
Exponentiation Speed Up For Diffie-Hellman Key
Agreement Protocol

Shay Gueron1,3 Or Zuk 2,3

1 Dept. of Mathematics, University of Haifa, Haifa, Israel (shay@math.haifa.ac.il)
2 Faculty of Physics, Weizmann Institute of Science, Rehovot, Israel (or.zuk@discretix.com)

3 Discretix Technologies, Netanya, Israel.

March 21, 2006
Abstract— The Diffie-Hellman key agreement protocol is a well

known method in which two parties agree on a secret key by
mean of public communication. From the computational point
of view, the protocol requires, from both paries, to execute two
exponentiations in some group, where the secret exponent is
chosen, independently, by each user. In environments with limited
resources, such as smartcards, these computations are considered
heavy.

In this paper we propose a method for decreasing the compu-
tational work involved with this exponentiation. If the required
entropy of the secret exponent isK, the straightforward approach
is to select this key as a string ofK random bits. Instead,
we choose here longer keys with imposed limitations on their
Hamming weight, in a way that the entropy remains K. We
show how this can reduce the exponentiation time by∼ 4% to
∼ 9%, depending on the group. The relative performance gain
is shown to be independent ofK. Finally, we show how our
method can be combined with more sophisticated exponentiation
algorithms, yielding smaller, but sometimes still significant extra-
gain in performance.

I. I NTRODUCTION

The Diffie-Hellman key agreement protocol (see e.g., [1]) is
a commonly used protocol with which two communicators can
agree on a secret key via public communication. The protocol
uses a public commutative groupG and a public elementA ∈
G. CommunicatorI chooses a secret positive integerX (key
I), and CommunicatorII chooses a secret positive integerY
(key II). CommunicatorI computesBI = AX (in the group),
and sendsBI (via public communication) to CommunicatorII
who computesBY

I . CommunicatorII computesBII = AY

and sendsBII to CommunicatorII who computesBX
II . The

agreed key isBY
I = BX

II = AXY . For each communicator,
this key agreement protocol involves the computational cost
of two exponentiations, where the exponent is chosen by the
communicator.

In the classical protocol,G is the group of residues modulo
some (large) primeP , and exponentiation isAX (mod P).
In more efficient implementationsG is an elliptic curve over
some finite field, and exponentiation is scalar multiplication
of a (fixed) point on the curve.

Since our discussion is independent of the actual group,
we denote the multiplication operation ofX, Y ∈ G by
MUL(X,Y). If F is a positive integer, the exponentiation
AF in G is MUL (A,MUL (A,MUL (A, . . .))) where the
multiplications are repeatedF times. We denote the time

required for computing oneMUL operation byM , and the
time required for computing one square (i.e.,MUL(X, X))
by S. For convenience, we also denote the multiplication time
to squaring time ratio byR = M/S. Clearly,R ≥ 1.

For a given exponentiation algorithmA, and a probability
distribution on a family of exponentsF , we denote the associ-
ated expected exponentiation time, when the exponent is drawn
from F , by T = T (F ,G,A). Here, we shall focus on the
square-and-multiply (SquareMul) exponentiation algorithm:

SquareMul Algorithm
Input: A ∈ G, F (positive integer
with binary representation[Ff−1, . . . , F1, F0].
Output:AF

1.1 Uf−1 = A
1.2 Fori from f − 2 to 0 do
1.3 1.2 Ui = MUL(Ui+1, Ui+1)
1.4 1.3 if Fi = 1 thenUi = MUL(Ui, A)
1.5 End For
1.6 ReturnU0

Here, if F is the uniform distribution over the set of
f bits integers, theexpectedexponentiation time using the
SquareMul algorithm isT (F) = (f − 1)S + 1

2 (f − 1)M .

1) Defining The Optimization Problem: For the key
agreement procedure, each communicator chooses his own se-
cret exponent (key), and uses it twice, for two exponentiations.
This secret exponent is never revealed, so it can be chosen at
will, by communicator, as long as it is safe enough. Suppose
that security requirements determine that the entropy of the
secret key,H(KEY), equalsK. This leads to the following
optimization problem.

The Optimization Problem: Minimize T (F ,G,A),
s.t. H(F) = K.

