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Stochastic Dominance (SD) rules are used to divide the sets of all feasible uncertain
prospects into efficient and inefficient sets (partial ordering). The SD rules (as well as the
mean-variance rule) assume that investors agree on the available distributions of returns.

Laboratory experiments with and without real money repeatedly reveal that even if all
subjects observe the same pair of cumulative distributions F and G, they act as if they
were other cumulative probability functions F* and G* different for different investors.
Namely, the subjects assign (subjective) weights to the various probabilities. In their
breakthrough article Kahneman and Tversky [1979] suggest that in making decisions
under uncertainty, the subjects apply a monotonic transformation p(p) where p are the
probabilities, and investors make decisions by comparing p(p) corresponding to the two
distributions under consideration rather than by comparing the true probabilities, p, them-
selves. In a later paper, Tversky and Kahneman [1992] suggest that a transformation is
done on the cumulative probability F rather than on probability p, namely, investors
compare F* 5 T(F) and G* 5 T(G) where T is a monotonic non-decreasing transforma-
tion. T can be interpreted either as a misjudgment or as a subjective revision of prob-
abilities which varies across investors. In such cases, even though all subjects observe the
same pair of distributions F and G, the distributions F* and G* may vary across investors.
Hence stochastic dominance may lose ground because each investor has his/her own
subjective feasible set, hence, in general each investor has his/her efficient set. In fact this
is also true of the mean-variance efficiency analysis introduced by Markowitz [1952]. The
reason for the disagreement between investors on F* and G* is that each subject may have
his subjective transformation Ti(F) and Ti(G) where the subscript i corresponds to the i-th
investor. Thus even if the objective feasible set is identical for all investors, the subjective
feasible set (which is the relevant one for decision making) may vary among investors.

While our paper is inspired by the Kahneman and Tversky’s (K&T) weighting function,
our analysis of the impact of subjective transformation on SD relationship is quite general
and includes other cases of probabilities changes as well. For example, suppose that all
investors observe a set of data forming F and G and are in complete agreement regarding
these two distributions. Then a new piece of a non firm specific information arrives, for
example that the Federal Reserve Board increased the interest rate, or a new government
is elected, etc. Each investor may have a different interpretation of the new information.



Note that the new information is not firm specific, hence it is reasonable to assume that
the transformation Ti is the same for the i-th investor across all assets. However, if the
information is firm specific, e.g. an increase of dividends or earnings announcement, then
Ti can not be the same for all assets. Yet recall that even when there is no such a new
information simply following K&T, each individual adjusts the probability subjectively in
some particular manner, using his/her transformation Ti. The investors make their choices
based on Ti(F) and Ti(G), hence Ti(F) and Ti(G) are the relevant distributions for the i-th
investor’s decision, where Ti is the i-th investor’s transformation of F and G due to the
new information. Then, it is questionable whether the dominance results with F and G are
intact for Fi

* and Gi
*.

The purpose of this paper is to analyze under what set of transformations T1 the First
Degree Stochastic Dominance (FSD) is unaffected (we use bold letters for sets to distin-
guish between a set of transformations and a particular one). Similarly, we check the set
of transformations T2 which do not affect Second Degree Stochastic Dominance (SSD).
Note that if the SD (partial ordering) is not affected by a set of transformations, then all
investors can employ the same transformation or various transformations as long as they
belong to the set we consider.

The structure of the paper is as follows: In section 1 we present the well-known
stochastic dominance rules as well as the new Prospect Stochastic Dominance (PSD) rule.
In section 2 we show that for each type of stochastic dominance there exists a corre-
sponding class of transformations which do not change the dominance relation. Conclud-
ing remarks are given in section 3.

There is a closely related approach developed in Zilcha [1987], Chew, Karni and Safra
[1987], Safra and Zilcha [1988], Chew and Zilcha [1990], which is based on comparison
of the efficient set when we consider investors which follow the stochastic dominance
rules but have state dependent utility functions. Our settings represent a particular case of
this general approach which enables us to obtain more precise results while focusing on
the Prospect Theory approach to decision making. However, some results are common in
the two approaches. For example, Chew, Karni and Safra show that a concave utility
function combined with an increasing, concave transformation function is equivalent to
risk aversion.

1. Stochastic dominance rules and the prospect stochastic dominance rule

In this section we briefly review the various decision rules analyzed in this paper. Two
rules discussed in this paper (FSD, SSD) have existed in the literature for years (see Levy
[1992]), but the SSD* and PSD rules are new and will be described below.

