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Chapter 3

State-space models

3.1 The formulation of the state-space model

State-space models are a flexible family of models which is a generalization
models that that used in many scenarios. It is convenient to think of the
state-space models in the Gaussian setting, in which the basic derivation has
a simple interpretation in terms of likelihoods and conditional likelihoods.
However, these models are meaningful in non-Gaussian settings as well. A
famous example of a state-space model that is used in non-Gaussian settings
is the Hidden Markov Model (HMM). However, we will deal primarily with
models that are best described in the Gaussian setting.

The strongest feature of state-space models is the existence of very gen-
eral algorithms for forecast, filtering (estimating the current hidden state)
and smoothing (estimating past hidden states).

The state-space model is a two-layer model. The external layer involves
the observed process y. This process is assumed to follow the measurement
equation:

yt = Xtβt + εt . (3.1)

For each t, yt is a n-vector. The n×m matrix Xt is a matrix of regressors,
with βt the regression coefficients. The vectors εt are independent multi-
normals with zero mean and covariance Σt.

The internal layer is an unobserved process of regression coefficients βt.
This process is assumed to evolve like a multi-dimensional AR(1) process,
in the sense that it follows the transition equation:

βt = Ttβt + ηt . (3.2)
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28 CHAPTER 3. STATE-SPACE MODELS

Here Tt is an m × m matrix and the components of white noise ηt have a
multi-normal distribution with zero mean and covariance matrix Q. The
process is initiated with the random vector β0, which has a mean of a0 and
a covariance matrix of P0.

The elements Xt, Σ, Tt and Q are referred to as the system matrices. If
they do not vary over time the the system is said to be time-invariant or
time homogeneous. The system is also stationary for a specific selection of
a0 and P0.

Let us consider few examples of models for time-series and see how they
can be formulated as a state-space model. The first three are examples of
Structural Models for time series.

Example 1 (Local Level). Let yt = µt + εt, where µt = µt−1 + ηt is a
random walk. Clearly, this falls into the general formulation by specifying
Xt = Tt = 1 and βt = µt. Observe that this model can also be written a
ARIMA(0,1,1) model, with restriction on the values of the parameters.

Example 2 (Local Linear Trend). This model also sets yt = µt + εt, but
now µt = µt−1 + νt−1 + η1,t and νt = νt−1 + η2,t. This model can be written
in the state-space formulation by taking Xt = (1, 0), βt = (µt, νt)′, and

Tt =
( 1 1

0 1

)
; Q =

( q11 0
0 q22

)
.

This model is also a ARIMA(0,2,2) model with the appropriate restriction
on the values of the parameters.

Example 3 (Basic Structural Model, BSM). This model is a local linear
trend model with the addition of a seasonal component. Hence yt = µt+st+εt

with µt = µt−1 + νt−1 + η1,t and νt = νt−1 + η2,t defined as before. The
additional seasonal component satisfies st = −st−1 − · · · − st−c+1 + η3,t,
for c the length of a cycle. For example, when c = 3 this model can be
written in the state-space formulation by taking Xt = (1, 0, 1, 0, 0), βt =
(µt, νt, st, st−1, st−2)′, and

Tt =


1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

 ; Q =


q11 0 0 0 0
0 q22 0 0 0
0 0 q33 0 0
0 0 0 0 0
0 0 0 0 0

 .
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The three models above my be fit to a one-dimensional time series with
the aid of the function StructTS. This function operates of ts objects and
is part of the standard distribution of R.

In the next set of examples we return to the ARIMA modeling and
present them as state-space models. These examples represent a general rule
which states that any ARIMA model possesses has such a representation.
In the sequel we will consider general methods for prediction and estimation
that can be applied to state-space models. As a corollary we will obtain
methods for estimation and prediction in ARIMA models. Such models,
unlike methods of moments associated with the Yule-Walker Equations, do
not rely on the assumption of stationarity.

Example 4 (The MA(1) process). Consider the MA(1) process that has
the form yt = ηt− θ1ηt−1. One can be represent this process in a space-state
formulation by taking

Xt = (1, 0), βt = (yt,−θηt)′, T =
(

0 1
0 0

)
, Q = q11

(
1 −θ1

−θ1 θ2
1

)
.

Example 5 (The ARMA(1,1) process). For the ARMA(1,1) process one
may reuse the quantities Xt, βt, and Q as before and alter the transition
matrix of the state equation to take the form

T =
(

φ1 1
0 0

)
.

Example 6. Give two different representations of the AR(2) process as a
state-space model.

3.2 The Kalman filter

The Kalman filter is an efficient recursive algorithm for the computation of
the optimal estimator β̂t of βt, given the information up to (and including)
t. A by product is the computation of the error in estimation:

Pt = E[(βt − β̂t)(βt − β̂t)′].

Suppose that β̂t−1 and Pt−1 are given at time t − 1. The algorithm
commences the recursion step by computing the predicted values of yt, given
the information available up to time t− 1 (including):

ŷt = Xtβ̂t|t−1 .
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The MSE of the innovation νt = yt − ŷt is fiven by

Ft = XtPt|t−1X
′
t + Σ.

The terms β̂t|t−1 and Pt|t−1 that are used are computed via the prediction
equations:

β̂t|t−1 = Ttβ̂t−1

Pt|t−1 = TtPt−1T
′
t + Q .

In the second step the the observation yt is introduced to produce an
estimate of the unobserved state and the error of estimation.This is carried
out by the application of the updating equations:

β̂t = β̂t|t−1 + Pt|t−1X
′
tF

−1
t (yt −Xtat|t−1)

Pt = Pt|t−1 − Pt|t−1X
′
tF

−1
t XtPt|t−1.

The motivation to this step is the computation of the conditional mean and
variance of β̂t|t−1, given yt.


