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� The most widely used biomedical literature
database – NCBI’s PubMed (http://www.ncbi.
nlm.nih.gov/entrez/query.fcgi) – contains over
11,000,000 document abstracts. A query for
documents mentioning the terms ‘gene’ or
‘protein’ returns ~2,800,000 documents of
which over two-thirds were published just
within the past decade. A more specific query
for papers mentioning ‘epidermal growth fac-
tor receptor’ returns over 10,000 documents.
Given that almost all current biomedical
knowledge is published in scientific articles,
researchers trying to make use of this infor-
mation require automated tools that enable a
search for the proverbial ‘needle’ of explicit
knowledge in this ‘haystack’ of text.

Several disciplines involve the automated
handling of text. These include: (1) information

retrieval, which deals mostly with finding doc-
uments that satisfy a particular information
need within a large database of documents
[1–3]; (2) natural language processing (NLP)–
a broad discipline concerned with all aspects
of automatically processing both written and
spoken language [4–7]; and (3) information
extraction (IE), a sub-field of NLP, centered
around finding explicit entities and facts in
free text [8–15, T.R. Leek, MSc thesis, University
of California, 1997], for example, identifying
all the positions in free text in which a ‘bank’
is mentioned (entity extraction) or finding all
acquisition relationships to populate a table
of companies that acquired one another (rela-
tionship extraction). Text mining is the com-
bined, automated process of analyzing un-
structured, natural language text to discover
information and knowledge that is typically
difficult to retrieve.

This review focuses specifically on text
mining of the biomedical literature ([16–33]),
and describes the LitMiner™ system, devel-
oped for finding relationships among genes,
proteins, drugs and diseases, to facilitate an
understanding and prediction of complex
biological processes. We focus in particular on
the Knowledge Discovery and Data Mining
(KDD) Cup 2002 ([34]), which serves as a for-
mal evaluation of the LitMiner™ system.

Text mining
Text mining is a new and exciting research
area that attempts to solve the information
overload problem. It uses techniques from the
general field of data mining [20,35–37] but,
because it deals with unstructured data, a
major part of the text mining process deals
with the crucial stage of pre-processing the
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document collections using techniques such as text 
categorization [38–40], term extraction [6] and IE [8–15,
T.R. Leek, MSc thesis, University of California, 1997]. In ad-
dition to pre-processing of the document collection, the text
mining process includes: (1) storage of the intermediate
representations, (2) techniques to analyze these intermediate
representations (such as distribution analysis, (3) clustering
[41], (4) trend analysis [42], (5) association rules [35,36],
and (6) visualization of the results [30,42].

A typical text mining system begins with collections of
raw documents, that is, documents without any labels or
tags. Documents are first automatically tagged by ‘cate-
gories’, ‘entities’ or ‘relationships’ that are extracted directly
from the documents. Next, extracted categories, entities or
relationships are used to support a range of data mining
operations on the documents.

Text categorization [38–40,43,44], which is typically a
sub-field of information retrieval [1–3], involves the parti-
tioning of a large collection of documents into subsets that
are interrelated by some pre-defined criteria. For example,
PubMed currently offers subsets of documents for users to
search through, such as AIDS literature and History of
Medicine. A second example is the Yahoo! Homepage,
which categorizes the whole web into areas such as ‘News
and Media’, ‘Science’ and ‘Arts’. Each document in the
large collection is tagged by words characteristic of cate-
gories, which enables the association of the document (or
website) with its relevant categories. 

Limiting the set of documents for mining to certain rel-
evant sub-categories simplifies the follow-up tasks for the
mining tools, and increases the probability that these tools
will extract the most on-target pieces of information from
the text. The actual detection of facts within the text is 
typically performed through IE methods.

Information extraction
Information extraction [8–15, T.R. Leek, MSc thesis, Uni-
versity of California, 1997] is one of the most prominent
techniques currently used in text mining. In particular, by
combining NLP tools, lexical resources and semantic con-
straints, IE can provide effective modules for mining the
biomedical literature. Complementary visualization tools
enable the user to explore, check (and correct if required)
the results of the text mining process effectively.

