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Abstract

Benninga and Protopapadakis [Benninga, S., Protopapadakis, A., 1994. Forward and
futures prices with Markovian interest rate processes. J. Bus. 67 401–421.] consider a Lucas
asset pricing model and showed that the pricing of forward and futures contracts was
expressible as a simple matrix function. In this paper we derive limiting conditions for these
differences and relate them to the eigenvectors of the state price matrix. We show that except
for a zero measure set of state price matrices, the differences are always small. We conclude
that for a large class of interest rate futures contracts the forward price is a reasonable
approximation to the futures price. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the publication of three papers by Cox et al. (1981), Jarrow and Oldfield
(1981), and Richard and Sundaresan (1981), it has been understood that the
difference between forward and futures prices is a function of the covariance
between the futures prices and the term structure of interest rates. The empirical
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question of whether futures prices are indeed different from equivalent forward
prices (where by ‘equivalent’ we mean a forward price for the same commodity
deliverable at the same delivery date as the futures contract) has been more
vexatious. Empirical research seems to give contradictory answers as to whether
forward and futures prices in fact are significantly different, but this research has
been hampered by limited sample size, its dependence on constructed forward
prices, and the specificity of the time periods covered. In addition to its intrinsic
academic interest, this question has considerable practical importance, since the
tendency in the financial industry is to price most futures contracts as if they were
in fact forward contracts.

Both futures and forward contracts are popular in many markets including
currencies and commodities. The difference between the two contracts is due to the
mark-to-market procedure and is deeply related to the correlation between interest
rates dynamics and the underlying asset. This correlation is clearly pronounced in
foreign exchange markets. This paper is based on the model suggested by Benninga
and Protopapadakis (1994) (henceforth BP). BP construct a simple Markovian
model of the term structure of interest rates; the model is based on the well-known
Lucas (1978) equilibrium model. The BP model has the advantage that the term
structure of interest rates is a function of the matrix of nominal state prices. Given
this matrix, forward and futures prices are easily calculated. The model can also
accommodate various degrees of risk aversion.

Within the framework of this model, BP conduct two kinds of ‘tests’ to gauge the
difference between forward and futures prices: First, they construct a model of state
prices based on historic Treasury-Bill data. Using this empirical state price matrix,
they construct forward and futures prices for contracts on short-term interest rate
instruments1. This test of the difference between forward and futures prices results
in only minor differences between the two.

The second test constructed by Benninga and Protopapadakis involves the
calculation of the difference between forward and futures prices using simulated
state price matrices. For most simulated state price matrices, the differences
between forward and futures prices are negligible, although BP do report that for
highly diagonal state price matrices it is possible to simulate significant differences
between forward and futures prices.

In this paper we extend the BP results by proving a result about the ‘limiting
difference’ between forward and futures prices. We show that this limiting differ-
ence is a function of the eigenvectors of the state price matrix. We further show that
for most relevant cases these differences are always small. The importance of this
result is that it shows that in the limit, the difference between forward and futures
prices is almost surely bounded and small. We thus provide a theoretical basis for
the ‘empirical’ results of BP. A practical conclusion from our work is that in many
cases the forward price in fact gives a reasonable approximation to the futures
price.

1 BP report equivalent results for longer-term interest rate instruments.
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The structure of the paper is as follows: Section 2 reviews the BP model and
notation. Section 3 proves our main result on the limiting differences between
forward and futures prices. Section 4 discusses two examples, which illustrate the
result.

2. The model

In a Lucas model consumption over time (which may be stochastic) is given
exogeneously and is consumed by a single, representative consumer. All assets are
priced by this consumer’s state prices, which are the probability and time-preference
adjusted first-order consumption conditions. The usual version of the model focuses
on real state prices; we employ a version of the model which has state-dependent
inflation and which allows us (by means of the nominal state prices) to price
nominal assets.

Although the model includes neither production nor investment, these can easily
be added by specifying appropriate linear production technologies. We follow the
notation of BP

pij, probability of going to state j, given that the system is currently in state i ;
c̃t, is stochastic consumption at time t ;
aj, the consumption growth rate in state j ;
vj, is the inverse of 1+ the inflation rate in state j ;
g, is the relative risk aversion of the representative consumer;
d, is the representative consumer’s pure time preference factor; and
S, is the number of states of the world at any date.
We suppose that the representative consumer maximizes a time-separable ex-

pected utility function, and we let c̃ denote the lifetime, state-dependent, consump-
tion stream. Then we may write the consumer’s expected lifetime utility as:

EU(c̃)=%d tEu(c̃t), where u(x)=
x1−g−1

1−g

Uncertainty in the model is generated by the random consumption endowments
and inflation. If time t, state i consumption is ct, then time t+1, state j ( j={1,…,
S}) consumption will given by ct+1=ajct, furthermore, the inflation rate in state
j at time t is denoted by 1/vj−1. The probability of the transition from state i at
time t to state j at time t+1 is time-independent and is denoted by pij. We assume
no transactions costs or trading restrictions, and we assume that asset markets are
complete. Thus the representative consumer’s probability-adjusted marginal rates of
substitution are the real state prices which determine the prices of all real assets in
the economy. If we assume that in addition to consumption growth, inflation is also
Markovian, the state prices are time-independent, and can be denoted by an S×S
matrix B [bij ]. Benninga and Protopapadakis (1983) show that in an economy of
this type, nominal state prices can be defined by,
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bij=
dpiju ’(ajc)

u ’(c)
=dpij

�1
aj

n g

vj

Here c denotes the consumption at any state i at date t.
Let B be denote the matrix of nominal state prices. The vector of (state-depen-

dent) period-n nominal discount factors is given by,

I(n)=BnI(0)

where I(0) is an S-dimensional unit column vector.
For future reference we note the following properties of B :

� Each entry of B is non-negative.
� The row-sum of each line is the inverse of one-plus the one period nominal

interest rate.
We shall assume that all nominal interest rates are non-negative and finite. Thus the
row sums of B are in the interval (0,1); this means that B is ‘sub-stochastic’: Each
entry is non-negative, and each row sum is 51. (Note that if the state price matrix
B is not sub-stochastic, then there will necessarily be some state of the world for
which the one-period nominal interest rate is negative.) For future reference, we
note that it follows from this assumption that all of the eigenvalues of B do not
exceed 1 in absolute value.

3. The prices of forward and futures contracts

In this section we introduce a normalization procedure on the state price matrix
which allows us to calculate both forward and futures prices. We shall restate the
Benninga–Protopapadakis results in terms of this normalization procedure and
then go on to prove our main result.

We define the following normalization procedure for any matrix A with non-neg-
ative elements and no row which is identically zero:

n(A)=NA ·A

where NA is a diagonal matrix, each entry of which is the inverse of the row-sum
of the corresponding line of A. The function n(A) transforms any non-negative
matrix into a ‘stochastic’ matrix: A ‘stochastic’ matrix is a matrix with non-negative
entries each of whose rows sum to 1. Another way of viewing n(A) is that the
procedure n(A) transforms any positive state-price matrix into its equivalent
Harrison and Kreps (1979) ‘risk-neutral valuation matrix’. The economic interpre-
tation of the procedure n(A) is that n(A)·V first ‘discounts’ the vector V by
multiplying it by the state-price matrix A and then ‘grosses up’ this discounted
valuation by the ‘accumulation factors’ appropriate to the matrix A.

Let Vt(s) be the time-t price in state s of the world of a specific fixed income
security, and let Vt= (Vt(1),...,Vt(S))T. When the term structure is determined by a
Lucas asset pricing model of the type described in the previous section, it is easily
shown that any vector of prices for interest-bearing securities (for example, a bond
with coupon payments, or a certificate of deposit with add-on interest) is ‘time-inde-
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pendent’. In what follows we shall denote such a vector by V. Benninga and
Protopapadakis (1994) prove the three following propositions.

Proposition 1 (determination of forward prices): let V be a vector of time-indepen-
dent commodity prices. Then the vector of forward prices at date t for assets
deliverable at date t+m is given by:

G(t,t+m)=n(Bm)·V

The intuition of Proposition 1 is that a forward price for delivery m periods hence
is simply the discounted asset price grossed up by the appropriate accumulation
factors. V is the vector of asset prices at date t+m ; n(Bm)·V first discounts the
vector V to the present at the appropriate m-period discount factors and then
applies the m-period accumulation factors to these discounted prices to find the
appropriate forward prices.

Proposition 2 (determination of futures prices): let V be a vector of time-indepen-
dent commodity prices. Then the vector of futures prices at date t for assets
deliverable at date t+m is given by:

H(t,t+m)=n(B)m·V

The interpretation of Proposition 2 has to do with marking-to-market in futures
markets. Because of marking-to-market, a futures contract is priced as if it were a
sequence of rolled-over one-period forward contracts. Thus a one-period futures
contract is priced as H(t,t+1)=n(B)·V (the same as a one-period forward
contract), and a two-period futures contract is priced as H(t,t+2)=n(B)·H(t,t+
1)=n(B)2V, etc. It follows from these two propositions that the ‘difference’
between forward and futures prices is given by

G(t,t+m)−H(t,t+m)= [n(Bm)−n(B)m]·V

Furthermore, the following proposition is easily proved:
Proposition 3 (sufficient conditions for equality of futures and forward prices): the

following conditions are sufficient for the equality of forward and futures prices:
1. The matrix B of state prices is diagonal.
2. The row-sums of B are equal.
3. Asset prices V(s), s=1,…, S are equal across states.

