
6 Infinite Populations – Single Locus

In contrast to the situation in the previous part, where there was a finite,
usually very small, mating population, in this part of the course we assume
an infinitely large population. Random mating corresponds to the case
where the choice of the mating partner is not influenced by the genotypes
under consideration. The backcross and intercross are examples of non-
random mating. On the other hand, mating in wild populations in general,
and in human genetics in particular, is often modeled by random mating.

Random mating enhances the mixing of the genetic material in the popu-
lation and drives the genotypes toward steady-state conditions. Two impor-
tant steady states are Hardy-Weinberg equilibrium and linkage equilibrium.
Hardy-Weinberg equilibrium refers to the joint distribution of the two ho-
mologous copies of an autosomal allele. In a steady state these two copies
are independent and identically distributed. Linkage equilibrium, on the
other hand, refers to the joint distribution at two or more loci. In link-
age equilibrium the distribution of alleles at different polymorphic loci are
independent of each other.

6.1 The Hardy-Weinberg Equilibrium

In order to motivate the idea of Hardy-Weinberg equilibrium consider a sin-
gle bi-allelic locus with alleles A and a. The genotype of a random individual
can be AA, Aa, or aa. Under Hardy-Weinberg equilibrium the frequency of
these genotypes are p2

A, 2 pA(1 − pA), and (1 − pA)2, respectively, where pA

denotes the fraction of allele A in the population and 1− pA the fraction of
allele a. These frequencies of genotypes will emerge in offspring of random
mating. Indeed, the probability that the father will contribute the allele A
to his offspring is pA. The probability of inheriting allele A from the mother
is also pA. Random mating corresponds to independence of the two contri-
butions, which taken together produce the indicated binomial probabilities.
Note also that when the fractions of the genotypes AA, Aa, and aa are p2

A,
2 pA(1 − pA), and (1 − pA)2, the frequencies of the alleles A and a are, re-
spectively, [2 p2

A + 2 pA(1− pA)]/2 = pA(pA + 1− pA) = pA and 1− pA. Hence
the allelic frequencies of the children’s generation are the same as in the
parents generation, so the Hardy-Weinberg frequencies apply to the geno-
types of the grandchildren, etc. This is in contrast to the finite populations
we considered earlier in this chapter, where allele frequencies change from
one generation to the next and heterozygosity eventually disappears with
repeated random mating.
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6.2 Derivation of the Hardy-Weinberg Equilibrium

One approach for proving the Hardy-Weinberg Equilibrium relies on the
Markovian properties mating types as they evolve through the generations.
The central point is that the genotype of the offspring are a function of
previous generations only through the genotypes of the parents. The basic
tool involves the formation of a mating table, which contains a list of all
possible mating types and their frequencies in the population, followed by
the examination of the dynamics of the frequencies of the mating types
generation by generation. A mating type corresponds to a pairing of two
genotypes. Hence, the frequency of the different genotypes in the population
at each generation can be read off the table.

In order to simplify the examination let us consider a bi-allelic locus
include the frequencies of the genotypes as part of the table:

Mating type Frequency A1A1 A1A2 A2A2

A1A1 ×A1A1 p2
11 1 0 0

A1A1 ×A1A2 p11p12 0.5 0.5 0
A1A1 ×A2A2 p11p22 0 1 0
A1A2 ×A1A1 p12p11 0.5 0.5 0
A1A2 ×A1A2 p2

12 0.25 0.5 0.25
A1A2 ×A2A2 p12p22 0 0.5 0.5
A2A2 ×A1A1 p22p11 0 1 0
A2A2 ×A1A2 p22p12 0 0.5 0.5
A2A2 ×A2A2 p2

22 0 0 1

Note that we are using the assumption of random mating in the con-
struction of the table (as well as the assumption that the males and females
have identical frequencies of genotypes and that Mendel’s first law of equal
segregation applies. It is customary to spell out loud the further assump-
tions of no outside influence in the form of mutations, and migration and
the assumption of no survival advantage to any of the genotypes.

From the table we get that

P (A1A1) = p2
11 + 0.5p11p12 + 0.5p12p11 + 0.25p2

12

= (p11 + 0.5p12)2 = p2
1..

Likewise, one can show that P (A1A2) = 2p1.p2. and P (A2A2) = p2
2., which

corresponds to the Hardy-Weinberg assumption. Observe that the fact that
the Hardy-Weinberg relation holds did not depend on the initial frequencies
of the different genotypes. The derivation just showed can be concluded by
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saying that if the listed assumptions hold then the Hardy-Weinberg Equi-
librium is reached after one generation.