The first step in document tagging involves finding (ex-
tracting) entities and relationships from the documents
that are likely to be meaningful and content-bearing. The
term ‘relationships’ refer to facts or events involving cer-
tain entities. A possible ‘event’ might be that a company
has entered into a joint venture. A ‘fact’ might be that a
gene causes a certain disease. The extracted information

provides more concise and precise data for the mining
process than the more naive word-based approaches, such
as those used for text categorization, and tends to repre-
sent concepts and relationships that are more meaningful
and that relate directly to the domain of the examined
document.

Consequently, IE methods enable the mining of actual
information present within the text, rather than the lim-
ited set of tags associated with the documents. Using the 
IE process, the number of different relevant entities and 
relationships on which the data mining is performed is 
unbounded (typically thousands or even millions), and far
beyond the number of tags that any automated categoriza-
tion system could handle.

Text categorization
Text categorization [38–40,43,44] is the activity of labeling
natural language texts with thematic categories from a pre-
defined set of categories. There are two main approaches
to the categorization problem. The first approach is the
knowledge engineering approach [38,43], where the user
manually defines a set of rules that encode expert knowl-
edge about how to classify documents for given categories.
One example of the knowledge engineering approach is
the CONSTRUE [38,43] system built by the Carnegie Group
for Reuters (see Box 1). The main drawback of this approach
is the knowledge acquisition bottleneck. Rules must be de-
fined manually by a knowledge engineer interviewing a
domain expert. If the set of categories is modified, then
these two professionals must intervene again. Hayes et al.
[38,43] reported a 90% break-even between precision and
recall on a small subset of the Reuters test collection (723
documents). However, it took tremendous effort to de-
velop the system (several human years), and the test set
was not significant to validate the results. In addition, it is
not clear whether these results would scale-up if a larger
system were to be developed.
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Box 1. Knowledge based learning: the
CONSTRUE system

A typical rule in the CONSTRUE system.
If DNF (disjunction of conjunctive clauses) formula then
category:

If ((wheat & farm) or
(wheat & commodity) or
(bushels & export) or
(wheat & tonnes) or
(wheat & winter & ¬ soft))
then Wheat 
else ¬ Wheat



The second approach is the machine learning (ML) ap-
proach [39,40,44], where a general inductive process auto-
matically builds a text classifier by learning from a set of
pre-classified documents. The ML-based approach is based
on the existence of a training set of documents that are al-
ready pre-tagged using a pre-defined set of categories. A
typical ML-based categorization system is shown in Figure 1.

There are two main methods for performing ML-based
categorization. The first method is ‘hard’ (fully automated)
classification where, for each pair of category and docu-
ment, a truth value (either TRUE if the document belongs
to the category or FALSE if otherwise) is assigned. The sec-
ond method involves a ranking (semi-automated)-based
classification. In this approach, rather than returning a
truth value, the classifier returns a categorization status
value (CSV), that is, a number between 0 and 1 that repre-
sents evidence supporting that the document belongs to
the category. Documents are then ranked according to
their CSV value. Specific text categorization algorithms are
discussed later.

Comparison between text categorization and IE
In contrast to the IE approach, where the entities tagged in
the document are based on actual terms extracted from 
the document, text categorization tags the document with
concepts that are not necessarily mentioned in the docu-
ment itself. The main advantage of using a categorization
approach is that it is less time-consuming to prepare the
training group, and there is no need to manually craft
rules. However, the number of tags assigned to any given
document would be less than six. These tags would capture
only a few of the main topics of the document and certainly
miss most of the important entities mentioned inside the

document. By contrast, a document tagged by an IE sys-
tem will average 20–50 tags (for a 2–3 page document). To
summarize, IE was found to provide a much better infra-
structure for text mining than text categorization.

Mining the biomedical literature
Text mining of the biomedical literature uses as an input
to the system a set of biomedical articles, typically drawn
from a broad sub-domain. These articles are analyzed by IE
from a set of pre-defined entities and relationships. The
following section describes the heuristics for extracting a
variety of entities and relationships, followed by a descrip-
tion of the declarative information analysis language
(DIAL) IE language. We also provide a detailed description
of the LitMiner™ system (based on the DIAL language)
that was used in the KDD Cup 2002 [45–47].

