Optimization Toolbox
fmincon

Find a minimum of a constrained nonlinear multivariable function

mn fix)

x subject to
clxi=0
cegix) =0
A-x=b
Aeg-x = beg
bsx=ub

where x, b, beq, Ib,and ub are vectors, A and Aeq are matrices, ¢/ and ceqix)are
functions that return vectors, and fixyis a function that returns a scalar. fix), cix/), and ceqx/
can be nonlinear functions.

Syntax

x = fmincon(fun,x0,A,b)

x = fmincon(fun,x0,A,b,Aeq,beq)

x = fmincon(fun,x0,A,b,Aeq,beq,1b,ub)

x = fmincon(fun,x0,A,b,Aeq,beq,1lb,ub,nonlcon)

x = fmincon(fun,x0,A,b,Aeq,beq,1b,ub,nonlcon,options)
[x,fvall=fminconl...)

[x,fval,exitflag]=fmincon(...)
[x,fval,exitflag,output]=£fminconl...)
[x,fval,exitflag,output,lambdal]= fminconl...)
[x,fval,exitflag,output,lambda,grad]l = fminconl...)
[x,fval,exitflag,output,lambda,gradhessian]=fminconl...)

Description

fmincon attempts to find a constrained minimum of a scalar function of several variables
starting at an initial estimate. This is generally referred to as constrained nonlinear
optimization or nonlinear programming

x = fmincon(fun,x0,A,b) starts at x0 and attempts to find a minimum x to the function
described in fun subject to the linear inequalities A*x <= b. x0 can be a scalar, vector, or
matrix.

x = fmincon(fun,x0,A,b,Aeq,beqg) minimizes fun subject to the linear equalities Aeg*x
= begaswellas A*x <= b.Set A=[]and b=[]if no inequalities exist.

x = fmincon(fun,x0,A,b,Aeq,beq,1b,ub) defines a set of lower and upper bounds on the
design variables inx, so that the solution is always inthe range 1b <= x <= ub. Set Aeqg
=[] and beg=[] if no equalities exist.

x = fmincon(fun,x0,A,b,Aeq,beqg,1b,ub,nonlcon) subjects the minimization to the
nonlinear inequalities c(x) or equalities ceq(x) defined innonlcon. fmincon optimizes
such that c(x) <= 0andceqg(x) = 0. Set 1b=[] and,or ub=[]if no bounds exist.

x = fmincon(fun,x0,A,b,Aeq,beq,1b,ub,nonlcon,options) mMinimizes with the
optimization options specified in the structure options. Use optimset to setthese
options. Set nonlcon =[] if there are no nonlinear inequality or equality constraints.

[x,fval]l = fmincon(...) returns the value of the objective functionfun at the solution x.

[x,fval,exitflag] = fmincon(...) returns avalueexit flag that describes the exit
condition of fmincon.

[x,fval,exitflag,output] = fmincon(...) returns a structure output with information
about the optimization.

[x,fval,exitflag,output,lambdal = fmincon(...) returns a structure 1ambda whose
fields contain the Lagrange multipliers at the solution x.

[x,fval,exit flag,output,lambda,grad] = fmincon(...) returns the value of the
gradient of fun at the solution x.

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...) returns the value of
the Hessian at the solution x. See Hessian

Avoiding Global Variables via Anonymous and Nested Functionsexplains how to
parameterize the objective function fun, if necessary.

Input Arguments

Function Arguments contains general descriptions of arguments passed into fmincon.
This "Arguments» section provides function-specific details for fun, nonlcon, and
options:

fun

The function to be minimized. fun is a function that accepts a vector x and
returns a scalar £, the objective function evaluated atx. The function fun
can be specified as a function handle for an M-file function

x = fmincon(@nmy fun,x0,A,b)

wheremy fun is a MATLAB function such as

function f =myfun(x)

f=.. % Compute functionvalue at x
fun can also be a function handle for an anonymous function.

x = fmincon(@(x)norm(x)’2,x0,A,b);
If the gradient of fun can also be computed andthe Gradobj option s 'on’,
as set by

options =optimset('GradObj’,on’)
then the function fun must return, in the second output argument, the
gradient valueg, a vector, at x. Note that by checking the value of nargout
the function can avoid computingg when fun is called with only one output

argument (in the case where the optimization algorithm only needs the value
of £ but not g).

function(f,g]l =myfun(x)

f=.. % Compute the functionvalue at x

if nargout>1 % funcalledwith two output arguments
g=.. % Compute the gradient evaluatedat x

end

The gradient consists of the partial derivatives off at the point x. That is, the
ith component of g is the partial derivative off with respect to the ith
component of x.