6.3 Inbreeding in Infinite Populations and Identity by De-
scent

In finite populations random mating will occasionally produce mating be-
tween relatives. Here we consider mating between relatives in infinite pop-
ulations. Two individuals are related if they have a common ancestor. Sib-
lings and half-siblings have at least one common parent; first cousins have
common grandparents, etc. If two individuals have a common ancestor, then
it is possible that at a given locus they have inherited the same allele from
that ancestor. Such an allele is said to be inherited identical by descent
(IBD). The coefficient of relatedness of two individuals is defined to be the
probability that at a given locus a randomly selected allele from one of the
individuals is identical by descent with a randomly selected allele at the same
locus in the other individual. For example, two siblings, whose parents are
unrelated, have two common ancestors, their mother and their father. If we
select a random allele from one of the siblings, there is probability 1/2 it was
inherited from their mother and probability 1/2 it was inherited from their
father. In either case, if we select a random allele from the other sibling,
there is a 1/2 chance it was inherited from the same parent, and if so, there
is then a 1/2 chance it is the same allele. Hence the coefficient of relatedness
of the siblings is 2 × (1/2) × (1/2) = 1/2, where the 2 results from having
to common ancestors – the two parents. Similar computations show that
the coefficient of relatedness of two cosines is 1/8. If two relatives mate, the
coefficient of inbreeding of their offspring is by definition the probability of
relatedness of the parents, i.e., the probability that at a given locus the two
alleles in that offspring are identical by descent.

The following equations modify Hardy-Weinberg equilibrium to accom-
modate inbreeding. Assume that in a population that is otherwise in Hardy-
Weinberg equilibrium, mating occurs between two relatives having a coeffi-
cient of relatedness F . Then at a locus with alleles A and a, a child can have
a genotype AA because (i) it inherits the A allele from one parent and the
same allele IBD from the other parent, which occurs with probability FpA,
or (ii) it inherits the allele A independently (not IBD) from both parents,
which happens with probability (1−F )p2

A. Adding these two terms together,
we find that the probability of the genotype AA is pAA = p2

A+FpA(1−pA). A
similar formula holds for the genotype aa. For the genotype Aa, the alleles
cannot be inherited IBD, since they are different, so pAa = 2 pA(1−pA)(1−F ).
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A consequence of inbreeding is an increase in homozygosity compared to
random mating.

Homework Question 6.1. What is the coefficient of relatedness of two
half-siblings, of an aunt and her niece, of two first cousins, of a grandmother
and her grandchild? In a child whose parents are first cousins, what is the
probability that the child’s alleles are IBD at a given autosomal locus?

Homework Question 6.2. Assume that the frequency of survival to repro-
duction age for the three genotypes are w11, w12 and w22, respectively. To
which values do the frequencies of the genotypes converge? Will the Hardy-
Weinberg Equilibrium hold?

6.4 Statistical tests of Hardy-Weinberg

A statistical test of the Hardy-Weinberg Equilibrium that is based on a
sample of unrelated individuals may be obtained as an application of a
chi-square test to the frequency table of genotypes. Hence, for example,
if a bi-allelic locus is considered, then the frequency table is composed of
three cells, one for each genotype. The observed cell counts are compared
to the expected counts. The latter are obtained using the observed allele
frequencies and the assumed independence. The distance between the two
tables is measured with a chi-square statistic, with one degree of freedom in
this case.

In order to illustrate the construction of the test of Hardy-Weinberg let
us consider the following data from an artificial Case-Control study, which
examines 3 SNPs. The data is stored in a text file with fields separated by
comas (the .csv format). We use the function read.table in order to read
these data into an R data-frame object:

> CR <- read.table("CaseRandom.csv",header=TRUE,sep=",")
> summary(CR)

group sex snp1 snp2 snp3
CASE: 634 F: 855 A/A: 556 A/A: 701 C/C: 474
RAND:2626 M:2405 T/A:1600 G/A:1674 T/C:1585

T/T:1104 G/G: 885 T/T:1201

Examining the data we see that there are five variables listed and 3,260
observations. The primary tests in Case-Control trials involve the examina-
tion of the dependence between the phenotype, disease status in this case,
and the genotypes:
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> tab <- table(CR$group,CR$snp1)
> chisq.test(tab)

