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 The Term Structure of Interest Rates I:

Valuation and Hedging of Interest Rates Derivatives

with the Ho-Lee Model

In this article we implement the well-known Ho-Lee Model of the term structure of interest rates and describe the algorithm behind this model. After a brief discussion of interest rates and bonds we construct a binomial tree and show how to replicate any fixed income type security. This allows us to value any interest rate contingent claim by means of the replicating portfolio. We also discuss the problem of negative interest rates arising in this model and show how to calibrate the model to an observed set of bond prices.

by Markus Leippold and Zvi Wiener

INTRODUCTION

Interest rate risk plays a crucial role in the financial theory. It belongs to the most complex fields in mathematical finance. In this paper, we present a simple interest rate model, the Ho-Lee model. This model appeared in 1986, it is the first term structure model, which allows the matching of the initial term structure. This means that the theoretical zero bond prices are the same as the market prices at the initial date. The Ho-Lee model further builds the basis for more complicated, but more flexible models like Hull-White (1990) and Heath-Jarrow-Morton (1990) which we will present in some later articles.  The basic idea of Ho-Lee is to model the uncertain behavior of the term structure as a whole. This is in contrast to the short rate approach to interest rate modeling, where the state variable (in this case the short rate) is represented by a single point on the term structure. The Ho-Lee model can be interpreted as an equivalent of the Cox-Ross-Rubinstein (1979) model for stock options applied to the valuation of interest rate contingent claims. However, in contrast to the real-valued stock price process, Ho-Lee take the class of all functions on R+ as the state-space of their model. Any such function represents a particular shape of the term structure of interest rates. The deformations of the term structure shape is modeled by means of a binomial tree. The use of the term "tree" in this paper follows the terminology of mathematical economics and finance and is totally different from that of graph theory. The trees presented here are highly recombining, which assures a fast running time of our algorithms. At this point we want to emphasize that this paper does not develop a new method but shows how to implement the algorithm behind the Ho-Lee interest rate model. 

NOTATION AND BASIC ASSUMPTIONS

Before we start building the binomial tree we want to clarify the assumptions on which the Ho/Lee model is built. First there are no market frictions, i.e. we are not considering transaction costs nor taxes. Further, all assets are perfectly divisible. Trading takes place at discrete time steps. The market is complete in the sense that there exists for every time T a bond with the respective maturity. For every time t the state-space is finite. 

With P(i,t,T) we denote the price of a zero bond in state i at time t, which pays $1 at the maturity date T. The whole term structure can be captured by the strictly positive function P(i,t,T). We further require the zero bond to satisfy the conditions P(i,t,t)=1 and limP(i,t,T) as T(( equals zero for all i and t.  

The variable  defines the probability of an upward movement in the binomial tree. The time steps are set equal to . Next, we introduce the state-independent perturbation function hk(t,T), which determines the magnitude of the bond price change in the interval [t-, t]. Thus hk(t,T) denotes the upward move (for k=u) or the downward move (for k=d) of a bond maturing at time t. The precise formula for the price change appears below. To clarify the notation we plot the evolution of a two-period zero bond.
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Observe that the terminal value of the bond price is irrespective of the prevailing state equal to one. This is in sharp contrast to the stock option pricing trees like the famous Cox-Ross-Rubinstein (1979) model. This feature of bond prices is known as the pull-to-par property, which leads to vanishing volatilities when the time t gets closer to the time-of-maturity T.

DERIVATION OF THE MODEL

The Ho-Lee model is actually the simplest arbitrage-free model of interest rates which allows the prefect matching of the initial forward rate curve. The derivation involves three steps:

1. Determine the perturbation function

2. Derive the risk-neutral probabilities

3. Derive the necessary conditions for path-independency in the binomial tree.

The last thing to do is to combine these three steps.

