Lagrange multiplier in step 3 and let λn = min{λi : i ∈
Wn, i > me}. If λn ≥ 0, stop; xn is a solution. Otherwise, drop λn

from Wn to form Wn+1 and return to step 2.

Example 8.2.1. Consider the problem

minimize 2x2 + xy + y2 − 12x− 10y
subject to (1) x+ y ≤ 3.5,

(2) − x ≤ 0,
(3) − y ≤ 0.

Take x0 = (0, 0)′, and W0 = {2, 3}. Then d∗0 = (0, 0)′. Both Lagrange
multipliers are negative, but the one corresponding to (2) is more negative.
Drop that constraint, and put W1 = {3}. Minimizing along the line y = 0
leads to x1 = (3, 0)′. The Lagrange multiplier of the active constraint is
negative, thus W2 = ∅. Also, d∗1 = (−1, 4), the direction to the overall
optimum at (2, 4)′. We move to the constraint (1), and write W3 = {(1)}.
Finally, we move along this constraint to the solution.

Let us carry out the above analysis using R an the function QP. We initi-
ate by defining the parameters on the quadratic programming and plotting
the feasible region and the target function:

> Q.quad <- matrix(c(4,1,1,2),2,2)
> Q.quad

[,1] [,2]
[1,] 4 1
[2,] 1 2

52 CHAPTER 8. QUADRATIC PROGRAMMING

> b.quad <- -matrix(c(12,10),2,1)
> A.cons <- matrix(c(1,-1,0,1,0,-1),3,2)
> A.cons

[,1] [,2]
[1,] 1 1
[2,] -1 0
[3,] 0 -1
> b.cons <- c(3.5,0,0)

> xx <- seq(-1,4,by=0.01)
> yy <- seq(-1,4,by=0.01)
> zz <- outer(xx,yy,function(x,y) 2*x^2+x*y+y^2-12*x-10*y)
> contour(xx,yy,zz,nlev=30)
> abline(3.5,-1,col=2)
> abline(h=0,col=2)
> abline(v=0,col=2)
> x <- seq(0,3.5,length=20)
> segments(x,rep(0,length(x)),x,3.5-x,col=2)

The algorithm is initiated by setting a starting value and an initial work-
ing collection of active constraints.

> # initiate: n=0
> b.0 <- rep(0,3)
> x0 <- c(0,0)
> W0 <- 2:3
> # 2.
> qp <- QP(Q.quad,b.quad+Q.quad%*%x0,A.cons[W0,],b.0[W0])
> # 4.
> qp
$x
[1] 0 0
$lam
[1] -12 -10
> W1 <- 3
> x1 <- x0
> points(x1[1],x1[2],col="blue",cex=2)

Observe that most negative Lagrange multiplier is associated with the con-
straint (2), which is removed from the working set.

> # n=1

8.2. QUADRATIC PROGRAMMING IN R 53

> # 2.
> qp <- QP(Q.quad,b.quad+Q.quad%*%x1,A.cons[W1,],b.0[W1])
> d1 <- qp$x
> # 3.
> alpha <- (b.cons - A.cons%*%x1)/A.cons%*%d1
> alpha[A.cons%*%d1 > 0]
[1] 1.166667
> # 4.
> qp$lam
[1] -7
> W2 <- 0
> x2 <- x1+d1
> points(x2[1],x2[2],col="blue",cex=2)
> segments(x1[1],x1[2],x2[1],x2[2],lty=2,col="blue",lwd=2)

At this stage no constraint is added. The solution of the associated quadratic
programming problem produces a negative lagrange multiplier. Consequently,
the working set becomes empty. Note that the function QP is still working.

> # n=2
> # 2.
> qp <- QP(Q.quad,b.quad+Q.quad%*%x2,A.cons[W2,],b.0[W2])
> d2 <- qp$x
> # 3.
> alpha <- (b.cons - A.cons%*%x2)/A.cons%*%d2
> alpha

[,1]
[1,] 0.1666667
[2,] 3.0000000
[3,] 0.0000000
> alpha[A.cons%*%d2 > 0]
[1] 0.1666667 3.0000000
> W3 <- c(1)
> x3 <- x2+min(alpha[A.cons%*%d2 > 0])*d2
> points(x3[1],x3[2],col="blue",cex=2)
> segments(x2[1],x2[2],x3[1],x3[2],lty=2,col="blue",lwd=2)

Now, the constarint (1) is added to the working set. That produces, in te
next iteration, the optimal solution:

> # n=3

54 CHAPTER 8. QUADRATIC PROGRAMMING

> # 2.
> qp <- QP(Q.quad,b.quad+Q.quad%*%x3,A.cons[W3,],b.0[W3])
> d3 <- qp$x
> # 3.
> alpha <- (b.cons - A.cons%*%x3)/A.cons%*%d3
> alpha