Pearson’s Chi-squared test

data: tab
X-squared = 17.1176, df = 2, p-value = 0.0001919

However, here we are interested in testing the validity of the Hardy-Weinberg
assumption:

> tab["RAND",]
A/A T/A T/T
416 1290 920
>
> p.A <- (tab["RAND",1] + 0.5*tab["RAND",2])/sum(tab["RAND",])
> p.A
[1] 0.4040366
> E <- c(p.A^2,2*p.A*(1-p.A),(1-p.A)^2)*sum(tab["RAND",])
> E
[1] 428.6828 1264.6344 932.6828
> U <- sum((tab["RAND",]-E)^2/E)
> U
[1] 1.056463
> pchisq(U,1,lower.tail=FALSE)
[1] 0.3040234

Hence, at least within the given subgroup and for the given SNP, the Hardy-
Weinberg assumption is valid.

Note that the number of possible genotypes increases like the square of
the number of alleles. Therefore, the power of the test we proposed may
be poor if the locus is multi-allelic. Let us consider an alternative test for
this case, which is suggested based on the notion of relatedness introduced
in the previous subsection.

Specifically, the test is motivated by the departures from equilibrium
suggested by the discussion of inbreeding. Suppose alleles at a given locus
i = 1, . . . , k have frequencies pi. Denote genotypes by ordered pairs (i, j),
which under Hardy-Weinberg equilibrium have frequency pipj . (In reality
we do not observe the ordered genotype, but the mathematical notation is
simplified if we pretend that we do.) Suppose we have a sample of n geno-
types, and Xij is the number of (i, j) genotypes. Consider the inbreeding
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model that the probability of genotype (i, j) is given by pii = p2
i +Fpi(1−pi),

while for i 6= j, pij = pipj(1−F ). One can write the log-likelihood function,
`(F, p1, . . . , pk), and show that the efficient score ∂`/∂F evaluated at F = 0
is given by

∑k
i=1 Xii/pi−n. It can be show that the variance of the efficient

score when F = 0 is n(k− 1), which enables standardization of the efficient
score.

Note, that we cannot use the efficient score directly as a test statis-
tic because the parameters p1, . . . , pk are usually unknown. However, rea-
sonable estimators of the pi, when Hardy-Weinberg equilibrium holds, are
p̂i = (2n)−1

[∑k
j=1 Xij +

∑k
j=1 Xji

]
. It may be shown, although the ar-

gument is still more complicated, that when Hardy-Weinberg equilibrium
holds, the statistic [

∑k
i=1 Xii/p̂i−n]/(n(k−1))1/2 has approximately a stan-

dard normal distribution when n is large, and hence can be used as a test
of Hardy-Weinberg equilibrium.

Let us illustrate the test in a small simulation. Let consider a polymor-
phic locus with 5 uniformly distributed distinct alleles and take a sample of
100 subjects:

> n <- 100
> p <- rep(1/5,5)
> F <- 1/8
> a1 <- sample(1:5,n,rep=TRUE,prob=p)
> a2 <- sample(1:5,n,rep=TRUE,prob=p)
> IBD <- rbinom(n,1,F)
> a2[IBD==1] <- a1[IBD==1]
> X <- table(a1,a2)

Observe that we distinguish between parental alleles, hence we can apply
the chi-square test in a straightforward manner:

> chisq.test(X)

Pearson’s Chi-squared test

data: X
X-squared = 20.5693, df = 16, p-value = 0.1957

Warning message:
Chi-squared approximation may be incorrect in: chisq.test(X)
> X

a2
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a1 1 2 3 4 5
1 7 2 1 3 2
2 1 8 7 4 4
3 4 8 2 4 2
4 1 5 3 6 2
5 5 7 4 3 5

The warning massage results from the fact that the counts in some of the
cells is below five, hence the normal approximation cannot be trusted. As
a remedy one may use R’s built-in simulation procedure to compute the
p-value:

> chisq.test(X,sim=TRUE)

Pearson’s Chi-squared test with simulated p-value (based on 2000
replicates)

data: X
X-squared = 20.5693, df = NA, p-value = 0.2104

Even with simulations the results obtained are not significant. On the other
hand, when we apply the proposed score test we get (borderline) significance:

> p.hat <- (colSums(X)+rowSums(X))/(2*n)
> Z <- (sum(diag(X)/p.hat) - n)/sqrt(4*n)
> Z
[1] 2.046907
> 2*(1-pnorm(Z))
[1] 0.04066721
> 1-pchisq(Z^2,1)
[1] 0.04066721
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