Main biomedical entities
The following section outlines the main entities that can
be extracted from biomedical literature, giving examples
and focusing on the appropriate heuristics for each entity.
Gene. Gene is the fundamental entity in the molecular bi-
ology and/or genetics literature. Gene names present many
problems for IE systems [48]. The main problems include:
(1) the huge number of genes recorded in databases and 
in the literature (e.g. thousands of genes are known for
Drosophila); and (2) the substantial variability of gene names
within the literature (e.g. different synonyms and different
forms of capitalization). Although certain conventions 
have recently been set, names as common as ‘clock’ and
‘Columbus’, and varied as ‘cp beta subunit’ are still in-
cluded in the Drosophila literature. Another major problem
is the use of the same name for the gene and its correspond-
ing protein.

To avoid such problems, we use evidence (terms) found
within the text adjacent to the gene name. Examples of
such evidence include:
• the use of action verbs such as ‘activates’ or ‘inhibits’;
• a multi-word phrase followed by an abbreviation in paren-

thesis on the first occurrence of the gene name in the text;
• a receptor with the same name as a gene in a signaling

pathway; these are two separate genes, one of which 
includes ‘receptor’ in its name (e.g. epidermal growth 
factor and epidermal growth factor receptor).

In addition to such evidence we use several lexicons; how-
ever, these must be used carefully as they often include
synonyms that are same as common English words (see
earlier example).
Domain (motifs). Recognizable arrangements within proteins
that are used elsewhere in other proteins (e.g. ‘helix–loop–
helix’). Here, again, there are substantial inconsistencies
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Figure 1. A typical machine learning (ML)-based categorization system.
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(occasionally they are named after one of the proteins that
contain them) but the majority has independent names.
Enzymatic activity. The specific activity with which a protein
domain is associated (e.g. ‘ATPase’).
Primers. Small sequences of DNA or RNA identified specifi-
cally and usually used for experimental purposes. In 
papers, primers occur simply as strings of letters, almost
exclusively as ‘a’ ‘t’ ‘g’ and ‘c’ (e.g. ‘gatgaccggacttatgcgccgta’)
and are usually between 15 and 35 characters long. Such
strings are thus relatively easy to extract.
Phenotype. The difference observed from the normal state;
for example, ‘inner ear defect’ in the phrase ‘Snell’s waltzer
mutants exhibit behavioral abnormalities suggestive of an
inner ear defect’. From an IE viewpoint, phenotypes are
usually nominal or verbal phrases described as a result of
an abnormal state of a gene (described by a nominal phrase
headed by gene name).
Signaling pathway. Typically a nominal phrase including a
gene name and a following term such as ‘pathway’ or ‘signal
(e.g. ‘map kinase pathway’).
Mostly referred to as being activated, inhibited, used, or in
a ‘through’ construct.

Lexicon-based entities
Organism. Lexicons including the more widely researched
organisms, including ‘mouse’ and ‘Drosophila’, although
such a lexicon cannot, of course, cover all known organisms.
Tissue. A subsection of an organism, for example, ‘wing’.
Organelle. A subunit of the cell, for example, ‘mitochon-
drion’.
Chemicals and/or drugs. For example, ‘tetracycline’.

Biomedical relationships
This section lists some of the relationships that can be in-
duced from the biomedical literature, and provides actual
sentences that exemplify each relationship.
Gene–gene pathways. Any chain of controlling relationships
that appear together. For example, the phrases, ‘GENE, a
member of the...pathway’ (and variations thereof), and
‘GENE and its target(s)’, give an indication of a pathway.
The following verbs indicate that the second gene is con-
trolled by the first, or that the second gene is downstream:
regulate, upregulate, downregulate, activate, enhance, 
inhibit, induce and modulate.
Two genes bind. The following phrases give an indication
that two genes bind: ‘GENE forms a complex with GENE’,
‘GENE is found in a complex with GENE’, ‘GENE interacts
with GENE’. (Note that the phrase ‘has a complex interac-
tion with’ is not an indication of a bind.) The verbs ‘bind’
and (physically) ‘associate’ correlate two genes that bind.
The verb ‘associate’ alone provides low confidence of a

bind; the presence of ‘physically’ before ‘associate’ increases
its confidence. ‘Immunoprecipitate’ and ‘co-precipitate’
are good clue words that two genes are related.
Genes are related. Indications that genes are from the 
same gene family. For example, ‘GENE is a member of the...
family’. An indication that genes are homologs is given 
by the example ‘GENE1 is the ORGANISM homolog of
GENE2’.
Gene–phenotype. Indicates a gene–phenotype relationship, 
for example, the phrase ‘GENE is required for PHENOTYPE’.
Verbs that correlate a gene and a phenotype include ‘showed’
(in association with an organism) and ‘exhibited’ (in association
with an organism).
Gene–disease. Indicates a relationship between a gene and
disease. For example, ‘mutations in p53 were predominantly
detected in Burkitt’s lymphoma cells’.