Let us first define several classes of preferences (sets of utility functions) corresponding
to the various stochastic dominance rules. In each case we assume the utility function to
be continuous and piecewise smooth. To distinguish between a set and its elements we use
bold letters for sets.
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• U1 is the set of increasing utility functions (rational investors). U [ U1 is equivalent to
U8(x) $ 0 for all1 x.

• U2 is the set of increasing and concave utility functions (risk averters). U [ U2 is
equivalent to U8(x) $ 0 and U9(x) # 0 for all x.

• U2
* is the set of increasing and convex utility functions (risk seekers). This corresponds

to all investors that like risk and hence, prefer an uncertain income over its certain
mean. U [ U2

* is equivalent to U8(x) $ 0 and U9(x) $ 0 for all x.
• Up is the set of all S-shaped utility functions as suggested by K&T [1979]. U [ Up is

equivalent to U8(x) $ 0 for all x, and U9(x) # 0 for all x . 0, and U9(x) $ 0 for all x
, 0. This means risk seeking for losses and risk aversion for gains.

We first study the SD rules in terms of cumulative distributions and then in terms of the
inverse functions known as the quantiles of the distribution. We need both forms in the
subsequent analysis.

1.1. SD: Cumulative distributions

Theorem 1. Let F and G be two cumulative distributions of two uncertain prospects, x the
uncertain return and U a utility function. Then F dominates G for all rational investors
(U8 $ 0) iff,

F~x! # G~x! for all x. (1)

This rule is called First Degree Stochastic Dominance (FSD) (for discussion see Levy
[1992]). Note that we ignore the initial wealth w because it induces a constant shift in F
and G without affecting the stochastic dominance (SD) relationship. The same holds for
SSD.

Theorem 2. Let F, G and x be defined as above. Then F dominates G for all risk averse
investors (U8 $ 0, U9 # 0) iff

*
2`

x

~G~t! 2 F~t!!dt $ 0 holds for all x. (2)

This rule is called Second Degree Stochastic Dominance (SSD) (the discussion of SSD
can be found in Levy [1992]).

Theorem 3. Let F, G and x be defined as above. Then F dominates G for all risk-seekers
(U8 $ 0, U9 $ 0) iff
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*
x

`

~G~t! 2 F~t!!dt $ 0 for all x. (3)

We call this rule also a second degree stochastic dominance rule (because a restriction of
second degree is imposed on U) but we denote it SSD* to distinguish from SSD. This rule
is valid for risk lovers. To prove the SSD* rule we note that U(x) is convex increasing if
and only if 2U(2x) is concave increasing. Then (x SSD* y) is equivalent to (2y SSD 2x)
and the integral condition (2) reduces immediately to the integral condition (3)2. While
SSD* by itself is not very important it is used in the proof of the new investment rule
which we call Prospect Stochastic Dominance (PSD), to which we turn next.

Theorem 4. Let F, G and x be as above and U be a utility function. Then F dominates G
for all U [ Up, (the class of all S-shaped utility functions) iff3

*
y

x

~G~t! 2 F~t!!dt $ 0 for all pairs x . 0 and y , 0. (4)

Note that for all U[ Up, we have a risk seeking as well as a risk aversion segment. Indeed,
to prove PSD we need to use both SSD and SSD*. This result follows immediately by
considering separately the gains (integral over [0, x]) and the losses (integral over [y, 0]).

1.2 Stochastic dominance: The quantile approach

In the following sections we analyze the impact of various transformations on the Sto-
chastic Dominance rules. Some of these results can be derived more easily if we work not
with the cumulative distributions but rather with their quantiles. The quantile approach for
dominance analysis was introduced first in Levy [1973] for lognormal distributions and
further developed by Kroll and Levy [1978] for unrestricted distributions. We briefly
review the SD rules in the quantile approach.

The p-th quantile denoted by QF(p) is defined by the following equation PF(x # QF(p))
5 p, and QG(p) is defined similarly. Since the F function is a weakly increasing function,
its inverse QF is defined as a multi-valued function. In our proofs we assume that all
cumulative probability functions are strictly increasing (which guarantees that the inverse
function QF is a well defined single-valued function). This assumption simplifies the
proofs; however the results are valid even without it4. Therefore in our settings the
following identities hold p 5 F(QF(p)) 5 F(x) and x 5 QF(F(x)). The function QF is the
inverse of F, it maps the interval [0, 1] into the real axis. Figures 1a and 1b illustrate a
cumulative distribution F(x) and its quantile (the inverse function) QF(p).