If the Hessian matrix can also be computed andthe Hessian optionis ron’,
i.e.,,options = optimset(Hessian’/on’),then the function fun must
return the Hessian valueH, a symmetric matrix, at x in a third output
argument. Note that by checking the value ofnargout you can avoid
computing H when fun is called with only one or two output arguments (in
the case where the optimization algorithm only needs the values of f and g
but not H).

function[f,g,H] =myfun(x)
f=.. % Compute the objective functionvalue at x
if nargout >1 % funcalledwith two output arguments
g=.. %Gradient of the functionevaluatedat x
if nargout >2
H=.. %Hessianevaluatedat x
end
end

The Hessian matrix is the second partial derivatives matrix of £ at the point
x. Thatis, the (i,3)th component of H is the second partial derivative off with

8 f/axdx

respect to xj and x;j, 4 . The Hessian is by definition a symmetric

matrix.

nonlcon The function that computes the nonlinear inequality constraints c(x)<= 0 and
the nonlinear equality constraints ceq(x) = 0. The functionnonlcon
accepts a vector x and returns two vectors c and ceq. The vectorc contains
the nonlinear inequalities evaluated atx, and ceq contains the nonlinear
equalities evaluated atx. The functionnonlcon can be specified as a
function handle.

x = fmincon(@nmy fun,x0,A,b,Aeq,beq,1b,ub,@mnycon)

wheremycon is a MATLAB function such as

function(c,ceq]=mycon(x)
c=.. % Compute nonlinear inequalities at x.
ceq-=.. % Compute nonlinear equalities at x.

If the gradients of the constraints can also be computed andthe
GradConstr optionis 'on’, as set by

options =optimset(GradConstr’/'on’)

then the function non1con must also return, in the third and fourth output
arguments, GC, the gradient of c(x), and GCeq, the gradient of ceq(x). Note
that by checking the value of nargout the function can avoid computing GC
and GCeg when nonlcon is called with only two output arguments (in the
case where the optimization algorithm only needs the values of c and ceq
but not GCc and Gceq).

Avoiding Global Variables via Anonymous and Nested Functionsexplains
how to parameterize the nonlinear constraint functionnonlcon, if necessary

functionlc,ceq,GC,GCeqg] =mycon(x)

Cc=.. % Nonlinear inequalities at x

ceqg=.. % Nonlinear equalitiesat x

if nargout >2 % nonlconcalledwith4outputs
GC =... % Gradients of the inequalities
GCeg=... % Gradients of theequalities

end

Ifnonlcon returns a vector c of m components and x has length n, wheren
is the length of x0, then the gradient GC of c(x) is an n-by-m matrix, where Gc(
i,7)is the partial derivative ofc(5) with respect to x(i) (i.e., the 5th column of
GC is the gradient of the §th inequality constraint c(5)). Likewise, if ceq has p
components, the gradient GCeq of ceqg(x) is an n-by-p matrix, where GCeq(1,
j) is the partial derivative ofceq(7) with respect to x(1) (i.e., the jth column of
GCeq is the gradient of the §th equality constraint ceq(5)).

options QOptions provides the function-specific details for theopt ions values.

Output Arguments

Function Arguments contains general descriptions of arguments returned by fmincon.
This section provides function-specific details forexit f1ag, l1ambda, and output:

exitflag Integeridentifying the reason the algorithm terminated. The following lists
the values ofexit flag and the corresponding reasons the algorithm
terminated.