[,1]
[1,] 0.0000000
[2,] 1.9428571
[3,] -0.4571429
> alpha[A.cons%*%d3 > 0]
[1] 0.000000 1.942857
> A.cons%*%d3

[,1]
[1,] 4.440892e-16
[2,] 1.458333e+00
[3,] -1.458333e+00
> # 4.
> qp$lam
[1] 4.375
> x4 <- x3 + d3
> points(x4[1],x4[2],col="blue",cex=2)
> segments(x3[1],x3[2],x4[1],x4[2],lty=2,col="blue",lwd=2)

8.3 Homework

1. Write an R function that implements quadratic programming (QP)
when some constraints may be inequality constraints. Compare the
implementation of your function to the implementation of the function
“solve.QP”.

Chapter 9

Sequential Quadratic
Programming

Let us consider again the general optimization problem with constraints

minimize f(x)
subject to gi(x) = 0, i = 1, . . . ,me

gi(x) ≤ 0, i = me + 1, . . . ,m.

The SQP method solves this problem by solving a sequence of QP problems
where the Lagrangian function l is approximated by a quadratic function
and the constraints are approximated by a linear hyper-space.

9.1 Newton’s Method

Consider the case of equality constraints only. At each iteration the problem

minimize (1/2)d′ l̈x(xn, λn)d + l̇(xn, λn)′d
subject to ġi(xn)′d + gi(xn) = 0, i = 1, . . . ,m

is solved. It can be shown that the rate of convergence of this algorithm
is 2 (at least) if the starting point (x0, λ0) is close enough to the solution
(x∗, λ∗). A disadvantage of this approach is the need to compute Hessian.

9.2 Structured Methods

These methods are modifications of the basic Newton method, with approx-
imations replacing Hessian. One can rewrite the solution to the Newton step

55

56 CHAPTER 9. SEQUENTIAL QUADRATIC PROGRAMMING

in the form [
xn+1

λn+1

]
=

[
xn

λn

]
−

[
l̈n ġ′n
ġn 0

]−1[
l̇n
gn

]
.

Instead, one can use the formula[
xn+1

λn+1

]
=

[
xn

λn

]
− αn

[
Hn ġ′n
ġn 0

]−1[
l̇n
gn

]
,

with αn and Hn appropriately chosen.

9.3 The Han–Powell method

The Han–Powell method is what is used by Matlab for SQP. It is a Quasi-
Newton method, where Hn is updated using the BFGS approach:

Hn+1 = Hn +
(∆l)(∆l)′

(∆x)′(∆l)
− Hn(∆x)(∆x)′Hn

(∆x)′Hn(∆x)
,

where
∆x = xn+1 − xn, ∆l = l(xn+1, λn+1)− l(xn, λn).

It can be shown that Hn+1 is positive-definite if Hn is and if (∆x)′(∆l) > 0.

9.4 Merit function

In order to choose the αn and to assure that the algorithm will converge
a merit function is associated with the problem such that a solution of
the constrained problem is a (local) minimum of the merit function. The
algorithm should be descending with respect to the merit function.

Consider, for example, the problem with inequality constraints only:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m.

The absolute-value merit function is given by

Z(x) = f(x) + c

m∑
i=1

gi(x)+.

The parameter α is chosen by minimizing the merit function in the direction
chosen by the algorithm.

9.4. MERIT FUNCTION 57

Theorem 9.4.1. If H is positive-definite and if c > max1≤i≤m λi then the
algorithm is descending with respect to the absolute-value merit function.

Proof. The optimization problem is solved by solving sequentially problems
of the form:

minimize (1/2)d′Hd + ḟ(x)′d
subject to ġj(x)′d + gj(x) ≤ 0, i = 1, . . . ,m,

The necessary conditions here are

Hd + ḟ(x) +
m∑

j=1

λj ġj(x) = 0 (9.1)

ġj(x)′d + gj(x) ≤ 0 (9.2)
λj [ġj(x) + gj(x)] = 0 (9.3)

λj ≥ 0. (9.4)

Let J(x) = {gi(x) > 0}. Now, for α > 0,

Z(x + αd) = f(x + αd) + c

m∑
i=1

gi(x + αd)+

= f(x) + αḟ(x)′d + c

m∑
i=1

[gi(x)+ + αcġj(x)′d + o(α)]+

= f(x) + αḟ(x)′d + c

m∑
i=1

gi(x)+ + αc
∑

j∈J(x)

ġj(x)′d + o(α)

= Z(x) + αḟ(x)′d + αc
∑

j∈J(x)

ġj(x)′d + o(α).