2) The reference point T 1
2
: The straightforward way to

generate a key withH(KEY) = K, is to select a random
string ofK bits. When theSquareMul algorithm is used, with
such a key, the expected exponentiation time is

T 1
2
≡ (K − 1)S +

1
2
KM ≈ KS(1 +

1
2
R). (1)

(the latter approximation assumes thatK is sufficiently large).
We consider the exponentiation timeT 1

2
as a reference point.

3) The Goal: We illustrate here a key selection procedure
having key entropyK, and achieving exponentiation time
smaller thanT 1

2
. To achieve this, we select keys with more

thanK bits which are drawn from an unbalanced bits distribu-
tion. The efficiency of the method depends only on the group
(through the parameterR), but not onK.

II. T HE KEY SELECTION PROCEDURE

The proposed key selection procedure uses two parameters
n and p. We select a string ofn bits, which are drawn,
independently, from a binomial distribution having probability
p ∈ (0, 1) for a bit to be1, in a way that the resulting key
entropy isK. To this end,(n, p) must should satisfy

K = H(KEY) = H(n, p) =
−n (p log2(p) + (1− p) log2(1− p)) .

(2)

The expected number of1 bits in this key isnp. If the
SquareMul algorithm is used, the expected exponentiation
time is (closely)

T = T (p, n) = nS + npM = nS(1 + Rp). (3)

Note that the reference pointT 1
2

is the special caseT (1
2 , K).

Consequently, using Eq. (2), the optimization problem re-
duces to minimizing the one-variable function

T (p) =
−KS(1 + Rp)

p log2(p) + (1− p) log2(1− p)
, 0 < p < 1. (4)

It can be verified (we skip the computations) thatT (p) is
convex in(0, 1). Its unique minimum in(0, 1) is obtained at
the unique pointp∗ satisfying the equation

p∗ = (1− p∗)R+1, p∗ ∈ (0, 1). (5)

Clearly,p∗ 6= 1
2 for anyR > 0, which indicates that we can

indeed achieve exponentiation time shorter thanT 1
2
. Figure 1

plots the value of ofp∗ as a function ofR. As expected,p∗

decreases monotonically withR because largerR implies that
multiplication is more and more costly, so it pays to have less
1 bits in the key.

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

p*

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
R

Fig. 1. The value ofp∗ as a function ofR.

At the minimizing point p∗ we compute the resulting
key length (n∗), which is larger thanK, and the optimal
exponentiation time (T ∗), which is smaller thanT 1

2
. We get

n∗ = −K
R + 1

(1 + Rp∗) log2(p∗)
,

T ∗ =
−KS(1 + R)

log2(p∗)
=

−KS

log2(1− p∗)
.

(6)

As expected, to maintain the required entropy, the key
length (for anyp 6= 1

2 , including p = p∗) must be increased.
Figure 2 shows the relative increase of the key length, at the
minimization point p = p∗, compared to the length when
p = 1

2 , as a function ofR.

0

2

4

6

8

10

12

14

n*

0.5 1 1.5 2 2.5R

Fig. 2. The relative increase of the key length (in%), compared toK (the
key length whenp = 1

2
), at the minimization pointp = p∗, as a function of

R.

Most important, the relative gain in the execution time, at
the optimum pointp∗, is

gain∗(R) = 1 +
2

(2 + R) log2(1− p∗)
. (7)

Note that bothp∗, and the relative gain depend only onR,
and are independent of the required key entropyK. Figure
3 plots the relative gain in the exponentiation time, at the
optimum point p∗, as a functionR. It is not surprising to
realize that this gain is an increasing function ofR, because
our approach actually replaces “expensive” multiplications by
a few more squares that result in from using a longer key.

Examples:The Diffie-Helman protocol is used in practice
with three groups:Z∗P , Elliptic curves (EC) overGF (P) (for
some large primeP) and Elliptic curves overGF (2k). Each
group has an associated value ofR (depending also on the
actual details of the implementation). Table I summarizes the
parameters related to the proposed method, when applied to
these specific groups. The second column of Table 1 shows
the value ofR, where theEC values are based on the usage
of mixed Jacobian coordinates (see [2] for more details). The
other columns show the optimal probabilityp∗, the Keylength
increase, and the relative gain in performance. As can be seen,
depending on the group that is used, a4% to 9% gain in the
performance can be expected.

0

2

4

6

8

10

%

0.5 1 1.5 2 2.5R

Fig. 3. The relative gain (in%) in the exponentiation time, at the optimum
point p∗, as a functionR, in the range0 < R < 2.5.

