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March 21, 2006 required for computing onéd/U L operation byM, and the
Abstract—The Diffie-Hellman key agreement protocol is a well time required for computing one square (i.84U L(X, X))

known method in which two parties agree on a secret key by py ¢ For convenience, we also denote the multiplication time
mean of public communication. From the computational point t ina ti tio b2 = M/S. Clearly. B > 1

of view, the protocol requires, from both paries, to execute two 0 Squarln.g Ime ratio 3R - /5. ) early, fv = 1. .
exponentiations in some group, where the secret exponent is FOr a given exponentiation algorithpd, and a probability
chosen, independently, by each user. In environments with limited distribution on a family of exponentg, we denote the associ-
resources, such as smartcards, these computations are consideredyted expected exponentiation time, when the exponent is drawn
heavy. from F, by T = T(F,G,.A). Here, we shall focus on the

In this paper we propose a method for decreasing the compu- . L . )
tational work involved with this exponentiation. If the required ~ Sduare-and-multiplySquareMul) exponentiation algorithm:

eitopy f e seret exponent 9 the saghioniald bpro2ch . arcirul Agortm
we choose here longer keys with imposed limitations on their Input: A € G, F' (positive integer
Hamming weight, in a way that the entropy remains K. We with binary representatiof¥';_, ..., F, Fo].
show how this can reduce the exponentiation time by~ 4% to Output: A¥
~ 9%, depending on the group. The relative performance gain
is shown to be independent ofK. Finally, we show how our 1.1 Us1=A4
method can be combined with more sophisticated exponentiation 1.2 Fori from f — 2 to 0 do
algori_thms, yielding smaller, but sometimes still significant extra- 1.3 1.2 U, = MUL(UH—la U71+1)
gain in performance. 1.4 1.3  if F; =1 thenU; = MUL(U;, A)
1.5 End For
1.6 ReturnU
I. INTRODUCTION

The Diffie-Hellman key agreement protocol (see e.g., [1]) is Here, if 7 is the uniform distribution over the set of
a commonly used protocol with which two communicators cah Pits integers, _theexpectedexponennatlon1tlme using the
agree on a secret key via public communication. The protocgfuareMul algorithm isT(F) = (f —1)5 + 5(f — 1) M.
uses a public commutative grogpand a public elemend € 1) Defining The Optimization Problem: For the key
G. Communicator/ chooses a secret positive integ€r(key agreement procedure, each communicator chooses his own se-
I), and Communicatof/ chooses a secret positive integér cret exponent (key), and uses it twice, for two exponentiations.
(key IT). Communicatod computesB; = A¥ (in the group), This secret exponent is never revealed, so it can be chosen at
and sendd3; (via public communication) to Communicatdbf  will, by communicator, as long as it is safe enough. Suppose
who computesB). Communicator/I computesB;; = AY  that security requirements determine that the entropy of the
and sends3;; to Communicatod ] who computesB;%. The secret key,H(K EY), equalsK. This leads to the following
agreed key isB} = By, = AXY. For each communicator, optimization problem.
this key agreement protocol involves the cor_nputaﬂonal cost.l_he Optimization Problem: Minimize T(F, G, A),
of two exponentiations, where the exponent is chosen by the

\ st.H(F)=K.

communicator.

In the classical protocoly is the group of residues modulo 2) The reference pointT: The straightforward way to
some (large) primeP, and exponentiation ist* (mod P). generate a key witt/(KEY) = K, is to select a random
In more efficient implementationg is an elliptic curve over string of K bits. When theéSquareMul algorithm is used, with
some finite field, and exponentiation is scalar multiplicatioduch a key, the expected exponentiation time is
of a (fixed) point on the curve.

Since our discussion is independent of the actual group, T, = (K —1)S + %KM ~ KS(1+ %R). 1)

we denote the multiplication operation of,Y € G by 2

MUL(X,Y). If F'is a positive integer, the exponentiationihe |atter approximation assumes ttas sufficiently large).

