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Abstract This paper describes a hybrid statistical and knowledge-based infor-

Q1

mation extraction model, able to extract entities and relations at the sentence
level. The model attempts to retain and improve the high accuracy levels of
knowledge-based systems while drastically reducing the amount of manual
labour by relying on statistics drawn from a training corpus. The implementation
of the model, called TEG (trainable extraction grammar), can be adapted to any
IE domain by writing a suitable set of rules in a SCFG (stochastic context-free
grammar)-based extraction language and training them using an annotated corpus.
The system does not contain any purely linguistic components, such as PoS tagger
or shallow parser, but allows to using external linguistic components if necessary.
We demonstrate the performance of the system on several named entity extraction
and relation extraction tasks. The experiments show that our hybrid approach
outperforms both purely statistical and purely knowledge-based systems, while
requiring orders of magnitude less manual rule writing and smaller amounts of
training data. We also demonstrate the robustness of our system under conditions
of poor training-data quality.

Keywords HMM · Information extraction · Rules-based systems · Text mining ·
Information extraction · HMM

1 Introduction

The knowledge engineering (mostly rule-based) systems traditionally were the
top performers in most IE benchmarks, such as MUC [5], ACE and the KDD
CUP [23]. Recently, though, the machine learning systems became state of the
art, especially for simpler tagging problems, such as named entity recognition [2]
or field extraction [20].
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Still, the knowledge-engineering approach retains some of its advantages. It
is focused around manually writing patterns to extract the entities and relations.
The patterns are naturally accessible to human understanding and can be improved
in a controllable way. Whereas improving the results of a pure machine-learning
system would require providing it with additional training data. However, the im-
pact of adding more data soon becomes infinitesimal while the cost of manually
annotating the data grows linearly.

We present a hybrid entities- and relations-extraction system, which combines
the power of knowledge-based and statistical machine-learning approaches. The
system is based on stochastic context-free grammars. It is called TEG, for train-
able extraction grammar. The rules for the extraction grammar are written man-
ually, while the probabilities are trained from an annotated corpus. The powerful
disambiguation ability of PCFGs allows the knowledge engineer to write very sim-
ple and naive rules while retaining their power, thus greatly reducing the required
labour. In addition, the size of the needed training data is considerably smaller
than the size of the training data needed for pure machine-learning systems (for
achieving comparable accuracy results). Furthermore, the tasks of rule writing and
corpus annotation can be balanced against each other.

In the sections that follow, we briefly survey the related work, describe our sys-
tem and then proceed to the experiments and comparison with other information-
extraction systems.

2 Related work

The knowledge-based IE systems are well known. We use the DIAL system de-
veloped by the authors [9] as a typical example, showing both the pros and cons
of the knowledge-based approach. DIAL is based on a general-purpose rule lan-
guage. The system was top performing at ACE-2 after being manually prepared
for the task during 2 months by a team of four people.

There have been several attempts to automate the task of developing infor-
mation extraction modules using machine-learning methods. The general idea is
that a domain expert labels the target concepts in a set of documents. The system
then learns a model of the extraction task, which can be applied to new docu-
ments automatically. Approaches can be roughly divided by the type of model
they use. First, there are systems generating sets of rules, very much in the flavour
of hand-written rules for representing the target concepts. These approaches in-
clude methods based on finite-automata [16], grammar learning[12] and ILP [1,
13, 14].

Second, there are approaches using diverse forms of probabilistic representa-
tions. Most prominently, hidden Markov models (HMM) have been used for the
task of IE (e.g. [3, 10, 11, 17]). HMM are probabilistic automata for which the
states themselves are hidden. Once trained, such a model can give an estimate on
how probable a text fragment contains the target concept. Besides HMM, there are
also other approaches based on naive Bayes [8], SVM [22] or approaches combin-
ing several of these techniques [8, 13, 15].

Recently, conditional approaches based on maximal entropy were reported to
outperform generative HMM models on several tasks. The models are maximum
entropy Markov models (MEMM) [20] and conditional random fields (CRF) [18].
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Stochastic context-free grammars were also used for information extraction in
several systems. Typically, a SCFG is used for syntactic parsing of sentences, as
in the BBN SIFT system [19].

Our approach is different in that our system does not employ full syntactic
parsing. Instead, semantically oriented SCFG are constructed manually. The clos-
est to our approach is the system described in [6], which extracted management
succession events using a semantically oriented SCFG of a special predefined
form. Our system can be viewed as a generalisation and extension of this work.
Our system allows grammars of arbitrary structure, extends the possibilities for
leaf grammar nodes and adds the possibility of conditioning the probabilities of
rules upon context. Also, in contrast with [6], our system works on real-world
documents, which contain many irrelevant sentences.

3 TEG—bridging the gap between statistical and rule-based IE systems

Although the formalisms based on probabilistic finite-state automata are quite suc-
cessful for entity extraction, they have shortcomings, which make them harder to
use for the more difficult task of extracting relationships.

One problem is that a finite-state automaton model is flat, so its natural task is
assignment of a tag (state label) to each token in a sequence. This is suitable for the
tasks where the tagged sequences do not nest and where there are no explicit re-
lations between the sequences. Part-of-speech tagging and entity extraction tasks
belong to this category, and indeed the HMM-based PoS taggers and entity ex-
tractors are state of the art.