1. Perturbation Function

We know that in a world with no uncertainty, bond prices are related through
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which holds for all states and all times. We can introduce uncertainty into the model by introducing a perturbation function into the above equation as follows
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Since at maturity the bond price equals its face value, the perturbation functions satisfy the condition
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2. Risk-neutral Probabilities 
To derive the risk-neutral probabilities we are using the same arguments as in Cox-Ross-Rubinstein. We take two arbitrary zero bonds with different maturities to construct a portfolio V. We invest one unit in the zero bond with time-to maturity T and 
[image: image4.wmf]x

-units in the zero bond with time-to-maturity S<T. The value of the portfolio in the upstate  i+1 at time t< S<T is
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whereas in the downstate the portfolio has value
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We now want to choose the fraction in the S-zero bond such that the return of the portfolio for the period 
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 must be such that 
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. Thus we have
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To exclude arbitrage opportunities the return on the portfolio 
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 has to equal the return on the one-period zero bond which equals
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 we arrive at the relationship
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for all t,T, 
[image: image15.wmf]T
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. The constant variable  can be interpreted as an probability measure, more precisely as a so-called risk-neutral probability. It was derived from the no-arbitrage condition for the return on the portfolio V which must equal the riskfree return. Since the Ho/Lee model assumes completeness the risk-neutral probability measure is unique and we can price claims as if all investors were risk-neutral.

3. Path-Independency

The third step involves the derivation of the condition for the path independence, which guarantees a recombining binomial tree. This condition can be derived if we look at the zero bond two periods ahead P(i,t+2,T). If the tree is recombining, this node can be reached through two paths. Therefore these two paths build a system of two equations, namely
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After solving for the perturbation functions this yields the path-independency condition in the Ho/Lee model as
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To complete the derivation of the model we have to integrate the above three steps.  This gives us a difference equation of the first order, which can be easily solved to obtain
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and
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where obviously
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These last equations build the core of the Ho/Lee model. If short rate volatilities are estimated or exogenously given the parameter  is uniquely determined. 

BOND PRICES AND INTEREST RATES

Once we have obtained the expression for the perturbation functions, we are able to derive the bond prices as
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It can easily be verified that the one period bond corresponds to


[image: image22.wmf](

)

(

)

(

)

(

)

(

)

t

i

t

t

P

t

P

t

t

i

P

d

p

p

d

-

+

D

+

=

D

+

D

-

D

1

,

0

,

0

,

0

,

0

,

,


Remember that we still have to determine . This can be done by matching the short rate volatility with the tree geometry. From the definition of the short interest rate we know
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The vertical distance between the nodes of the interest rate process is
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and therefore constant. The variance can be readily calculated as
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for all 
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. Hence the variance is neither time-dependent nor state-dependent, but constant. Whenever the variance of the interest rate process is exogenously determined (by empirical estimation), the term  becomes
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It is common knowledge that in the Ho/Lee model interest rates follow a Gaussian distribution, which leads to negative interest rates. Fortunately, we can impose some condition on  such that interest rates will remain positive up to a finite time U. Whenever the interest rate becomes negative, we observe zero bond prices taking values greater than one. Therefore a condition which has to be satisfied to avoid negative interest rates is
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 which leads to
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constraining the choices of the tree probability . To determine the lowest allowable value for  we have to stick to numerical methods. The function ProbCond[U] evaluates the critical -value for a given time horizon U:
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The function will calculate the rounded probability, which is allowable in order to guarantee positive interest rates.

The forward rate f(t,T) is defined as the interest rate over the period T+ contracted at time t. Obviously it equals
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Futures and forward prices can also be implemented quite easily. The comparison of these quantities might be of some interest. It is well known, that in a stochastic interest framework futures and forward prices are not equal (see Cox-Ingersoll-Ross (1981), Jarrow-Obstfeld (1981), Margrabe (1976)). From the definition of futures and forward prices as well as from using a numerical example, we observe that futures and forward prices are just identical at the last time step of the tree. The forward price is given as

Forward[i_,t_,T_,S_]:=
P[i,t,S]/P[i,t,T]

The futures price is defined as
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where 
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 is the expectation operator conditional on time t under the risk-neutral probability measure. The futures price can be programmed as


TREE FUNCTIONS
In this section we present several functions, which assign values for bond prices or interest rates at each node of the tree. The function 