The following rules give SD criteria in terms of quantiles.
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Figure 1 a. Standard approach. Cumulative distribution p 5 F(x). b. Quantile approach x 5 QF (p).
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Quantile SD rules:

a. F dominates G by FSD is equivalent to

QF~p! $ QG~p! for all 0 # p # 1. (5)

b. F dominates G by SSD is equivalent to

*
0

p

~QF~v! 2 QG~v!!dv $ 0 for all 0 # p # 1. (6)

c. F dominates G by SSD* is equivalent to

*
p

1

~QF~v! 2 QG~v!!dv $ 0 for all 0 # p # 1. (7)

d. F dominates G by PSD is equivalent to

*
p1

p2

~QF~v! 2 QG~v!!dv $ 0 for all 0 # p1 # pF0 # pG0 # p2 # 1. (8)

where F(0) 5 pF0 and G(0) 5 pG0, as shown in Figure 2.

Figure 2. The qantile rule for PSD.
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The proof of a and b can be found in Kroll and Levy [1978]. The proof of c and d can be
constructed along the same lines as in a and b and for the sake of brevity we do not give
it here. However we outline the proof later in the paper when we analyze the effect of
various transformations on SD rules.

2. Weighting functions: Mental transformation of probabilities

2.1. Definitions and examples

In the 1979 paper K&T suggest a transformation of probabilities p(p). However they
show that such a transformation may violate First Degree Stochastic Dominance (FSD),
hence in a later paper (see T&K [1992]) they suggest a transformation of cumulative
probability functions which guarantees that if FSD applies before the transformation, this
dominance is preserved by the transformation.

K&T claim that the i-th subject (investor) observes F but makes choices by Fi
* 5 Ti

~F!. We deal with such transformations but our analysis is not limited to irrational prob-
ability calculations that investors make. We extend the analyses also to rational transfor-
mations when Fi

* is the subjective probability distribution derived from F when new non
firm specific information is released. We have the subscript i because each investor may
have his interpretation of the news.

We may have a situation were F dominates G (by some degree), yet after the transfor-
mation Ti(F) may not dominate Ti(G). We demonstrate below two alternative transforma-
tions corresponding to two individuals. Later on in the paper we will show that both
transformations keep FSD but only one of them keeps SSD (the one that is concave). To
be more specific, suppose that F dominates G by SSD. Then we show that for one investor
Ti(F) dominates Ti(G) by SSD, but for another investor (with transformation Tj) this does
not generally hold. We demonstrate below two transformations Ti and Tj such that appli-
cation of them does not change FSD but SSD is not generally preserved.

Figure 3a. Example of a transformation T(p) 5 p2.
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To illustrate how the transformations work we use the two transformations T(F) 5 F2

and T(F) 5 F1/2. Apply them for example to a normal distribution. Figure 3a demonstrates
what happens with the normally distributed variable after the first transformation (the
transformed distribution is not normal any more, but the area below the line is still equal
to unity).

The dashed line represents the normal density function before transformation w(x) and
the solid line represents the density after the transformation which was calculated as

]

]x
T S*

2`

x

w~y!dyD 5
]

]x S*
2`

x

w~y!dyD2

This formula gives the density (derivative with respect to x) of the transformation (T) of
the cumulative (integral) distribution. This transformation increases the mean from 0 to
1⁄ =2p, and reduces the variance from 1 to 1 2 1/p in this case5. Since F2 # F for 0 #
F # 1, T(F) dominates F by FSD. Note that this transformation is convex T9 . 0 and its
properties will be described in Theorem 7 below. Thus, such a transformation “subjec-
tively” improved the investor’s welfare, i.e. he/she believes that investment is better than
what it actually is.

Let us turn now to another transformation that “subjectively” decreases the expected
utility. Take the transformation T(F) 5 F1/2. When applied for example to the standard
normal density we obtain F and T(F) as shown in the following figure:

The solid line represents the density after the transformation. The cumulative distribu-
tion for T(F) 5 F0.5 is given by:

]

]x
T S*

2`

x

w~y!dyD 5
]

]x S*
2`

x

w~y!dyD1/2.

Figure 3b. Example of a transformation T(p) 5 p1/2.
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Here the mean after the transformation is 20.704307 and the variance is 1.55723 (before
the transformation the mean was 0 and variance 1). It is easy to show that F dominates F*
5 T(F) by FSD. Thus the investor thinks that the distribution is not as good as it actually
is. An interesting question is what happens with the dominance relation under this trans-
formation, in other words if F dominates G, what can we say about T(F) and T(G)?
Theorem 6 below gives the complete answer to this question.