Here we applied condition (9.2) in order to infer that ġj(x)′d ≤ 0 if gj(x) =
0. Using this condition again we get

c
∑

j∈J(x)

ġj(x)′d ≤ c
∑

j∈J(x)

−gj(x) = −c
m∑

j=1

gj(x)+. (9.5)

Using (9.1) we can infer that

ḟ(x)′d = −d′Hd−
m∑

j=1

λj ġj(x)d,

58 CHAPTER 9. SEQUENTIAL QUADRATIC PROGRAMMING

which by using condition (9.3) leads to

ḟ(x)′d ≤ −d′Hd +
m∑

j=1

λjgj(x)+ ≤ −d′Hd + max
j
λj

m∑
j=1

gj(x)+. (9.6)

Remark 1. The first inequality in (9.6) follows from the fact that:

−
n∑

j=1

λj ġj(x)d = −
n∑

j=1

λj [ġj(x)d + gj(x)] +
n∑

j=1

λjgj(x),

which by (9.3) equals
∑n

j=1 λjgj(x). Obviously, gj(x) ≤ gj(x)+. Thus,
the first inequality. The second inequality, and the rest of the proof, are
straightforward.

Summarizing what we got thus far leads to

Z(x + αd) ≤ Z(x) + α{−d′Hd− [c−max
j
λj]

m∑
j=1

gj(x)+}+ o(α).

The conclusion follows from the assumption that H is positive definite and
the assumption c ≥ maxj λj .

9.5 Enlargement of the feasible region

Consider, again, the problem with inequality constraints only:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m.

and its solution with a structural SQP algorithm.
Assume that at the current iteration xn = x and Hn = H. Then one

wants to consider the QP problem:

minimize (1/2)d′Hd + ḟ(x)
subject to ġi(x)′d + g(x) ≤ 0, i = 1, . . . ,m.

However, it is possible that this problem is infeasible at the point x. Hence,
the original method breaks down. However, one can consider instead the
problem

minimize (1/2)d′Hd + ḟ(x) + c
m∑

i=1

ξi

subject to ġi(x)′d + g(x) ≤ ξi, i = 1, . . . ,m.
−ξi ≤ 0, i = 1, . . . ,m,

9.6. HOMEWORK 59

which is always feasible.

Theorem 9.5.1. If H is positive-definite and if c > max1≤i≤m λi then the
algorithm is descending with respect to the absolute-value merit function.

9.6 Homework

1. Let H be a positive-definite matrix and assume that, throughout some
compact set, the quadratic programming has a unique solution, such
that the Lagrange multipliers are not larger than c. Let {xn : n ≥ 0}
be a sequence generated by the recursion xn+1 = xn+αndn, where d is
the direction found by solving the QP centered at xn and with H fixed
and αn is determined by minimization of the function Z. Show that
any limit point of {xn} satisfies the first order necessary conditions for
the constrained minimization problem.

(Hint: Define the solution set to be all points that satisfy the first order
necessary conditions. Show that the function Z is strictly decreasing
outside of the solution set, and not increasing inside that set. Conclude
the result from the appropriate theorem.)

2. Clairaut’s Theorem states that if second order partial derivatives are
continuous at a point then they commute at that point:

∂2f(x)
∂xi∂xj

=
∂2f(x)
∂xj∂xi

.

Consider the function

f(x, y) =
xy(x2 − y2)
x2 + y2

.

Observe that ∂2f(0, 0)/∂x∂y and ∂2f(0, 0)/∂y∂x both exist but they
are not equal.

	Background
	Introduction
	Global Convergence of Descending Algorithms
	Rate of convergence
	Homework

	Basic R
	Starting and quitting R
	Matrices
	Functions
	Graphics
	Homework

	Line search methods
	Fibonacci and Golden Section Search
	Newton's method
	Applying line-search methods
	Quadratic interpolation
	Cubic fit
	Homework

	Conditions for Unconstraint Solutions
	First Order Necessary Conditions
	Second Order Necessary Conditions
	Homework

	The Method of Steepest Decent
	The rate of convergence in the quadratic case
	Applying the method in R
	Homework

	Newton and Quasi-Newton Methods
	Newton's method
	Extensions
	The Davidon-Fletcher-Powell (DFP) method
	The Broyden-Flecher-Goldfarb-Shanno (BFGS) method
	Examples
	Homework

	Conditions for Constraint Minimization
	Necessary conditions (equality constraints)
	Examples
	Necessary conditions (inequality constraints)
	Sufficient conditions
	Homework

	Lagrange Methods
	Quadratic programming
	Equality constraints

	Quadratic Programming in R
	Inequality constraints

	Homework

	Sequential Quadratic Programming
	Newton's Method
	Structured Methods
	The Han--Powell method
	Merit function
	Enlargement of the feasible region
	Homework