BondTree[T_]:= Table[Table[P[i,t,T],{i,0,t}],{t,0,T}]

represents the evolution of the bond price P[i,t,T] from time t up to the time-of-maturity T.  Similarly the function
IntTree[T_]:=Table[Table[r[i,t],{i,0,t}],{t,0,T}]

evaluates the short interest rate r[i,t] at each node in the tree. We also define the tree functions for futures and forwards as 

ForwardTree[T_,U_]:= Table[Table[Forward[i,t,T,U], {i,0,t}],{t,0,T}]

and 

FuturesTree[T_,U_]:= Table[Table[Futures[i,t,T,U],{i,0,t}],{t,0,T}]

It is useful to have the information on the whole term structure at every node in the tree. The term structure can either be expressed by means of bond prices or by means of forward rates. The function 

TermStructureTree[T_,tree_]:=
Switch[tree,


bond,Table[ Table[ P[i,t,s],{i,0,t},{s,t,T}],{t,0,T}],


forw,Table[ Table[ f[i,t,s],{i,0,t},{s,t,T}],{t,0,T}]]

allows to compute these values. If the argument tree is set equal to bond, the term structure is expressed by means of bond prices. If tree is equal forw the term structure is expressed by means of forward rates (note that this is similar to the Heath-Jarrow-Morton model with constant forward rate volatility).

Before start calculating an example, we define a function, which will draw the trees for bond prices and short interest rates. The function is called TreePlot[T,tree]:

TreePlot[T_,tree_,U_:0]:=Module[{AA={},x},



x = Switch[tree,












bond,BondTree[T],










int, IntTree[T],





for, ForwardTree[T,U],





fut, FuturesTree[T,U]



];



Do[ AA = Append[ AA,





Table[{ Line[{{j,x[[j,i]]},{j+1,x[[j+1,i]]}}],


                    Line[{{j,x[[j,i]]},{j+1,x[[j+1,i+1]]}}]},{i,1,j}]





 ], {j,1,Length[x]-1}



];



Show[Graphics[Flatten[AA,2]],Frame->True]

 ]

A numerical example

In the following we make the simplifying assumption that the current term structure is given as an exponential function of the form
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This creates a reasonable initial term structure for the illustration of how the functions work. The term structure is plotted in the following graph:
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Before we can apply the bond price function, we have to make sure that the boundary conditions for the bond price evolution are met. First, the bond prices at time t=0 must match the observed term structure, i.e.
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Further, zero bond prices equal 1 at maturity in every state:
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We assume
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We want to span a tree which does not lead to negative interest rates up to time U=12. Thus we have to evaluate ProbCond[12] which gives a critical -value of 0.6. This choice guarantees the positivity of interest rates at least up to the twelfth step in the binomial tree. Now consider the evolution of a 4​-year zero bond. Then the binomial tree for this instrument looks like
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To get an idea how bond prices evolve in a binomial tree, we can use the function TreePlot[T,tree]. The graph below shows the evolution of the 12-year bond. A characteristic feature of bond prices is their pull-to-par property. At time T the bond price equals 1 in every of the (T+1)-states.
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We can have a look at what happens, if we consider any time-to-maturity T which is longer than the critical maturity of U. Interest rates will become negative! To obtain an extreme case we assume a time-of-maturity T=30. The resulting binomial tree is plotted in the graph below
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Clearly, bond prices are in some nodes far above the terminal value of 1. This would clearly give some arbitrage opportunities.

We can visualize the divergence of futures and forward pricing using the TreePlot function. Consider the evolution of the 10-year futures and the forward contract on a 30-year zero bond. The following picture shows both trees. The futures contract is substantially lower than the forward contract at time t=0.

Show[TreePlot[10,for,30], TreePlot[10,fut,30]]
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Equivalently to the bond prices, we can calculate the corresponding one-period interest rates in each node.
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As can be seen from the following graph, the binomial tree for interest rates is equidistant, i.e. the vertical distance between the nodes is constant throughout the binomial tree. Hence, the volatility of the short rate in the Ho-Lee model is constant.