We analyze the impact of a transformation T on FSD, SSD, SSD* and PSD relation-
ships. We do not distinguish whether the source of the transformation is mental (and hence
irrational) or a rational adjustment to a new information item. We do not deal with a
specific transformation, but with classes of transformations that are similar in concept to
the classes of utility functions defined above. We introduce the following classes of
transformations6:

• T1 the class of monotonic (nondecreasing) transformations7, i.e. T [ T1 means T8(p) $
0 for all p.

• T2 the class of monotonic and concave transformations, i.e. T [ T2 means T8(p) $ 0
and T9(p) # 0 for all p.

• T2
* the class of monotonic and convex transformations, i.e. T [ T2

* means T8(p) $ 0 and
T9(p) $ 0 for all p.

• Tp the class of monotonic transformations that are concave for gains and convex for
losses.

We will prove that FSD is preserved under T1, SSD is preserved under T2, SSD* is
preserved under T2

*, and PSD is preserved under Tp.

2.2. The effect of transformations on dominance relationship

FSD with transformations T1

Theorem 5. Any monotonic transformation T [ T1 preserves the first degree stochastic
dominance. In other words if prospect F dominates G by FSD before transformation T, the
dominance is intact after the transformation as well.

As T(•) is monotonic, the proof is obvious. Note that the inverse of theorem 5 is also
true: if F* 5 T(F) dominates G* 5 T(G) for every T [ T1 then F dominates G. This may
be seen by using the identical transformation (which belongs to the class T1) which does
not change the distribution and therefore F* 5 F and G* 5 G. Since the distribution is
unchanged, here too F dominates G.

The two transformations F* 5 F2 and F* 5 F1/2 described in section 2.1 belong to T1,
hence the FSD is preserved by both transformations for all distributions.
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SSD with transformations T2 Now we turn to Second Degree Stochastic Dominance
(SSD) which defines preferences of investors with a concave utility function (i.e. risk
averters).

Theorem 6. A monotonic transformation preserves SSD iff it is concave (i.e. T [ T2).

Proof. In this proof we employ the quantile approach. Assume that the transformation T
is smooth (at least twice differentiable)8 and that F dominates G by SSD. Then

D~x! 5 *
2`

x

~G~t! 2 F~t!!dt $ 0 for all x. This implies (see quantile SD rule, eq. 6) that

*
0

p

~QF~v! 2 QG~v!!dv $ 0 for all 0 # p # 1. We need to prove that

*
2`

x

~T~G~t!! 2 T~F~t!!!dt $ 0 for all x, or that *
0

p

~QT~F!~v! 2 QT~G!~v!!dv $ 0 for all

0 # p # 1.

Let us first explain graphically the main idea of the proof and then proceed with the
formal proof. In Figure 4 we have the original distributions F and G and the transformed
distributions T(F) and T(G). For any horizontal line the cumulative probability is the same
and the values on the horizontal axis give the corresponding quantiles (see Figure 4). For
example x1 is the p1-th quantile of distribution G and the p2 quantile of distribution G* 5
T(G). Similarly x2 is the p1 quantile of distribution F and p2 quantile of F* 5 T(F).
Because for a given value p1 5 F(x1) 5 G(x2) the transformations T(F) and T(G) have the
same values and therefore the line CD must be parallel to the line AB and hence the
distance between A and B is equal to the distance between C and D. Thus we have for p2

5 T(p1) that .AB. 5 .CD. or

QF~p1! 2 QG~p1! 5 QT~F!~p2! 2 QT~G!~p2!.

Thus we can use the transformed differences, such as .CD. instead of .AB.. Recall that for
any value such as p1 there is a corresponding value like p2 such that .AB. 5 .CD.. Denote
by H(p) the difference in the quantiles of F* 5 T(F) and G* 5 T(G), and by h(p) the
difference between the quantiles of the original distributions F and G. Then by the

assumptions of the theorem it is given that *
0

p

h~v!dv $ 0 for every p and we need to prove

that *
0

p

H~v!dv $ 0 for every p. However because for every value p1 there is the corre-

sponding value p2 5 T(p1) such that h(p1) 5 H(p2) we can switch from H(p2) to h(p1) and
to express the inequality in terms of the original distributions F and G (with an appro-
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priate change of limits). To preserve the dominance we need T9 # 0 as shown below. This
is because we actually have to sum up the areas between the curves F and G and not the
intervals like .AB.. However the areas are stretched by T9.

