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Gaussian quadrature
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as
a weighted sum of function values at specified points within the domain of integration. (See numerical integration
for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a
quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of
the points xi and weights wi for i = 1,...,n. The domain of integration for such a rule is conventionally taken as [−1,
1], so the rule is stated as

Gaussian quadrature as above will only produce accurate results if the function f(x) is well approximated by a
polynomial function within the range [-1,1]. The method is not, for example, suitable for functions with singularities.
However, if the integrated function can be written as , where g(x) is approximately
polynomial, and W(x) is known, then there are alternative weights such that

Common weighting functions include (Chebyshev–Gauss) and 
(Gauss–Hermite).
It can be shown (see Press, et al., or Stoer and Bulirsch) that the evaluation points are just the roots of a polynomial
belonging to a class of orthogonal polynomials.

Gauss–Legendre quadrature

Graphs of Legendre polynomials (up to n = 5)

For the simplest integration problem stated above, i.e. with
, the associated polynomials are Legendre polynomials,

Pn(x), and the method is usually known as Gauss–Legendre
quadrature. With the nth polynomial normalized to give Pn(1) = 1, the
ith Gauss node, xi, is the ith root of Pn; its weight is given by
(Abramowitz & Stegun 1972, p. 887)

Some low-order rules for solving the integration problem are listed
below.
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5 0 128⁄225

Change of interval
An integral over [a, b] must be changed into an integral over [−1, 1] before applying the Gaussian quadrature rule.
This change of interval can be done in the following way:

After applying the Gaussian quadrature rule, the following approximation is:

Other forms
The integration problem can be expressed in a slightly more general way by introducing a positive weight function ω
into the integrand, and allowing an interval other than [−1, 1]. That is, the problem is to calculate

for some choices of a, b, and ω. For a = −1, b = 1, and ω(x) = 1, the problem is the same as that considered above.
Other choices lead to other integration rules. Some of these are tabulated below. Equation numbers are given for
Abramowitz and Stegun (A & S).

Interval ω(x) Orthogonal polynomials A & S For more information, see ...

[−1, 1] Legendre polynomials 25.4.29 Section Gauss–Legendre quadrature,
above

(−1, 1) Jacobi polynomials 25.4.33 ( 
)

Gauss–Jacobi quadrature

(−1, 1) Chebyshev polynomials (first
kind)

25.4.38 Chebyshev–Gauss quadrature

[−1, 1] Chebyshev polynomials (second
kind)

25.4.40 Chebyshev–Gauss quadrature

[0, ∞) Laguerre polynomials 25.4.45 Gauss–Laguerre quadrature

(−∞, ∞) Hermite polynomials 25.4.46 Gauss–Hermite quadrature
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Fundamental theorem
Let be a nontrivial polynomial of degree n such that

If we pick the n nodes xi to be the zeros of pn , then there exist n weights wi which make the Gauss-quadrature
computed integral exact for all polynomials of degree 2n − 1 or less. Furthermore, all these nodes xi will lie in
the open interval (a, b) (Stoer & Bulirsch 2002, pp. 172–175).
The polynomial is said to be an orthogonal polynomial of degree n associated to the weight function . It is
unique up to a constant normalization factor. The idea underlying the proof is that, because of its sufficiently low
degree, can be divided by to produce a quotient of degree strictly lower than n, and a remainder

of still lower degree, so that both will be orthogonal to , by the defining property of . Thus

.

Because of the choice of nodes xi , the corresponding relation

holds also. The exactness of the computed integral for then follows from corresponding exactness for
polynomials of degree only n or less (as is ).

General formula for the weights

The weights can be expressed as

(1)

where is the coefficient of in . To prove this, note that using Lagrange interpolation one can express
in terms of as

because r(x) has degree less than n and is thus fixed by the values it attains at n different points. Multiplying both
sides by and integrating from a to b yields

The weights are thus given by

This integral expression for can be expressed in terms of the orthogonal polynomials and as
follows.
We can write

http://en.wikipedia.org/w/index.php?title=Lagrange_interpolation
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where is the coefficient of in . Taking the limit of x to yields using L'Hopital's rule

We can thus write the integral expression for the weights as

(2)

In the integrand, writing

yields

provided , because is a polynomial of degree k-1 which is then orthogonal to . So, if

q(x) is a polynomial of at most nth degree we have

We can evaluate the integral on the right hand side for as follows. Because is a

polynomial of degree n-1, we have

where s(x) is a polynomial of degree n-2. Since s(x) is orthogonal to we have

We can then write

The term in the brackets is a polynomial of degree n-2, which is therefore orthogonal to . The integral can
thus be written as

According to Eq. (2), the weights are obtained by dividing this by and that yields the expression in Eq. (1).
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Proof that the weights are positive

Consider the following polynomial of degree 2n-2

where as above the are the roots of the polynomial . Since the degree of f(x) is less than 2n-1, the
Gaussian quadrature formula involving the weights and nodes obtained from applies. Since for
j not equal to i, we have

Since both and f(x) are non-negative functions, it follows that .