It follows from Proposition 3 that for a flat term structure there is no difference
between futures and forward prices. By continuity, as the variation in one-period
interest rates becomes small (and consequently the term structure becomes flatter),
the difference between futures and forward prices becomes smaller.

We shall establish a formula for the limiting value of the difference between the
forward and futures pricing matrices n(Bm)−n(B)m. Our results depend on the
following Lemma:

Lemma: Let C be an n×n matrix with non-negative elements, such that there
exists a real positive eigenvalue l which is strictly bigger in modulus than the rest
of the spectrum. We assume that this eigenvalue is simple; i.e. it has a unique
eigenvector and there is no Jordan block, which corresponds to it. Then lim

m��
(Cm/

lm) is equal to the tensor product of the right and left (normalized) eigenvectors
corresponding to l.
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The conditions of the Lemma are very general and not restrictive: matrices with
a multiple principal eigenvalue constitute a set of measure zero. In the neighbor-
hood of this set, our Lemma will still hold, but convergence to the limit will be
slow.2 The rate of convergence will depend on the distance between the principle
(Perron) eigenvalue and the next-closest eigenvalue.3

In the remainder of this section we show how the Lemma can be applied to find
the limiting difference between futures and forward prices.

Let l be the principal (maximal in modulus) eigenvalue of B and let x and y be
the corresponding right and left eigenvectors, respectively. As noted above, since B
is sub-stochastic �l �51. By the Lemma we see that the difference Bm−lmxyT tends
to zero as m increases. The block-form of this limit is:

Bm:lm

Á
Ã
Ã
Ã
Ä

x1yT

x2yT

�
xnyT

Â
Ã
Ã
Ã
Å

The difference between the left-hand and right-hand sides of this expression is
exponentially small for big m. The normalization procedure for forward prices,
n(Bm) may be written as

n(Bm)=Nm ·Bm

where Nm is a diagonal matrix which can be approximated by

Nm:
1

lm %
n

i=1

yi

diag
! 1

x1

,
1
x2

,...,
1
xn

"
Thus the forward pricing matrix n(Bm) will be arbitrarily (for big m) close to the
following matrix of rank 1 written in block-form:

NmBm:
1

%
n

i=1

yi

Á
Ã
Ã
Ã
Ä

yT

yT

�
yT

Â
Ã
Ã
Ã
Å

Since an eigenvector is defined up to multiplication by a constant we can normalize
it by �i=1

n yi=1.

2 Although this set is of measure zero, economic restrictions on transition probabilities could lead to
a state price matrix which violates the conditions of the Lemma. We give an example of this in Section
4.

3 The conditions of the Lemma are very similar to those of the Perron–Frobenius Theorem
(Gantmacher, 1964). However, in order to deduce the conclusions of the Lemma from this Theorem, we
would have to assume that all elements of B are strictly positive. As the first example of Section 4 shows,
this is not economically reasonable.
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We now consider the futures pricing matrix n(B)m. Denote by u, 6T the
eigenvectors of n(B) corresponding to its principal eigenvalue m. In an analogous
way one can show that

n(B)m

mm �

Á
Ã
Ã
Ã
Ä

u16
T

u26
T

�
un6

T

Â
Ã
Ã
Ã
Å

Since the matrix n(B) is stochastic its principal eigenvalue is equal to 1 and its
right eigenvector is u= (1,1,...,1)T and �n

i=16i=1. Thus n(B)m� (6,6,...,6)T

Combining the results for the forward and futures pricing matrices, we obtain
an explicit formula for the limiting difference:

lim
m��

[n(B)m−n(Bm)]=

Á
Ã
Ã
Ã
Ä

6T−yT

6T−yT

�
6T−yT

Â
Ã
Ã
Ã
Å

(1)

The vectors 6 and y are both normalized, so the difference between forward and
future contracts can be easily estimated (in the general case) by the angle be-
tween the principal left eigenvectors of B before and after normalization. Thus
the angle between y and 6 determines the limiting difference between the forward
and futures prices. This issue is further investigated in Wiener (1997).

In the case when the principal eigenvalue of B is simple (see the conditions of
the Lemma), we conclude that the limiting difference 6T−yT cannot be too
large. It actually tends linearly to zero as the difference between the highest and
the lowest interest rates decreases.4 The first example of Section 4 confirms our
conclusion.