Let us turn now to the formal proof. We define

h~p! [ QF~p! 2 QG~p!

H~p! [ QF*~p! 2 QG*~p!

For the difference in the quantiles of distributions F* and G* we have

H~p! 5 QF~T21~p!! 2 QG~T21~p!! 5 h~T21~p!!
.

Therefore we have the following identity *
0

p

H~v!dv 5 *
0

p

h~T21v!dv. Let us introduce a

new variable: w 5 T21v; this implies v 5 Tw, dv 5 T8(w)dw. Then we get

Figure 4. The distributions F and G before transformation T and after.
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*
0

p

h~T21v!dv 5 *
0

T21p

h~w!T8~w!dw

Integrating by parts the term on the right hand side we obtain

Figure 5 a. Cumulative distribution F before transformation. b. Cumulative distribution G before transformation.
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T8~w! *
0

w

h~u! du U
0

T21p

2 *
0

T21p S*
0

w

h~u!duDT9(w)dw 5

T8~T21p) *
0

T21p

h~u)du 2 *
0

T21p S*
0

w

h~u)du)DT9(w)dw $ 0

since T8 $ 0, T9 # 0 (because we consider T [ T2) and the integral of h from 0 to any
number between 0 and 1 is non-negative (by the assumption of the theorem that F

dominates G). This proves that *
0

p

H~v!dv $ 0 for all values of p which implies (quantile

SD rule, eq. 6) that *
2`

x

~T~G~t!! 2 T~F~t!!!dt $ 0 for all values of x. Showing that there is

at least one value for which the inequality is strict is trivial hence for the sake of brevity
is omitted. This proves that if F dominates G by SSD then also F* 5 T(F) dominates G*
5 T(G) as long as T [ T2.

We now prove conversely that any monotonic transformation of the cumulative prob-
ability preserving Second Degree Stochastic Dominance must be concave. Assume that
there is a transformation T which is monotonic, but is not concave and assume that it
preserves the SSD rule. Then there is a region in which T9(u) . 0 for all p [ [p1, p2]
(recall that 0 # p1 , p2 # 1). Consider the following prospects F and G. They coincide
for all values below p1 and above p2 however are different between these two values. Set

F~t! 5 5
0, if t , 0,

t, if 0 # t , p1,

p1, if p1 # t , 0.5~p1 1 p2!,

p2, if 0.5~p1 1 p2! # t , p2,

t, if p2 # t , 1,

1, if 1 # t.

G~t! 5 5
0, if t , 0,

t, if 0 # t , p1,

0.5~p1 1 p2!, if p1 # t , p2,

t, if p2 # t , 1,

1, if 1 # t.

Then after the transformation the cumulative distributions F* 5 T(F) and G* 5 T(G)
still coincide outside the region [p1, p2]. Inside this region they have the form:

F*~t! 5 HT~p1!, if p1 # t , 0.5~p1 1 p2!,
T~p2!, if 0.5~p1 1 p2! # t , p2,

G*~t! 5 T~0.5(p1 1 p2!), if p1 # t , p2,

Convexity of T in this region implies T(0.5(p1 1 p2)) , (T(p1) 1 T(p2))/2 and after the
transformation this region looks like as shown in Figure 6.

This implies that there is no SSD any more, contradicting our assumption about T.
Once again let us refer to the two examples given in section 2.1. The transformation F*
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5 F1/2 is concave, it belongs to T2 and hence preserves the SSD rule. However the
transformation F* 5 F2 is convex, it does not belong to T2 and hence may not preserve
the SSD.

SSD* with transformations T2
*

Theorem 7. A monotonic transformation preserves SSD* iff it is convex (i.e. T [ T2
*).

Figure 6 a. The cumulative distribution T(F) after the transformation. b. The cumulative distribution T(G) after
the transformation.
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This theorem can be proved similar to the Theorem 3 by introducing an artificial risk
averse investor and replacing gains by losses. Alternatively one can repeat the quantile
approach that we have discussed in the Theorem 6. Note that in the example given in
section 2.1, F* 5 F2 belongs to T2

* and preserves the SSD* rule, though F* 5 F1/2 does
not.