Implementation in the DIAL Language
Our modules for extracting the entities and relationships
described earlier are implemented in a language called DIAL.
DIAL is a language designed specifically for writing IE rules
[45–47]. Here, we describe the basic elements of the lan-
guage (the complete syntax of DIAL is beyond the scope of
this paper). Box 2 gives a full example of the DIAL rule.
Basic elements. The basic elements of the language are the
syntactic and semantic elements of text, and sequences
and patterns thereof. Among these elements the language
uses: (1) pre-defined strings, for example, ‘gene’; (2) word
class elements, that is, a phrase from a pre-defined set of
phrases that share a common semantic meaning, for ex-
ample, ‘wcOrganism’, a list of organisms; and (3) skip pat-
terns, that is, a pattern that matches (skips) up to a certain
number of tokens (a series of characters that comprise a
basic element of the document) followed by an instance of
another element. For example, skip(‘)’,10) matches up to
10 tokens until a ‘)’ token.
Each of these elements can be optional (denoted by square
brackets around the element).
Constraints. Constraints carry out on-the-fly Boolean checks
for specific attributes. These can be applied to fragments 
of the original text, or to results obtained during pro-
cessing of the extraction step. The syntax of constraints 
is verification of the keyword followed by the condi-
tion to be checked within brackets. The condition is 
typically implemented using a suitable Boolean function,
implemented within DIAL infrastructure libraries. For 
example, InWC returns TRUE if the tested text segment 
is a member of the tested wordclass. For example,
verify(InWC(Head,@wcHomolog)) means that the head
pattern matching element must be a member of the word
class wcHomolog.
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IE rule bases. The rule base can be viewed as a logic program.
Thus, a rule base ‘Γ’ is a conjunction of definite clause, Ci:
Hi ← Bi. Here, Ci is a clause tag; Hi (called the ‘head’) is a
literal; and Bi = [Bi1 Bi2...] = Pi ∪ Ni (called the ‘body’) is a set
of literals, where Pi = [pij] is a set of pattern-matching 
elements, and Ni = [nij] is a set of constraints operating on
Pi. The clause Ci: Hi ← Bi represents the assertion that Hi

is implied by the conjunction of the literals in Pi while 
satisfying all the constraints in Ni.

KDD Cup 2002 text mining system
The KDD Cup competition was held in conjunction with
the ACM SIGKDD International Conference on KDD held
on July 23–26, 2002, in Edmonton, Alberta, Canada. The
KDD Cup included two separated tasks, but we refer only
to the first task. A full description of the two tasks is given
in [34]. The following section gives a brief overview.

The Drosophila fruit fly is one of the most researched or-
ganisms in molecular biology and genetics. Although its
genome has been already completely sequenced, research
into the expression and function of various genes is ongo-
ing. The number of papers discussing Drosophila is so high
(tens of thousands) that a database dedicated to Drosophila
genetics and molecular biology – FlyBase (http://www.flybase.
org) – was constructed.

Given their number, a full review of all the published 
papers would take a significant amount of time. There was
thus a demand for automated systems to perform at least
some of the tasks. One of the basic tasks of the FlyBase 
curators is to identify which papers describe experimental
results about the expression of Drosophila genes in natural
conditions, and, for each such paper, for which genes the
experimental evidence was provided. Experimental evi-
dence can refer to the expression of transcripts (RNA) or to
the expression of proteins.