[image: image48.wmf]TreePlot

@

12

,

int

D


[image: image49.wmf]0

2

4

6

8

10

12

0

0.05

0.1

0.15

0.2

0.25


If we are interested in the whole term structure, we can use
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to obtain the entire binomial tree for the bond price evolution. The above result is best explained with the following picture where we took rounded values:
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The tree thus contains all the information available at every node in the tree. 

REPLICATING PORTFOLIO

One of the main insights of modern financial theory is that in a complete market every claim can be replicated by some trading strategy. The cost of the replicating strategy gives the unique price of the claim. Since the Ho-Lee model assumes completeness, we can apply the replication method to derive the prices of arbitrary contingent claims. The replicating trading strategy not only gives the unique price, but also gives the portfolio weights of the replication instruments in each node, by which the claim can be perfectly hedged. The term hedging has different meanings in different contexts. For our purpose here, we will take it to mean the construction of a trading strategy involving two zero bonds of different maturity that replicates the value of our "target" security. This replication approach to hedging, although unrealistic since it assumes the precise execution of the strategy as well as the absence of transaction costs, has nevertheless been shown to be useful in applications.

We illustrate the methodology using the simplest case possible. Suppose we want to price the 2-year zero bond using a replicating portfolio consisting of the 3-year and the 4-year zero bond. The portfolio strategy has to be self-financing. Since the payoff is known at the time-of maturity T=2 (the payoff is 1 in each state), we have to move backwards through the tree. Before we start building the trading strategies, we introduce the following notation. With the two-dimensional vector 
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 called "trading strategy" we denote the portfolio weights of the 3-year and the 4-year zero bond in the replicating portfolio. Given the assumption of complete markets a two-dimensional trading strategy is enough to replicate any claim in the binomial tree.

To solve our problem we can pursue a two-step procedure:

Step 1: What must the strategy 
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 look like at time t=1 to replicate the known payoff of the 2-year zero bond?
To give an answer to the above question we have to consider state i=1 and state i=0 separately. First, in state i=1 we have
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The portfolio weights allow to calculate the value of the replicating portfolio v(i,t) at time t=1 and state i=1 as
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Analogously, we have for state i=0
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which gives rise to a portfolio value corresponding to
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Step 2: What must the strategy look like at time t=0 to replicate the value of the replicating portfolio v(i,t) at time t=1?
Here we have to solve 
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The cost of this strategy at time t=0 is thus
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In an arbitrage-free economy, the value v(0,0) must equal the price of the instrument we replicated, i.e. 


[image: image62.wmf](

)

(

)

2

,

0

,

0

0

,

0

P

v

=


Thus to obtain the price of a financial claim and the weights in the replicating portfolio, which perfectly hedges the claim, we have to work backwards in the tree solving in every node of the tree a two-dimensional equation system. Notice that we illustrated the method using the simplest case, i.e. a bond. However, the method is general enough to value any arbitrary claim on the term structure.
DERIVATIVE PRICING
In this section we present the valuation functions for different derivative instruments. An input for the valuation function is the payoff structure of the instrument under consideration. Therefore, we start by introducing different payoff functions.

The Payoff Functions

The payoff functions give as output the payoff structure of the underlying instrument. Here we present a short list of possible payoffs. Again, we start with the simplest case: the coupon bond.
bond[T_, nominal_, coupon_:0]:=

  Append[Table[nominal*coupon,{i,0,T-1},{i+1}],Table[nominal*(1+coupon), {T+1}]];

For instance, the coupon bond with nominal value of 1 and coupon of 5% would give
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The payoff of a European option is given by

EuropeanOption[K_,T_,optionType_, Underlying_]:= Module[{a},



a = Switch[ optionType,
call, 1,
put, -1,
_, Abort[]];



Append[Table[0,{i,0,T-1},{i+1}],




 Table[ Max[ a*(Underlying - K),0],{i,0,T}]]



];
where K was used for the strike price, T is the expiration date of the option and Underlying is the instrument on which the option is written. optionType can be used to specify the option's payoff as a put or a call option. For instance
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gives the payoff of a two-period European put option on a zero bond with maturity 3. 