Group G R p∗ Keylength increase Relative Gain
(in %) (in %)

DH overZ∗P 1 0.38 4.23 3.97
EC overGF [P] 1.4 0.352 6.8 6.2
EC overGF [2n] 2 0.318 11 9.3

TABLE I

THE VALUES OF R, p∗ , THE RELATIVE INCREASE IN THE KEY LENGTH,

AND THE RELATIVE GAIN IN EXPONENTIATION TIME (IN %), OBTAINED

WHEN THE PROPOSED PROCEDURE IS APPLIED. THE DETAILS ARE GIVEN

FOR THREE USEFUL GROUPS, AS EXPLAINED IN THE TEXT.

III. I MPLEMENTATION

To apply the proposed method in practice, we need a source
of biased bits, according to the relevant value ofp∗. To
this end, we illustrate here a simple method for obtaining
satisfactory biased bits from a balanced source.

Suppose that the system (e.g., smartcard) has some random
bits generator (typically a smartcard would have hardware-
generated short seed, and a PRNG algorithm that produces).
We approximatep∗ by fraction of the typea

2τ . Then, we useτ
consecutive bits from the (balanced) PRNG source, to define
an integert. We extract a (single) bit whose value is1 if
t ≤ a, and0 otherwise. The quality of the approximation is
determined byτ , which determines how many bits are required
in order to generate one biased bit.

Example: Consider the classical Diffie-Hellman protocol
where modular exponentiation is used. In this case, case
R = 1, and (see Table 1)p∗ = 0.382. We usea = 3 and
τ = 3 to approximatep∗ = 0.382 ≈ 3/8. This means that we
need to draw chunks of3 bits and extract one bit from each
chunk. This bit is1 if the three bits are000, 001, or 010, and
0 otherwise.

Of course, using this approximation, the algorithm is only
near the optimal pointp∗. To realize the effect of missing
the optimal point, we need some stability analysis for the
performance, nearp∗. The expression for the relative gain,
as a function ofp is

gain(p) =
T1/2 − T (p)

T1/2
=

1 +
2(1 + Rp)

(2 + R)(p log2(p) + (1− p) log2(1− p))
.

(8)

Thus, if we usep = 0.375 instead ofp∗ = 0.382, the
relative gain drops from∼ 3.97% to ∼ 3.96%. Fortunately,
only a slight penalty.

Figure 4 plots the relative gain in the exponentiation time
(in %), as a function ofp, for the three cases of interest:R =
1, 1.4, and2. For each curve, the peak is atp∗, and the figure
helps estimate the effect of choosing an approximate value of
p instead. Note that the three curves cross the horizontal axis
at some point, implying that ifp is too far form the optimal
point, the resulting exponentiation time is actually worst than
T 1

2
.

R=1
R=1.4
R=2

Legend

–10

–5

0

5

10

%

0.2 0.3 0.4 0.5p

Fig. 4. The relative gain in the exponentiation time (in%) as a functionp,
for three representative values ofR: R = 1, R = 1.4, andR = 2.

IV. OTHER EXPONENTIATION ALGORITHMS

Up to this point the analysis was performed under the
assumption that exponentiation is carried out by using the
SquareMul algorithm. This analysis needs to be modified
when other exponentiation algorithms are used. Qualitatively,
it is clear that the efficiency of our proposed method de-
creases if the relative weight of the multiplication operations
decreases. To illustrate, this section analyzes the Sliding Win-
dows (SW) exponentiation algorithm (see, for example [3] and
details in [1]).

For p = 1
2 , using a window of widthk, the average number

of MUL operations is2k−1−1+n−1
k+1 . In practice, due memory

limitations k is chosen to be small (typically2 to 4), and this
justifies approximating the number of multiplications by (for
large n) by ∼ n

k+1 (to be compared withn
2 multiplications

required with theSquareMul algorithm).
We now compute the number of multiplications associated

with the SW algorithm, when using a binomial distribution
for the key bits (with probabilityp for a bit to be1). Recall
that in the SW algorithm, we perform one multiplication
for every window (of sizek). After finishing a window, we
“open” the next window upon encountering the first 1-bit. The
expected number of zeros before this 1-bit is1−p

p . Thus, on

average, we perform one multiplication per everyk+ 1−p
p bits.