A" in G is MUL (A,MUL (A, MUL (4,...))) where the e consider the exponentiation tirié as a reference point.
multiplications are repeated’ times. We denote the time 2



3) The Goal We illustrate here a key selection procedure At the minimizing point p* we compute the resulting
having key entropyK, and achieving exponentiation timekey length ¢*), which is larger thank, and the optimal
smaller thanT.. To achieve this, we select keys with morexponentiation timeX(*), which is smaller thar¥. . We get
than K bits which are drawn from an unbalanced bits distribu- ’

tion. The efficiency of the method depends only on the group . R+1
(through the parameteR), but not onkK. no=- (1+ Rp*)log,(p*)’
(6)
Il. THE KEY SELECTION PROCEDURE —KS(1+ R) _KS
The proposed key selection procedure uses two parameters - log, (p*) - log, (1 —p*)’

n and p. We select a'strin'g of7 b'its,'which.are drawr'l,. As expected, to maintain the required entropy, the key
independently, from a binomial distribution having prObab'l'tYength (for anyp # 1, including p = p*) must be increased
2 :

p € (0,1) for a bit to bel, in a way that the resulting key rig e 2 shows the relative increase of the key length, at the
entropy isK. To this end,(n, p) must should satisfy minimization pointp = p*, compared to the length when

p = %, as a function ofR.
K = H(KEY) = H(n,p) =
—n (plogy(p) + (1 — p)logy(1 —p)).

The expected number of bits in this key isnp. If the
SquareMul algorithm is used, the expected exponentiation

(2)
144

124

time is (closely) 109
n*87
T=T(p,n) =nS +npM =nS(1 + Rp). 3) 6
Note that the reference poiffi, is the special casg(3, K). “ )
Consequently, using Eq. (2), the optimization problem re- 2] ///
duces to minimizing the one-variable function 0T 0% T 1 3 s
—KS(l + Rp) Fig. 2. The relative increase of the key length %), compared tak (the

T'(p)

- plogQ(p) T (1 — p) 1og2(1 — p)’ 0<p<l (4) I;;y length wherp = %), at the minimization poinp = p*, as a function of

It can be verified (we skip the computations) thalp) is
convex in(0,1). Its unique minimum in(0,1) is obtained at  Most important, the relative gain in the execution time, at
the unique poinp* satisfying the equation the optimum poinp*, is

N )
(2+ R)logy(1 — p*)

Clearly, p* # % for any R > 0, which indicates that we can  Note that bothp*, and the relative gain depend only @
indeed achieve exponentiation time shorter tﬁl’%n Figure 1 and are independent of the required key entrdpy Figure
plots the value of op* as a function ofR. As expectedp* 3 plots the relative gain in the exponentiation time, at the
decreases monotonically with because largeR implies that optimum pointp*, as a functionR. It is not surprising to
multiplication is more and more costly, so it pays to have lessalize that this gain is an increasing function ®f because
1 bits in the key. our approach actually replaces “expensive” multiplications by
a few more squares that result in from using a longer key.

Examples: The Diffie-Helman protocol is used in practice

p*=(1—p")F p*e(0,1). (5) gain®(R) =1+
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Fig. 1. The value op* as a function ofR.

059 with three groupsZ?, Elliptic curves EC) over GF(P) (for

0.48 some large primeP) and Elliptic curves ovet7 F(2%). Each

0.46 5 group has an associated value Bf(depending also on the
0441 actual details of the implementation). Table | summarizes the
0421 parameters related to the proposed method, when applied to
84 ) these specific groups. The second column of Table 1 shows
0-38 SN the value ofR, where theEC values are based on the usage
0-36 h of mixed Jacobian coordinates (see [2] for more details). The
22‘2‘ other columns show the optimal probability, the Keylength

increase, and the relative gain in performance. As can be seen,
depending on the group that is used}% to 9% gain in the
performance can be expected.



107 gain(p) = . -
1/2 ®)
8 - 2(1+ Rp)
%6 (2+ R)(plog,(p) + (1 — p) logy(1 = p))-

Thus, if we usep = 0.375 instead ofp* = 0.382, the
relative gain drops fromv 3.97% to ~ 3.96%. Fortunately,
24 e only a slight penalty.