1 First order optimality conditions were satisfied to the
specified tolerance.

grad
hessian

lambda

output

-1
-2
Gradient at x

Hessian at x

Change in x was less than the specified tolerance.

Change in the objective function value was less than
the specified tolerance.

Magnitude of the search direction was less than the
specified tolerance and constraint violation was less
than options.TolCon.

Magnitude of directional derivative was less than the
specified tolerance and constraint violation was less
than options.TolCon.

Number of iterations exceededoptions.MaxIter
or number of function evaluations exceeded
options.FunEvals

Algorithm was terminated by the output function.

No feasible point was found.

Structure containing the Lagrange multipliers at the solution x (separated
by constraint type). The fields of the structure are

lower
upper
ineglin
eqglin
inegnonlin

egnonlin

Lower bounds 1b
Upper boundsub
Linear inequalities
Linear equalities
Nonlinear inequalities

Nonlinear equalities

Structure containing information about the optimization. The fields of the

structure are
iterations
funcCount
algorithm
cgiterations
stepsize

firstorderopt

Number of iterations taken

Number of function evaluations

Algorithm used.

Number of PCG iterations (large-scale algorithm only)
Final step size taken (medium-scale algorithm only)

Measure of first-order optimality

For large-scale bound constrained problems, the
first-order optimality is the infinity norm of v.»g, where
v is defined as in Box Constraints, and g is the
gradient.

For large-scale problems with only linear equalities,
the first-order optimality is the infinity norm of the
projected gradient (i.e. the gradient projected onto the
nullspace of aeq).

Hessian
fmincon computes the output argument hessian as follows:

« When using the medium-scale algorithm, the function computes a quasi-Newton
approximation to the Hessian of the Lagrangian atx.

« When using the large-scale algorithm, the function uses
- options.Hessian, if you supply it, to compute the Hessian at x

- A finite-difference approximation to the Hessian atx, if you supply only the
gradient. Note that because the large-scale algorithm does not take
nonlinear constraints, the Hessian of the Lagrangian is the same as the
Hessian of the objective function.

Options

Optimization options used by fmincon. Some options apply to all algorithms, some are
only relevant when you are using the large-scale algorithm, and others are only relevant
when you are using the medium-scale algorithm.You can use opt imset to set or change
the values of these fields in the options structure opt i ons. See Optimization Options, for
detailed information.

TheLargeScale option specifies a preference for which algorithm to use. Itis only a
preference because certain conditions must be met to use the large-scale algorithm. For
fmincon, you must provide the gradient (see the preceding description offun to see how)
or else the medium-scale algorithm is used:

LargeScale Use the large-scale algorithm if possible when set to 'on’. Use the
medium-scale algorithm when setto /o £ £7.

Medium-Scale and Large-Scale Algorithms. These options are used by both the
medium-scale and large-scale algorithms:

DerivativeCheck Compare user-supplied derivatives (gradients of the objective
and constraints) to finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to be
minimized.

DiffMaxChange Maximum change in variables for finite differencing

DiffMinChange Minimum change in variables for finite differencing

Display Level of display.’o f £’ displays no output; 'iter’ displays
output at each iteration; '£inal’ (default) displays just the final
output.

FunValCheck Check whether objective function values are valid:on’ displays

a warning when the objective function returns a value that is
complex, Inf, orNaN. 'of £’ displays no warning.

GradOb Gradient for the objective function defined by the user. See the
preceding description of fun to see how to define the gradient in
fun. You must provide the gradient to use the large-scale
method. It is optional for the medium-scale method.

MaxFunEvals Maximum number of function evaluations allowed

MaxIter

OutputFcn

TolFun
TolCon
TolX

TypicalX

Maximum number of iterations allowed

Specify a user-defined function that an opimization function
calls at each iteration. See Output Function.

Termination tolerance on the function value.
Termination tolerance on the constraint violation.
Termination tolerance onx.

Typical x values.

Large-Scale Algorithm Only. These options are used only by the large-scale

algorithm:

Hessian

HessMult

If'on’, fmincon uses a user-defined Hessian (defined infun),
or Hessian information (when usingHessMult), for the
objective function. Iffo£ £/, fmincon approximates the
Hessian using finite differences.