Contrary to what might be expected, only about one-
third of the papers include such evidence; many papers
discuss results that were produced artificially (ectopically)
or some indirect research related to Drosophila genes.
Moreover, although a paper might mention many genes,
the experimental results often refer only to a sub-set of the
whole set of genes mentioned. The most well-known ex-
ample is the w gene, which is responsible for the eye-color
of the fly (red, dominant; white, recessive). This gene was
identified as early as the 1920s, and because it is sex-linked
and its prototype so easy to observe, it is often used as 
a tool for studying other genes. For the tasks discussed
here, this would mean that the w gene alone is irrelevant.
Unfortunately, the case for other genes is much more com-
plex. Although one paper might investigate the expression
of a gene at a certain stage of the development of the 
fly embryo, another paper might discuss unnatural expres-
sions of the same gene, observed in conjunction to the 
action of other genes or processes.

Another problem inherent in this task is the format of
the papers. Although the FlyBase curator reviews the full
paper as originally published (typically in PDF format), the
KDD Cup systems had to cope with a text version, without
the figures and with little formatting. Figure 2 compares
the two versions of a page of an article from the training
set [49].
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Box 2. Declarative information analysis language

Declarative information analysis language (DIAL) is a language
designed specifically for writing information extraction rules.
The following example shows the syntax for the predicate
‘homologs’, which identifies a homology relationship between
two genes.The code fragment starts by providing the formal
definition of the predicate ‘homologs’ that has two arguments,
followed by a definition of several word classes that will be
used in the actual rule.The rule looks for a gene name.This is
carried out by the predicate ‘GeneCandidate’, which returns
the parameter ‘Gene1’ followed by an optional phrase delim-
ited within parenthesis (usually an acronym of Gene1), and
then an optional comma and optional occurrence of the
wordclass ‘wcClauseConnector’.The system then looks for
the word ‘is’ followed by the optional occurrence of an arti-
cle. It then extracts a noun phrase (with its article, head and
stem). Finally, the system looks for the word ‘of ’ followed by
an optional ‘wcOrganism’ and another gene (Gene2). In addi-
tion, the rule contains a constraint that ensures that the head
of the noun phrase contains one of the phrases defined by the
word class ‘wcHomolog’.

DIAL syntax example
predicate toplevel Homologs(STRING Gene1,STRING Gene2);

wordclass wcHomolog = homolog homologue paralog
paralogue ortholog orthologue;
wordclass wcOrganism = mammalian mammals drosophila
mouse rat xneopus yeast; //
wordclass wcClauseConnector = “which” “that”;

predicate OptParen();
OptParen():- “(“ skip(“)”,10) “)”;
OptParen():- TRUE;

Homologs(Gene1,Gene2):-
GeneCandidate(Gene1) //Decapentaplegic
OptParen //(Dpp)
[ “,” ]
[ wcClauseConnector ]
“is”
[ wcArticle ] // a
NounGroup(Article,Head,Stem) // close homologue
“of”
[ wcOrganism ] // mammalian
GeneCandidate(Gene2) // BMPs



Finding the right approach: IE vs categorization
At a first glance, the first and second tasks of the KDD Cup
are clear categorization tasks: take a scientific paper and
classify it either as a curatable (relevant, a paper that in-
cludes a experimental result evidence) or as non-curatable
(irrelevant). Or, for the first task, simply order the docu-
ments according to their relevance. Even the third task,
which required decisions regarding the product (transcript
or protein) of each gene, can be presented as a categoriza-
tion task (See [50]).

By contrast, as Yeh et al. presented [34], IE is a less intu-
itive approach to such tasks because it usually deals with
the extraction of single instances of certain templates, with-
out a global ‘Yes/No’ question regarding a whole document.

However, closer analysis of the tasks and actual experi-
ments made with the task data led to the conclusion that
IE is significantly more suitable than categorization for
these tasks.

First, most papers are from the same domain (molecular
biology and/or genetics) and thus use a relatively narrow

vocabulary. As most categorization approaches use words
from the document as the features inserted into the classi-
fication model, the representation of the various docu-
ments will be relatively similar; most papers in the KDD
Cup collection include words such as ‘Drosophila’, ‘gene’,
and so on, with high frequency. The frequency of such
words thus contributes little to information regarding 
curate or non-curate decisions.

Second, many curatable papers have both relevant 
results (e.g. wild-type expression) and irrelevant ones (e.g.
mutations), and, as discussed previously, the same paper
might include relevant results for some of the referenced
genes, but not for others. Such distinction between the
various genes cannot be achieved by classical categoriza-
tion: relevant phrases (patterns) for the specific genes must
be found within the papers.