Another instrument is the digital option, which pays a fixed amount, say 1 whenever the price of the underlying is above/under the strike price K:

DigitalOption[K_,T_,optionType_, Underlying_]:=
Module[{a,b},



a = Switch[ optionType,call, 1, put, -1, _, Abort[]];

     

b[i_] := Max[ a*(Underlying - K),0];



Append[ Table[0,{i,0,T-1},{i+1}],

Table[ If[b[i]>0 ,1,0],{i,0,T}]]

];

An example is given below
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is the payoff structure of a one-period digital call option on the spot interest rate.  Also of some interest might be the payoff of a forward contract on a zero bond. This is given by

ForwardPayOff[T_,S_]:=

Append[ Table[ 0, {i,0,T-1}, {i+1}],

  Table[ Forward[0,0,T,S] - P[i-1,T,S], {i,1,T+1}]

]
It is obvious that once plugged into the valuation function, this payoff structure must have the present value of zero since the present value of the forward is zero. However as we will see, the valuation formula allows the calculation of the replicating portfolio such that we can perfectly hedge the forward contract. 

Basically, there can be constructed arbitrary many European payoff structures. Since we also want to consider the valuation of American options we introduce a function which gives the possible payoff at each node if the option would be exercised:

AmericanOption[K_, T_, optionType_, Underlying_]:= Module[{a},


a = Switch[ optionType,

call, 1,
put, -1,
_, Abort[]];


Table[ Max[ a*(Underlying  - K),0],{t,0,T}, {i,0,t}]

];
The evaluation of this function for a forward contract on the zero bond P(U,S) would give a payoff structure as follows
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The Valuation Functions

In the following we will present the valuation function for European and American options. The valuation function will not only give the arbitrage-free price of the derivative but it will also give the weights of the two bonds with different maturities S and U in the replicating portfolio at each node. This replicating portfolio perfectly hedges the derivative instrument. Notice that the following functions can be easily modified to value interest rate derivatives instead of bond derivatives.

EuropeanValue[time,S,U,payoffmatrix] pri​ces any claim with non-American features. We denote the maturity of the claim with time. The zero bonds used for the construction of the replicating portfolio have maturities S and U, where S,U > time. The payoff structure is inferred by the instrument we are considering. The code for the valuation function is
EuropeanValue[time_,S_,U_, payoffmatrix__]:=

  Module[{pr,tr,ti,mat, replicmatrix,co},


pr[T_]:= pr[T]=
Table[{P[i,T,S],P[i,T,U]}, {i,0,T}];


tr[T_]:= tr[T]=

Table[ {co[T][[i]]*P[i,T,U] - co[T][[i+1]]*P[i-1,T,U],

 -co[T][[i]]*P[i,T,S] + co[T][[i+1]]*P[i-1,T,S]},{i,1,T}]/

(Table[P[i-1,T,S]*P[i,T,U]-P[i,T,S]*P[i-1,T,U],{i,1,T}]);


mat = Length[payoffmatrix[[-1]] - 1;

co[mat]= payoffmatrix[[-1]];


co[T_]:= co[T]= Apply[Plus,pr[T]*tr[T+(],1] + payoffmatrix[[T+(]];


{replicmatrix = Table[tr[i],{i,1,mat}], co[time] }


];

Let's consider several examples. Take a coupon bond with nominal value 1, coupon 5% and time-to-maturity of 2. We would like to value this coupon bond using a replicating strategy consisting of the 3-year zero bond and the 5-year zero bond. Thus, we have
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This result has the following interpretation. The value of the coupon bond is 1.02279. The coupon bond can be perfectly hedged at time 0, if we take a long position of 1.82531 in the 3-year zero bond and a short position of 0.753714 in the 5-year zero bond. After one time step, if we find ourselves in state 0, we need to rebalance the replicating portfolio. Now we have to take a long position of 1.72989 in the 3-year zero bond and a short position of 0.709473 in the 5-year zero bond. The portfolio weights in state 1 are 1.69493 in the 3-year zero bond and -0.66733 in the 5-year zero bond.