PSD with transformations Tp Many normative economic models assert how investor
should behave. Positive economic models10 assert how investors do behave. These positive
models reveal strong evidence that,

a. The utility function of investors is S-shaped. By S shaped we mean increasing and
concave for gains, increasing and convex for losses, the inflection point is at the current
wealth.

b. Investors apply a weighting function to F, namely they make choices by comparing
Fi

* 5 Ti~F! with Gi
* 5 Ti~G! and not by comparing F with G.

In this section we analyze the Up class of utility functions which contains all possible
S-shaped utility functions. We show that under the class of transformations Tp, the PSD
relationship remains. Since an S-shaped utility function causes risk seeking in the negative
domain and risk aversion in the positive, this section relies on the results found in the
previous sections.

Theorem 8. F dominates G by PSD iff every transformation T [ Tp preserves this
dominance.

Proof. Assume that F dominates G by PSD, then by theorem 4 this implies *
y

x

~G~t! 2

F~t!!dt $ 0 for all y , 0 , x. Since the set Tp consists of transformations that are
monotonic and concave (convex) in the domain of gains (losses) we conclude that each

integral *
y

0

~G~t! 2 F~t!!dt $ 0 and *
0

x

~G~t! 2 F~t!!dt $ 0 preserves its sign under the

corresponding transformation hence: *
y

0

~G*~t!) dt $ 0 and *
0

x

~G*~t! 2 F*~t!!dt $ 0.

This implies that we have *
y

x

~G*~t! 2 F*~t!!dt $ 0, then using the theorem 4 we get the

PSD rule again. To prove necessity we use the fact that among the class of Tp transfor-
mations there is a transformation that almost does not change the distribution. This
completes the proof.

Note that the two transformations given in the section 2.1 do not belong to Tp, hence
do not preserve the PSD.
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3. Concluding remarks

Efficiency analysis of investments and in particular stochastic dominance partial ordering
assumes homogeneity of expectations regarding the probability distribution. Experimental
studies reveal that even if all investors observe the same distribution of returns, they
perform a mental transformation of the cumulative distribution. Each investor has his/her
specific transformation and as a result Stochastic Dominance (SD) rules may lose ground.
In addition it is found that the utility function is S-shaped (it is also called an S-shaped
value function).

We develop in this paper a dominance rule called Prospect Stochastic Dominance
(PSD) corresponding to the S-shaped value functions. We find a wide range of probability
transformations under which the first degree, the second degree and the prospect stochas-
tic dominance are intact.

It is shown in this paper that SD rules are intact as long as some constraints are imposed
on the transformations T(•) of the cumulative probabilities: monotonicity of the transfor-
mation is required for FSD to be intact, monotonicity and concavity of T(•) to keep SSD
intact, and convexity of T(•) for losses and concavity of T(•) for gains to keep PSD intact.
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Notes

1. When we say that a function f(x) $ 0 (or f(x) # 0) for all x, we mean that this function is not negative (not
positive) for all x and a strong inequality holds at least for one value of x. This important convention is used
for the rest of the paper for all utility functions and the various decision rules before and after transfor-
mations.

2. We wish to thank the anonymous referee for pointing out this elegant proof. However this approach should
be used carefully in the case of discrete events. An alternative proof (longer, but valid also in the discrete
case) is available from the authors by request.

3. We do not ignore another requirement of prospect theory, which is that the slope of the value function is
bigger for losses than for gains. Our proof is valid for all S-shaped utility functions including the functions
with this specific property.

4. This is a technical condition. It can be easily resolved either by choosing an appropriate value of the
(multi-valued) inverse functions QF or by a tiny change of all probabilities which does not influence
preferences but assigns a positive probability for every interval of positive length.

5. Calculated with the Mathematica program.
6. Recall that by writing f(x) $ 0 (f(x) # 0) for all x we actually mean that it is not negative (not positive) for

all x and positive (negative) at least for one value of x.
7. Throughout the article we assume T(0) 5 0 and T(1) 5 1, so the monotonic transformation is nondecreas-

ing.
8. If not one can always approximate T by a smooth transformation and repeat the same arguments.
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9. We wish to emphasize that although H(p2) 5 h(p1) for all pairs p2 5 T(p1) the integration range changes
and we need to prove that dominance of F over G implies that F* dominates G* as well. To see this note
that the area between F and G is not equal to the area between F* and G* (see Figure 4), however for every
value p1 there exists the corresponding p2 5 T(p1) such that h(p1) 5 H(p2).

10. Like the one advocated by Friedman & Savage [1948] and Kahneman & Tversky [1979], [1992] and
Tversky and Wakker [1995].
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