Third, the third task required deciding, for each gene,
between transcript and protein. Although the two prod-
ucts could theoretically be treated as independent, discus-
sions with domain experts and checking of the actual
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Figure 2. Original (left) and text (right) versions of an article from the Knowledge Discovery and Data Mining (KDD) Cup 2002.



training data proved that this was not the case. Evidence
of a transcript leads, in most cases, to evidence of a pro-
tein, sometimes even when no direct expression of the pro-
tein is shown. Moreover, we found that certain forms of
gene synonyms usually indicate reference to the protein
(typically all-capital-case forms), and certain other forms
indicate reference to the transcript of the same gene. Such
distinctions and dependencies are much easier to deal with
in an IE, rule-based system than in a categorization system.

Finally, many categorization approaches (i.e. SVM, sup-
port vector machine, used by the team from Imperial
College London, UK [50]) are ‘black box’ approaches, sup-
plying the final result but making it difficult for the user
(certainly the end-user) to analyze the reasons for the 
result and to improve and/or fix the system if needed. By
contrast, an IE system such as the one we constructed (see
later) ‘collects’ various local evidences within the docu-
ment and uses them to make the global decision for the
whole document, and can therefore supply these evidences
‘for free’, both to the developer and to the end-user. We be-
lieve that this feature (although not required for the KDD
Cup task itself) is crucial to curation and/or literature min-
ing. An application that enables the end-user (in this case
the FlyBase curators) to see the evidences extracted by our
system and to check whether they are correct or incorrect
(or add new evidences not found by the system) is 
described later in this review.

On a practical note, actual experiments that examined
the use of classical categorization approaches for these
tasks were not very successful (an F-measure score of only
62-64% for the second task on the training set, and an
even lower score for the test set using the training set 
classifier). For the third task (decision for single genes), cat-
egorization results were extremely poor. These results are
consistent with the reports of other teams [50].

Focus of the rule-based IE module
Following the analysis described earlier, we decided that,
as it would be very difficult to search the whole paper, our
focus should be on those elements of the paper that a
human reader going through the paper quickly would
focus. Following discussions with domain experts, we 
decided to focus on the following elements of the paper.
Figure legends. The figure legends best describe the experimen-
tal results found, using a relatively small set of patterns and
vocabulary (see Fig. 2).
Title keywords and patterns. Relevant papers appear to have
relevant keywords or patterns (e.g. ‘Expression of a Drosophila
GATA transcription factor’), whereas papers with title key-
words identified as ‘negative’ (for this task) (e.g. ‘Epidermal
muscle attachment site-specific target gene expression and

interference with myotube guidance in response to ectopic
stripe expression in the developing Drosophila epidermis)
are less likely to report experimental results about natural
gene expressions.
Paper abstract. In relation to patterns found regarding gene
expression, there were often notes indicating that the 
author submitted a novel sequence to GenBank (e.g. ‘The
nucleotide sequence(s) reported in this paper has been 
submitted to the GenBank(TM)/EMBL Data Bank with 
accession number(s) D50542[GenBank]).