/
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Figure 4 plots the relative gain in the exponentiation time
(in %), as a function op, for the three cases of interegt:=
Fig. 3. The relative gain (if%) in the exponentiation time, at the optimuml’ 1.4, an.d2' For each curve, the peak Isgat, and.the figure
point p*, as a functionR, in the ranged < R < 2.5. helps estimate the effect of choosing an approximate value of
p instead. Note that the three curves cross the horizontal axis
at some point, implying that ip is too far form the optimal
point, the resulting exponentiation time is actually worst than

Group G R p* Keylength increase Relative Gain
(in %) (in %) T%.
DH overZp 1 0.38 4.23 3.97
EC overGF[P] | 1.4 | 0.352 6.8 6.2
EC overGF[2"] 2 | 0.318 11 9.3
10
TABLE | % B
THE VALUES OF R, p*, THE RELATIVE INCREASE IN THEKEY LENGTH, 57 Y
AND THE RELATIVE GAIN IN EXPONENTIATION TIME (IN %), OBTAINED 0 02 03 07 \0 5
WHEN THE PROPOSED PROCEDURE IS APPLIEO HE DETAILS ARE GIVEN 51 P
FOR THREE USEFUL GROUPSAS EXPLAINED IN THE TEXT. 10 y
-104 /
Legend
R=1
1. | MPLEMENTATION -

Fig. 4. The relative gain in the exponentiation time %) as a functiorp,
To apply the proposed method in practice, we need a souf¥ghee representative values &t it =1, R = 1.4, and i = 2.
of biased bits, according to the relevant value &t To
this end, we illustrate here a simple method for obtaining
satisfactory biased bits from a balanced source. IV. OTHER EXPONENTIATION ALGORITHMS

Suppose that the system (e.g., smartcard) has some randofP t0 this point the analysis was performed under the
bits generator (typically a smartcard would have hardwar@Ssumption that exponentiation is carried out by using the
generated short seed, and a PRNG algorithm that producésjrareMul algorithm. This analysis needs to be modified
We approximate* by fraction of the typeZ. Then, we use when other exponentiation algorithms are used. Qualitatively,
consecutive bits from the (balanced) PRNG source, to defifiS clear that the efficiency of our proposed method de-
an integert. We extract a (single) bit whose value isif Ccreases if the relative weight of the multiplication operations
t < a, and0 otherwise. The quality of the approximation islecreases. To illustrate, this section analyzes the Sliding Win-
determined by-, which determines how many bits are requiredoWs EW) exponentiation algorithm (see, for example [3] and

in order to generate one biased bit. details in [11])-

Forp = 5, using a window of widthk, the average number

Example: Consider the classical Diffie-Hellman protocolyt 3771, operations igF~1—14-2=L In practice, due memory

where modular exponentii\tion is used. In this case, cagfitations k is chosen to be small (typicalty to 4), and this
R =1, and (see Table 1) = 0.382. We usea = 3 and jystifies approximating the number of multiplications by (for

T = 3 to approximatep™ = 0.382 ~ 3/8. This means that we |arge 1) by ~ 7% (to be compared with multiplications
need to draw chunks df bits and extract one bit from eaChrequired with theSquareMul algorithm).

chunk. This bit isl if the three bits ar@00, 001, or 010, and e now compute the number of multiplications associated
0 otherwise. with the SW algorithm, when using a binomial distribution

Of course, using this approximation, the algorithm is onlfor the key bits (with probabilityp for a bit to bel). Recall
near the optimal poinp*. To realize the effect of missingthat in the SW algorithm, we perform one multiplication
the optimal point, we need some stability analysis for ther every window (of sizek). After finishing a window, we
performance, neap*. The expression for the relative gain,’open” the next window upon encountering the first 1-bit. The
as a function o is expected number of zeros before this 1-bit14;§’3. Thus, on



average, we perform one multiplication per evépyl;—” bits. group that is being used, and on the exponentiation algorithm,
Consequently, the expected total number of multiplications @nd is independent ok .
To use the method, we first need to compute the optimal
ok=1 _ 14 (n—1)p ~ np 7 9) probability for a1-bit p*, and the extended key length;.
kp+1—p kp+1-p When this method is used together with the commonly used
SquareMul exponentiation algorithm, the relative performance
gain varies from~ 4% (for Zp) to ~ 9% (for GF(2*). No
additional memory requirements are involved, except for a
—KS(+pk+R-1)) slight increase in the Keylength.
kp+1—p)(plogy(p) + (1 — p)logy(1 — p)) In practice, the optimal valup* can be approximated by