Another example is a European call option with maturity of 2 on a 10-year zero bond with a strike of 0.51. We use the 9-year and the 8-year zero bond to hedge the position in the European option, i.e.

EuropeanValue[0,9,8,EuropeanOption[.51,2,call,P[i,2,10]]]//TableForm
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Next we consider a digital call option on the spot rate, time-to-maturity 3 and strike price 10%. We construct the replicating portfolio with the 7-year and the 8-year zero bond:

EuropeanValue[0,7,8,DigitalOption[.10,3,call,r[i,3] ]]//TableForm
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Besides these predefined payoff functions, we can also use arbitrary payoff structures. An interesting example is the calculation of state prices. State prices pay 1 unit in state j, but nothing in every other state. Thus if we want to calculate today's state price for a claim paying 1 unit at node (t=2,j=0), we use

EuropeanValue[0,3,4,{{0},{1,0}}]//TableForm
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Thus, the price at time 0 for a contract which pays 1 unit if state 0 occurs at time 1 is 0.377987. If state 1 would prevail after one time-step, then we have

EuropeanValue[0,3,4,{{0},{0,1}}]//TableForm
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Notice that the sum of the two state prices equals the bond price P(0,0,1) = 0.944968.

Next, we will present the valuation function for the pricing of American call and put options on zero bonds (for an analytic approximation of American options see Barone-Adesi-Whaley (1986)). In contrast to the European case, we have to check in every node whether the option should be exercised immediately or whether the investor should keep the option alive. To calculate the value of American option prices and the corresponding hedging strategy we use:

AmericanValue[time_,S_,U_, payoffmatrix_]:=

  Module[{pr,tr,replicmatrix,mat,co},



pr[T_]:= pr[T] = Table[{P[i,T,S], P[i,T,U]}, {i,0,T}];


tr[T_]:= tr[T] = Table[{co[T][[i]]*P[i,T,U]- co[T][[i+1]]*P[i-1,T,U],




-co[T][[i]]*P[i,T,S]+ co[T][[i+1]]*P[i-1,T,S]}, {i,1,T}]/




(Table[P[i-1,T,S]*P[i,T,U]-P[i,T,S]*P[i-1,T,U], {i,1,T}]);


mat = Length[payoffmatrix] - 1;


co[mat] = payoffmatrix[[-1]];

co[T_]:=co[T]=

Max[Transpose[{Apply[Plus,pr[T]*tr[T+(],1], payoffmatrix[[T+(]]}]];

{replicmatrix = Table[tr[i],{i,1,mat}], co[time]}

];
Consider now for instance an American call option on the 10-year zero bond with time-to-maturity 2, exercise price 0.45. To construct the replicating portfolio, we use the 6-year and the 3-year zero bonds. The time t=0 value of the option is

AmericanValue[0,6,3, AmericanOption[.45,2,call,P[i,t,10]]]//TableForm
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It is common knowledge that it is suboptimal to exercise an American call option on a non-dividend paying instrument prior to the time-of-maturity. Thus the American call price equals the European call price. We can check this by evaluating the corresponding European call price. This time we use the 4-year and 5-year zero bonds, which should not influence the result.

EuropeanValue[0,4,5,EuropeanOption[.45,2,call,P[i,2,10]]]//TableForm
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Thus we confirmed that the early exercise feature of the American call option has value zero. Evaluating 
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gives the early exercise feature for an American put option on a 9-year zero bond with expiration in two years. Clearly, due to the early exercise premium the price of the European option is much lower than the price of the American option. The values in the replicating portfolio give a "recipe" for constructing synthetically the early exercise premium. As in the European case we can evaluate the present value of various derivatives, e.g. an American put option on the forward rate f(2,3) with strike 9%:

AmericanValue[0,6,3,AmericanOption[.09,2,put,f[i,t,3]]]//TableForm
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SUMMARY

…….
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