4. Examples

In this section we discuss two examples. The first example implements the
Lemma and shows how the limiting difference between forward and futures prices
can be approximated by our procedure.

Example 1: the first example uses the empirical nominal state price matrix derived
by Benninga and Protopapadakis (1994) from Treasury bill data:

4 A more precise statement is the following: suppose that the difference between the highest and lowest
one-period interest rates (determined by the row sums of B) is o, and suppose that there are no other
eigenvalues of B in an o-neighborhood of its principal eigenvalue. Then 6T−yT=O(o).
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By our Lemma, the limiting difference between forward and futures prices for
this matrix should equal the difference between the principal left eigenvector yT of
the matrix B (for the forward prices) and the principal left eigenvector 6T of the
matrix n(B) (for the futures prices). These vectors are given by:5

yT= (0.0602, 0.0485, 0.0619, 0.0609, 0.0834, 0.0953, 0.0773, 0.104, 0.111,
0.118 0.0979 0.0816)

6T= (0.0467, 0.0419, 0.0538, 0.0548, 0.0782, 0.094, 0.0759, 0.107, 0.118,
0.129 0.108 0.0931)

The eigenvalues of B are given by:

(0.984, 0.936, 0.871, 0.745, 0.5, 0.412, 0.35990.023i, 0.22490.112i,
−0.143,−0.019)

and the eigenvalues of n(B) are given by:

(1, 0.948, 0.881, 0.757, 0.510, 0.424, 0.36390.023i, 0.22790.114i,
−0.146,−0.019)

The vectors yT and 6T correspond to the largest eigenvalues of these systems,
respectively. The speed of convergence is a function of the distance between the
principal eigenvalue and the eigenvalue closest to the principal for each of the
systems. After 100 iterations, the difference between the forward and futures prices
is given by the matrix:

5 All calculations reported were done in ‘Mathematica’.
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Each line of this difference should be compared to the predicted limiting difference
(1):

6T−yT=

(0.0135, 0.00658, 0.00812, 0.0061, 0.00519, 0.00129, 0.00137,−0.00229,
−0.0069, −0.011, −0.0102, −0.0115)

The speed of convergence for this example is shown in the following graph. The
vertical axis shows the maximal absolute entry in the matrix of the difference
between the right and left-hand sides of Eq. (1) for m iterations.

Example 2: in the second example we show a case where the conditions of the
Lemma do not hold and where, consequently, the limiting difference of the forward
and futures prices is ‘not’ given by the procedure we describe in the Lemma.
Consider the case where the matrix B is given by:

B=
�0.8 0.1

0 0.8
�

Since this matrix has a Jordan block, it violates the conditions of the Lemma.6

The eigenvectors 6 and y are equal. However, the limiting difference between the

6 As noted in Section 3, such matrices are a set of zero measure.
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forward and futures prices for this case is not zero. For example after 100 iterations,
the difference is given by the matrix:

forward− futures=n(B100)−n(B)100=
�0.0741 −0.0741

0 0
�

5. Conclusions

Benninga and Protopapadakis (1994) use the term structure derived from a
standard Lucas (1978) model of capital market equilibrium under uncertainty to
price forward and futures contracts on interest-rate dependent securities. In this
paper we extend the BP results. We derive the limiting differences between forward
and futures prices as the contract maturity date m becomes large.

The main application of our result is for the case of interest-rate futures
contracts. The spot prices of the assets underlying these contracts are determined by
the term structure; when the term structure distribution is time-independent (as it is
in the Lucas model), the distribution of these spot prices will, as a result, also be
time-independent. For this case of time-independent spot prices, our result shows
that the limiting difference between the forward and futures prices is a function of
the eigenvectors of the state price matrix, and that for most relevant cases these
differences are small. We thus provide a theoretical basis for the results reported by
BP. We can conclude from our research that for interest rate futures contracts the
forwa rd price is a reasonable approximation to the futures price.
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Appendix A. Proof of the Lemma

Proof:
Denote the eigenvectors by x,y�Rn, so that Cx=lx, and yTC=lyT. The Jordan

form of C is C=PJP−1, where columns of P form a system of eigenvectors.
Without loss of generality we assume that l corresponds to the first element of J.
Then

Cm

lm =P
� 1 01,n−1

0n−1,1 C0 n−1,n−1

�m

·P−1.
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Here C0 stands for some matrix whose spectrum is strictly B1 in absolute value.
This yields that

lim
m��

Cm

lm =abT

where a is the first column of P and bT is the first row of P−1 (cf. Gantmacher
1964, p. 53). This means that a and b are the right and left principal eigenvectors
of C corresponding to l and normalized by the condition bTa=1, since PP−1 is
the identity matrix. This finishes the proof.
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