Computation of Gaussian quadrature rules
For computing the nodes and weights of Gaussian quadrature rules, the fundamental tool is the three-term
recurrence relation satisfied by the set of orthogonal polynomials associated to the corresponding weight function.
For n points, these nodes and weights can be computed in O(n2) operations by the following algorithm.
If, for instance, is the monic orthogonal polynomial of degree n (the orthogonal polynomial of degree n with the
highest degree coefficient equal to one), one can show that such orthogonal polynomials are related through the
recurrence relation

From this, nodes and weights can be computed from the eigenvalues and eigenvectors of an associated linear algebra
problem. This is usually named as the Golub–Welsch algorithm (Gil, Segura & Temme 2007).
The starting idea comes from the observation that, if is a root of the orthogonal polynomial then, using the
previous recurrence formula for and because , we have

where 
and is the so-called Jacobi matrix:

The nodes of gaussian quadrature can therefore be computed as the eigenvalues of a tridiagonal matrix.
For computing the weights and nodes, it is preferable to consider the symmetric tridiagonal matrix with elements

and  

and are similar matrices and therefore have the same eigenvalues (the nodes). The weights can be computed from
the corresponding eigenvectors: If is a normalized eigenvector (i.e., an eigenvector with euclidean norm equal
to one) associated to the eigenvalue , the corresponding weight can be computed from the first component of this
eigenvector, namely:

where is the integral of the weight function
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See, for instance, (Gil, Segura & Temme 2007) for further details.
There are alternative methods for obtaining the same weights and nodes in O(n) operations using the Prüfer
Transform.

Error estimates
The error of a Gaussian quadrature rule can be stated as follows (Stoer & Bulirsch 2002, Thm 3.6.24). For an
integrand which has 2n continuous derivatives,

for some ξ in (a, b), where pn is the orthogonal polynomial of degree n and where

In the important special case of ω(x) = 1, we have the error estimate (Kahaner, Moler & Nash 1989, §5.2)

Stoer and Bulirsch remark that this error estimate is inconvenient in practice, since it may be difficult to estimate the
order 2n derivative, and furthermore the actual error may be much less than a bound established by the derivative.
Another approach is to use two Gaussian quadrature rules of different orders, and to estimate the error as the
difference between the two results. For this purpose, Gauss–Kronrod quadrature rules can be useful.
Important consequence of the above equation is that Gaussian quadrature of order n is accurate for all polynomials
up to degree 2n–1.

Gauss–Kronrod rules
If the interval [a, b] is subdivided, the Gauss evaluation points of the new subintervals never coincide with the
previous evaluation points (except at zero for odd numbers), and thus the integrand must be evaluated at every point.
Gauss–Kronrod rules are extensions of Gauss quadrature rules generated by adding points to an -point
rule in such a way that the resulting rule is of order . This allows for computing higher-order estimates
while re-using the function values of a lower-order estimate. The difference between a Gauss quadrature rule and its
Kronrod extension are often used as an estimate of the approximation error.

Gauss–Lobatto rules
Also known as Lobatto quadrature (Abramowitz & Stegun 1972, p. 888), named after Dutch mathematician
Rehuel Lobatto.
It is similar to Gaussian quadrature with the following differences:
1.1. The integration points include the end points of the integration interval.
2. It is accurate for polynomials up to degree 2n–3, where n is the number of integration points.
Lobatto quadrature of function f(x) on interval [–1, +1]:

Abscissas: is the st zero of .
Weights:
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Remainder: 

Some of the weights are:

Number of points, n Points, x
i

Weights, w
i

3 4⁄3
1⁄3

4 5⁄6

1⁄6
5 0 32⁄45

49⁄90

1⁄10
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External links
• ALGLIB [3] contains a collection of algorithms for numerical integration (in C# / C++ / Delphi / Visual Basic /

etc.)
• GNU Scientific Library [4] - includes C version of QUADPACK algorithms (see also GNU Scientific Library)
• From Lobatto Quadrature to the Euler constant e [5]

• Gaussian Quadrature Rule of Integration - Notes, PPT, Matlab, Mathematica, Maple, Mathcad [6] at Holistic
Numerical Methods Institute

• Legendre-Gauss Quadrature at MathWorld [7]

• Gaussian Quadrature [8] by Chris Maes and Anton Antonov, Wolfram Demonstrations Project.
• Tabulated weights and abscissae with Mathematica source code [9], high precision (16 and 256 decimal places)

Legendre-Gaussian quadrature weights and abscissas, for n=2 through n=64, with Mathematica source code.
• High-precision abscissas and weights for Gaussian Quadrature [10] n = 2, ..., 20, 32, 64, 100, 128, 256, 512, 1024

with open source libraries for C/C++ and Matlab.
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