Consequently, the expected total number of multiplications is

2k−1 − 1 +
(n− 1)p

kp + 1− p
≈ np

kp + 1− p
, (9)

and the expected exponentiation time is

TSW (p) =
−KS(1 + p(k + R− 1))

(kp + 1− p)(p log2(p) + (1− p) log2(1− p))
.

(10)
Note that for a trivial window, i.e.,k = 1, these equations

reduce to those that represent theSquareMul algorithm an-
alyzed above. The optimal value ofp, denotedp∗SW , is the
unique solution of the equation

(
k2 + kR− 2 k −R + 1

)
p2 + (2 k − 2) p + 1 =

R log2(1− p)
log2(p)− log2(1− p)

, p ∈ (0, 1).
(11)

Table II shows the results obtained by using the proposed
method, with the three groups, using three window lengths
(k = 2, 3, 4).The table gives the optimal value ofp, p∗SW ,
and the relative gain in performance. As expected, the gain
is indeed less appreciated, especially as the window length
increases. Our conclusion is that the proposed method is
appropriate fork = 2 and for theEC groups.

Group G R k p∗ Relative Gain
(in %)

DH overZ∗P 1 2 0.437 1.06
DH overZ∗P 1 3 0.462 0.375
DH overZ∗P 1 4 0.475 0.164

EC overGF [P] 1.4 2 0.417 1.77
EC overGF [P] 1.4 3 0.45 0.65
EC overGF [P] 1.4 4 0.467 0.29
EC overGF [2n] 2 2 0.391 2.91
EC overGF [2n] 2 3 0.433 1.11
EC overGF [2n] 2 4 0.456 0.5

TABLE II

THE RESULTS OBTAINED BY USING THE PROPOSED METHOD WITH THE

THREE GROUPS, USING THESW ALGORITHM WITH WINDOW LENGTHS

k = 2, 3, 4. THE OPTIMAL VALUE OF p, p∗SW , AND THE RELATIVE GAIN IN

PERFORMANCE(IN %) ARE SHOWN. AS EXPECTED, THE GAIN DROPS

SIGNIFICANTLY WITH THE WINDOW LENGTH INCREASES. THE PROPOSED

METHOD IS APPROPRIATE ONLY FORk = 2 AND THE EC GROUPS.

V. CONCLUSION

We have demonstrated a method for decreasing the com-
putational cost of the two exponentiations involved with the
Diffie-Hellman key agreement protocol.

The underlying idea is to use keys that are longer than
K, the required entropy, but to draw the bits from some
biased binomial distribution. This offers a tradeoff between
an increased number of squares and a decreased number of
(more expensive) multiplication. By nature, this method is
more successful in case where squaring is significantly cheaper
than multiplication. The expected improvement depends on the

group that is being used, and on the exponentiation algorithm,
and is independent ofK.

To use the method, we first need to compute the optimal
probability for a 1-bit p∗, and the extended key length,n∗.
When this method is used together with the commonly used
SquareMul exponentiation algorithm, the relative performance
gain varies from∼ 4% (for ZP) to ∼ 9% (for GF (2k). No
additional memory requirements are involved, except for a
slight increase in the Keylength.

In practice, the optimal valuep∗ can be approximated by
fraction of the type a

2τ , for someτ (e.g.,p∗ = 0.382 ≈ 3/8,
using a = 3 and τ = 3). To generate the biased bits,τ
balanced bits are drawn, defining an integert, and a single
bit is then extracted:1 if t ≤ a., and 0 otherwise. It was
shown that the deviation from the optimum point has only a
small effect on the exponentiation time improvement.

Finally, we showed how other exponentiation algorithms
can be analyzed. In the example of theSW algorithm, the
analysis shows that the proposed method is still useful, but
the contribution is distinguishable only with small windows
(which require less memory), and onEC groups.

REFERENCES

[1] Menezes, A. J. Oorschot, P.C., and Vanstone,S.A.: Handbook of Applied
Cryptography. CRC Press, New York (1997).

[2] I. Blake, G. Seroussi and N. Smart, Elliptic Curves in Cryptography.
London Mathematical Society Lecture Notes Series # 265. Cambridge
University Press, Cambridge 1999.

[3] E.G. Thurber, On addition chainsl(mn) ≤ l(n)− b and lower bounds
for c(r). Duke Mathematical Journal 40 (1973), 907913.