Function handle for Hessian multiply function. For large-scale
structured problems, this function computes the Hessian
matrix product H*Y without actually forming H. The function is
of the form

W=hmfun(Hinfo,Y,pl,p2,...)

where Hinfo and possibly the additional parameters p1,p2,...
contain the matrices used to compute H*Y.

The first argument must be the same as the third argument
returned by the objective function fun, for example by

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. w = #*Y although H is not formed
explicitly. fminunc uses Hinfo to compute the
preconditioner. The optional parameterspl, p2, ... can be any
additional parameters needed by hmfun. See Avoiding Global
Variables via Anonymous and Nested Functions for
information on how to supply values for the parameters.

Note 'Hessian’ mustbe setto 'on’forHinfo to
be passed from fun to hmfun,

See Nonlinear Minimization with a Dense but Structured
Hessian and Equality Constraints for an example.

HessPattern Sparsity pattern of the Hessian for finite differencing. If it is not
convenient to compute the sparse Hessian matrix Hin fun,
the large-scale method in fmincon can approximate H via
sparse finite differences (of the gradient) provided thesparsity
structure of H -- i.e., locations of the nonzeros -- is supplied as
the value forHessPattern. In the worst case, if the structure
is unknown, you can set HessPattern to be a dense matrix
and a full finite-difference approximation is computed at each
iteration (this is the default). This can be very expensive for
large problems, so it is usually worth the effort to determine the
sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate gradient)
iterations (see the Algorithm section following).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By default,
diagonal preconditioning is used (upper bandwidth of 0). For
some problems, increasing the bandwidth reduces the number
of PCG iterations.

TolPCG Termination tolerance on the PCG iteration.

Medium-Scale Algorithm Only. These options are used only by the medium-scale
algorithm:

MaxSQPIter Maximum number of SQP iterations allowed

Examples

Find values ofx that minimize f (¥) = =¥1%g¥3 starting at the point x = [10; 10; 10] and
subject to the constraints

95.1;1+ 2r2+ 21;3572

First, write an M-file that returns a scalar value £ of the function evaluated atx.

function f =myfun(x)
£ =-x(1) * x(2) * x(3);

Then rewrite the constraints as both less than or equal to a constant,
—xy—2x5 - 2xg =0
xy+2xg+ 20,272

Since both constraints are linear, formulate them as the matrix inequality 4 - x =& where

sy e[y

Next, supply a starting point and invoke an optimization routine.

x0=[10; 10; 10); % Startingguess at the solution
[x,fval] = fmincon(@myfun,xO,A,b)

After 66 function evaluations, the solution is

24.0000
12.0000
12.0000

where the function value is

fval =
-3.4560e+03

and linear inequality constraints evaluate to be less than or equal too.

A*x-b=
-72
0

Notes
Large-Scale Optimization. To use the large-scale method, you must

« Supply the gradient in fun
e Set GradOb i to’on’ in options

« Specify the feasible region using one, but not both, of the following types of
constraints:

- Upper and lower bounds constraints

- Linear equality constraints, in which the equality constraint matrix Aeq
cannot have more rows than columns.Aeq is typically sparse.

You cannot use inequality constraints with the large-scale algorithm. If the preceding
conditions are not met, fmincon reverts to the medium-scale algorithm.

The function fmincon returns a warning if no gradient is provided and theLargeScale
optionis notrof f’. fmincon permits gix) to be an approximate gradient but this option is
not recommended; the numerical behavior of most optimization methods is considerably
more robust when the true gradient is used. See Table 2-4, Large-Scale Problem Coverage
and Requirements, for more information on what problem formulations are covered and
what information you must be provide.

The large-scale method in fmincon is most effective when the matrix of second derivatives
,i.e., the Hessian matrix H(x), is also computed. However, evaluation of the true Hessian
matrix is not required. For example, if you can supply the Hessian sparsity structure (using
the HessPattern optionin options), fmincon computes a sparse finite-difference
approximation to H(x).