(10) f H a *
. . . . t f the type, f .g.,p* = 0.382 = 3/8,
Note that for a trivial window, i.e.k = 1, these equations raction of the type;z, for somer (e.g.,p /

d o th that ¢ Mal algorith usingae = 3 and 7 = 3). To generate the biased bits,
reduce fo those that represen HruareMul algori M aN° halanced bits are drawn, defining an integeand a single
alyzed above. The optimal value of denotedpyy,, is the

. luti £ th i bit is then extractedl if ¢ < a., and 0 otherwise. It was
unique solution ot the equation shown that the deviation from the optimum point has only a
small effect on the exponentiation time improvement.

and the expected exponentiation time is

Tsw(p) = (

(k2 +kR—-2k—- R+ 1) PP +RE-2)p+1= Finally, we showed how other exponentiation algorithms
Rlog,(1 —p) (11) can be analyzed. In the example of tB& algorithm, the
pe(0,1). analysis shows that the proposed method is still useful, but

logy(p) —logy(1 —p)’ s e T P , :
. _ the contribution is distinguishable only with small windows
Table 1l shows the results obtained by using the proposgghich require less memory), and diC' groups.
method, with the three groups, using three window lengths
(k = 2,3,4).The table gives the optimal value of p%y,, REFERENCES

and the relative gain in performance. As expected, the gain " A 3. Oorschot. P.C.. and Vansione.S.A.: Handbook of Abplied
H H H H . enezes, A. J. Oorscnot, P.C., an anstone,>.A.. HanadbookK 0 e
is indeed less appreua?ed, 'espeually as the window IengE.H Cryptography. CRC Press, New York (1997). P
increases. Our conclusion is that the proposed method (g . Blake, G. Seroussi and N. Smart, Elliptic Curves in Cryptography.
appropriate fork = 2 and for theEC' groups. London Mathematical Society Lecture Notes Series # 265. Cambridge
University Press, Cambridge 1999.
[3] E.G. Thurber, On addition chai¢mn) < I(n) — b and lower bounds
for ¢(r). Duke Mathematical Journal 40 (1973), 907913.

Group G R |k p* Relative Gain
(in %)
DH overZ; 1 2 | 0.437 1.06
DH overZ}, 1 3 | 0.462 0.375
DH overZ%, 1 4 | 0475 0.164
EC overGF [P 1.4 | 2 | 0417 1.77
EC overGF [P 14| 3 0.45 0.65
EC overGF [P 1.4 | 4 | 0.467 0.29
EC overGF[2™ 2 2 | 0.391 2.91
EC overGF[2™ 2 3 | 0.433 1.11
EC overGF[2™ 2 4 | 0.456 0.5
TABLE Il

THE RESULTS OBTAINED BY USING THE PROPOSED METHOD WITH THE
THREE GROUPSUSING THESW ALGORITHM WITH WINDOW LENGTHS
k = 2,3,4. THE OPTIMAL VALUE OF p, p%y;,, AND THE RELATIVE GAIN IN
PERFORMANCE(IN %) ARE SHOWN. AS EXPECTED THE GAIN DROPS
SIGNIFICANTLY WITH THE WINDOW LENGTH INCREASES THE PROPOSED
METHOD IS APPROPRIATE ONLY FORE = 2 AND THE EC GROUPS

V. CONCLUSION

We have demonstrated a method for decreasing the com-
putational cost of the two exponentiations involved with the
Diffie-Hellman key agreement protocol.

The underlying idea is to use keys that are longer than
K, the required entropy, but to draw the bits from some
biased binomial distribution. This offers a tradeoff between
an increased number of squares and a decreased number of
(more expensive) multiplication. By nature, this method is
more successful in case where squaring is significantly cheaper
than multiplication. The expected improvement depends on the