Design of the rule-based IE module
Our IE Module was constructed using several layers as 
opposed to one unit.
Infrastructure layer. This layer comprises general libraries 
developed not in conjunction with this specific project.
These libraries provide basic utilities for the IE process 
itself and basic NLP (morphology) tools. The NLP tools
themselves include several layers (see [45]), including the
part-of-speech tagger, and noun phrase and verb phrase
grouper.
Metadata management layer. This layer is responsible for: (1)
identifying the gene candidates for a given paper and stor-
ing them in a suitable data structure (a map; an available
data-type within our IE language); (2) updating the gene
scores through the document as evidences regarding a spe-
cific gene are found (see later); and (3) checking the final
score of each gene and of the whole paper, and writing the
required results for the paper (at the post-processing stage).
(These decisions are made using certain thresholds that
can be adjusted as required.)
Gene identification layer. This is an auxiliary layer for extrac-
tion of gene occurrences with their synonyms. It performs
normalization of gene names according to the gene 
thesaurus, and normalizes certain typographies (e.g. ‘Dgc
[alpha.gif] 1’ to ‘Dgc&agr ; 1’). This layer also attempts to
identify whether the reference is to a protein or to a tran-
script (e.g. all-capital-case instances, such as APPL, are usually
proteins), and whether the format of the gene itself and
the following tokens indicate that it is a transgene (unnatural
mutation), such as in ‘Drab6[wt]’.
Structural analysis layer. Following our decision to focus on
the sections listed earlier, and because we received text ver-
sions of the whole paper, it was essential to write rules to
identify these sections based on clues such as carriage-
returns and some keywords. Once such a section is found,
it is sent for further processing by the fifth (main) layer.
Main layer. This layer extracts the required evidences using
classical IE heuristics, that is, by extracting ‘local’ patterns
found within the relevant sections, and updating the scores
of the gene and the whole paper towards the final, ‘global’
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decision. We extracted both positive evidences (direct 
descriptions of relevant results or indicative keywords) and
negative evidences (patterns suggesting that the document
discusses results that are irrelevant). For example, positive
evidence might be the phrase: ‘Figure 2. Northern blot
analysis of fruitless mRNA’. (Northern blot is a common
technique for showing transcript expressions.) Negative
evidence might be the phrase: ‘Figure 3. Ectopic expression
of dNSF2 in mesoderm is sufficient to rescue the lethality
of dNSF2 mutations’.

The main layer combines lexical resources, NLP tools
and semantic constraints. For example, if the hsp70 gene is
found within a phrase such as ‘@hsp70@-@white@ trans-
gene’, it is ignored. Similarly, if a gene expression phrase 
is found within a verb phrase that describes a functional 
dependency result, it is also ignored (e.g. ‘Dac does not 
antagonize hth expression in the antenna’). The latter ex-
ample relies directly on our infrastructure NLP layer, which
extracts verb patterns such as ‘Dac does not antagonize’
(see [51] for more information).
Lexical resources. The system uses lexicons for key pattern
elements such as analysis techniques (e.g. northern blot),
positive headline keywords (e.g. homolog) and negative
headline keywords (e.g. ectopic, unnatural).

Implementation in DIAL
As discussed earlier, DIAL provides built-in libraries for 
tokenizing, part of speech (POS)-tagging and noun- and
verb-phrase extraction. DIAL also uses dynamic mapping
from the metadata management layer, and the thesaurus
for gene identification. We focus here on sample rules from
the main (highest) layer that extracts the evidences them-
selves. Figure 3 shows a sample rule for ‘induced expression’
– expression of a gene reported under certain conditions
influenced by another gene. As explained earlier, such 
expression should not be extracted as a ‘natural expression’.

Evaluation of our system
We developed our system based on a training set of 862
full-text articles tagged by the FlyBase curators. The system
was also tested on a separate set of 213 articles (see [34] for
more information).

Our system achieved the best results (of 32 participating
systems) in all three tasks. Our F-Measure result for the 
second task (Yes/No curate decision) was 78%, compared
with a median of 58% for all the systems submitted. Our 
F-Measure result for the third task (Yes/No decision regard-
ing each gene) was 67%, compared with a median of 35%
for all the system submitted. As discussed earlier, these re-
sults clearly demonstrate the superiority of the rule-based
IE approach for this task.

Visualization in text mining
One of the crucial requirements when developing a text
mining system is the ability to browse through the docu-
ment collection and be able to ‘visualize’ various elements
within the collection. This type of interactive exploration
enables the identification of new types of entities and rela-
tionships that can be extracted, and better exploration of
the results from the IE phase [42,36].

Relationship maps provide a visual means for concise
representation of the relationships among many terms in a
given context. To define a relationship map, the user spec-
ifies: (1) a taxonomy category (e.g. ‘genes’) that determines
the nodes of the graph; and (2) an optional context node
(e.g. ‘phosphorylation’) that determines the type of con-
nection the user wishes to find among the graph nodes.