If x0 is not strictly feasible, fmincon chooses a new strictly feasible (centered) starting
point.

If components of x have no upper (or lower) bounds, thenfmincon prefers that the
corresponding components of ub (or 1b) be setto Inf (or-Inf for 1b) as opposed to an
arbitrary but very large positive (or negative in the case of lower bounds) number.

Several aspects of linearly constrained minimization should be noted:
« A dense (or fairly dense) column of matrix Aeg can result in considerable fill and

computational cost.

« fmincon removes (numerically) linearly dependent rows inAeq; however, this
process involves repeated matrix factorizations and therefore can be costly if there
are many dependencies.

« Each iteration involves a sparse least-squares solution with matrix

Acg = Ae qTR_T

where RTis the Cholesky factor of the preconditioner. Therefore, there is a potential
conflict between choosing an effective preconditioner and minimizing fill indeg .

Medium-Scale Optimization. Better numerical results are likely if you specify
equalities explicitly, using Aeq and begq, instead of implicitly, using 1b and ub.

If equality constraints are present and dependent equalities are detected and removed in
the quadratic subproblem,’dependent’ is displayed under the Procedures heading (
when you ask for output by setting the Display optionto’iter’). The dependent
equalities are only removed when the equalities are consistent. If the system of equalities
is not consistent, the subproblem is infeasible and 'infeasible’ is displayed under the
Procedures heading.

Algorithm

Large-Scale Optimization. = The large-scale algorithm is a subspace trust region
method and is based on the interior-reflective Newton method described in[1], [2]. Each
iteration involves the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See the trust region and preconditioned
conjugate gradient method descriptions in the Large-Scale Algorithms chapter.

Medium-Scale Optimization. fmincon uses a sequential quadratic programming (
SQP) method. In this method, the function solves a quadratic programming (QP)
subproblem at each iteration. An estimate of the Hessian of the Lagrangian is updated at
each iteration using the BFGS formula (see fminunc, references(7], [8).

A line search is performed using a merit function similar to that proposed by [4], [5], and [6].
The QP subproblem is solved using an active set strategy similar to that described in [3]. A
full description of this algorithm is found in Constrained Optimization in »Introduction to
Algorithms.»

See also SQP Implementation in »Introduction to Algorithms” for more details on the
algorithm used.

Limitations
fmincon only handles real variables.

The function to be minimized and the constraints must both be continuous. fmincon
might only give local solutions.

When the problem is infeasible, fmincon attempts to minimize the maximum constraint
value.

The objective function and constraint function must be real-valued; that is, they cannot
return complex values.

The large-scale method does not allow equal upper and lower bounds. For example ifl b(2)=
=ub(2), then fmincon gives the error

Equal upper and lower bounds not permittedinthis large-scale
method.
Useequality constraints and themedium-scale method instead.

If you only have equality constraints you can still use the large-scale method. But if you
have both equalities and bounds, you must use the medium-scale method.

See Also

@ (function_handle), fminbnd, fminsearch, fminunc, optimset

References

(1] Coleman, T.F. and Y. Li, »An Interior, Trust Region Approach for Nonlinear Minimization
Subject to Bounds,” SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.

[2] Coleman, T.F. and Y. Li, »On the Convergence of Reflective Newton Methods for
Large-Scale Nonlinear Minimization Subject to Bounds,” Mathematical Programming, Vol.
67, Number 2, pp. 189-224, 1994.

(31 Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization , London, Academic Press
, 1981,

[4] Han, S.P., 7A Globally Convergent Method for Nonlinear Programming,” Vol. 22, Journal
of Optimization Theory and Applications, p. 297, 1977.

(51 Powell, M.J.D., A Fast Algorithm for Nonlinearly Constrained Optimization Calculations
,» Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Springer Verlag,
Vol. 630, 1978.

(6] Powell, M.J.D., "The Convergence of Variable Metric Methods For Nonlinearly
Constrained Optimization Calculations,” Nonlinear Programming 3(O.L. Mangasarian, R.R.
Meyer, and S.M. Robinson, eds.), Academic Press, 1978.

fminbnd fminimax