If no context is provided, the system will revert to using
co-occurrence information between entities. We say that
two entities co-occur within a lexical unit (such as sen-
tence, paragraph or document) if they are both contained
within the same lexical unit. The most common lexical
level for co-occurrence computation is the sentence. Entities
that appear within the same sentence are said to be ‘co-
occurring in the sentence level’. Presenting co-occurrence
maps is one of the main methods that enables the developer
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Figure 3. Sample of the declarative information analysis language
(DIAL) rule used in the Knowledge Discovery and Data Mining
(KDD) Cup 2002.We used a lexicon of expression nouns
(‘wcExpressionNoun’) and a lexicon of verbs (‘wcInducedVerbs’) to
indicate a relationship between two genes.‘ExtractedGene’ is the
predicate implemented in the gene identification layer (matching a
gene and finding its normalized form). Induced expression is the main
rule.When a gene is found that is followed by a verb group whose
main verb is in the ‘wcInducedVerbs’ wordclass, and then followed by
an expression of another gene (‘GeneExpressionNG’), then this an
classed as induced expression. It should therefore be treated as
negative evidence for either gene.



to develop new IE rules. Such maps are used in the process
that creates new semantic relationships. This semi-auto-
matic process takes the output of such maps and creates
IE-rule candidates that are refined by the user. Figure 4
shows a map created by finding co-occurrences of genes in
PubMed articles. Figure 5 features a semantic relationship
map showing links between genes that are either homologs
or are associated by a gene-binding or gene-pathway rela-
tionship. The map in Figure 6 depicts relationships between
genes and diseases.

Machine-assisted indexing
No IE system is 100% accurate. Regard-
less of the approach taken, there will
always be instances of entities or rela-
tionships that the system will miss, as
well as some incorrect (false-positive)
instances that will nevertheless be ex-
tracted. The reason for this is the com-
plex nature of the human language; a
computerized system will never be able
to trace all the possible phrasing and
contexts used by humans or use all the
domain expertise of humans. Therefore,
for many applications, it is useful to
give human experts the opportunity to

review the results that are tagged or extracted by the IE 
system. This is particularly useful for areas where much do-
main expertise is required, such as the biomedical domain.
For example, machine-assisted-indexing (MAI) (extraction)
can be applied to the FlyBase curation task described earlier.

The results achieved by our system are not sufficient to
achieve a totally automated process, but can certainly be
used as the basis for an MAI system. Instead of having to
carefully read all the papers, the system processes the papers
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Figure 4. Co-occurrence between genes. Data is based on 30,000 MedLine abstracts.

Figure 5. Relationship Map, Genes that are homologs, or form a GeneBinding or GenePathway
Rerelationship, Data is based on 30,000 medline abstracts.The map is based on results of semantic
extraction of the relationship.



for the expert (i.e. the FlyBase curator), and suggests suitable
results for each paper, that is, whether it should be curated,
and for which genes the system found the required experi-
mental results. The expert can then check the results of the
system – a process significantly shorter than reading all the
papers.

The MAI application is interactive. It performs the ‘dirty
work’ and enables the user to go directly to the sections
from which the relevant information was extracted.

The user can also view the location of the extracted infor-
mation within the original paper in a PDF format (with the
original figures) and then decide whether the instance was
extracted correctly or incorrectly. All the tools associated
with the PDF document (e.g. maximizing and minimizing
the image) can also be used. In addition, the user can add or
delete terms, or change the status of extracted terms. The MAI
application can be used simultaneously by several users (each
one checking different documents), recording any changes
made by each user. Figure 7 shows the application of MAI
to a sample of FlyBase articles (KDD Cup training documents;
PDF versions are publicly available from NCBI’s PubMed).

Concluding remarks
Owing to the abundance of available biomedical data in free
text format, there is a growing need for efficient tools for
text mining. Unlike structured data, where data mining 
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Figure 6. Relationships between genes and diseases. Data is based on 30,000 MedLine abstracts. Shown here is the gene encoding p53. Results are
based on co-occurrence between genes and diseases within the same sentence.

Figure 7. Machine-assisted-indexing (MAI) for FlyBase articles.



algorithms can be applied directly to the underlying data,
text mining requires some pre-processing before any mining
algorithm can be successfully applied. IE has proven to be an
efficient method for this pre-processing phase. Text mining
using IE thus provides a useful middle-ground in the quest
for tools to facilitate an understanding of the information
captured in textual formats. The powerful combination of
precise analysis of the biomedical documents with a set of
visualization tools enables the user to navigate and use easily
this abundance of biomedical document collections.
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