Extracting relationships is different in that the tagged sequences can and must
nest, and there are relations between them, which must be explicitly recognised.
While it is possible to use nested automata to cope with this problem, we felt that
using a more general context-free grammar formalism would allow for a greater
generality and extendibility without incurring any significant performance loss.

3.1 SCFG formalism

Classical definition: A stochastic context-free grammar (SCFG) is a quintuple
G = (T, N , S, R, P), where T is the alphabet of terminal symbols (tokens), N
is the set of nonterminals, S is the starting nonterminal, R is the set of rules, and P:
R [0..1] defines their probabilities. The rules have the form n → s1s2 . . . sk , where
n is a nonterminal and each si either token or another nonterminal. As can be seen,
SCFG is a usual context-free grammar with the addition of the P function.

Similar to a canonical (nonstochastic) grammar, SCFG is said to generate (or
accept a given string (sequence of tokens) if the string can be produced starting
from a sequence containing just the starting symbol, S, and one by one expanding
nonterminals in the sequence using the rules from the grammar. The particular
way a string was generated can be naturally represented by a parse tree, with the
starting symbol as a root, nonterminals as internal nodes and the tokens as leaves.

The semantics of the probability function P is straightforward. If r is the rule
n → s1s2 . . . sk , then P(r) is the frequency of expanding n using this rule. Or, in
Bayesian terms, if it is known that a given sequence of tokens was generated by
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expanding n, then P(r) is the a priori likelihood that n was expanded using the
rule r . Thus, it follows that, for every nonterminal n, the sum P(r) of probabilities
of all rules r headed by n must equal one.

How SCFG is used: Usually, some of the nonterminal symbols of a grammar
correspond to meaningful language concepts, and the rules define the allowed
syntactic relations between these concepts. For instance, in a parsing problem, the
nonterminals may include S, NP, VP, etc. and the rules would define the syntax of
the language. For example, S NP VP. Then, when the grammar is built, it is used
for parsing new sentences. In general, grammars are ambiguous in the sense that
a given string can be generated in many different ways. With nonstochastic , there
is no way to compare different parse trees, so the only information we can gather
for a given sentence is whether or not it is grammatical, that is, whether it can be
produced by any parse. With SCFG, different parses have different probabilities;
thus, it is possible to find the best one, resolving the ambiguity.

In designing our system, it was decided that it is neither necessary nor desir-
able (for performance reasons) to perform a full syntactic parsing of all sentences
in the document. Instead, a very basic parsing is employed for the bulk of a text,
but within the relevant parts, the grammar is much more detailed. Thus, the ex-
traction grammars can be said to define sublanguages for very specific domains.
Examples of such grammars will be presented in the next section.

In the classical definition of SCFG, it is assumed that the rules are all inde-
pendent. In this case, it is possible to find the (unconditional) probability of a
given parse tree by simply multiplying the probabilities of all rules participating
in it. Then the usual parsing problem is formulated as follows: given a sequence
of tokens (astring, find the most probable parse tree that could generate the string.
A simple generalisation of the Viterbi algorithm is able to efficiently solve this
problem.

In practical applications of SCFGs, it is rarely the case that the rules are truly
independent. Then, the easiest way to cope with this problem while leaving most
of the formalism intact is to let the probabilities P(r be conditioned upon the con-
text where the rule is applied. If the conditioning context is chosen reasonably, the
Viterbi algorithm still works correctly even for this more general problem.

3.2 TEG—using SCFG to perform IE

In a first attempt, we created a relationship extractor based on markovian SCFG.
Markovian means that every possible rule that can be formed from the available
symbols has nonzero probability. Usually, all probabilities are initially set to be
equal and then adjusted according to the distributions found in the training data.
This strategy is a straightforward generalisation of an HMM-based entity extrac-
tor. It has the benefit that all rules are created automatically, and the system only
needs the tagged training corpus in order to learn the target domain. But there is
also an obvious downside. If the amount of training data is insufficient, such a
system performs poorly.

For some problems, the available training corpora appear to be adequate. In
particular, Markovian SCFG parsers trained on the Penn Treebank perform quite
well. HMM entity extractors, which are a particularly simple case of Markovian
SCFGs, also perform well [4, 7, 21]. But for the task of relationship extraction, it
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turns out to be impractical to manually tag the amount of documents that would be
sufficient to adequately train such grammar. At a certain point, it becomes more
productive to go back to the original hand-crafted system and write rules for it,
even though it is a much more skilled labour!

Therefore, we adopted a hybrid strategy, which we coined TEG (trainable ex-
traction grammars), which attempts to strike a balance between the two knowl-
edge engineer chores—writing the extraction rules and manually tagging the docu-
ments. In TEG, the knowledge engineer writes SCFG rules, which are then trained
on the data that is available. The powerful disambiguating ability of the SCFG
makes writing rules a much simpler and cleaner task. Furthermore, the knowledge
engineer has the control of the generality of the rules (s)he writes and consequently
on the amount and the quality of the manually tagged training corpus the system
would require.

3.3 Syntax of a TEG rulebook

A TEG rulebook consists of declarations and rules. Rules basically follow the
classical grammar rule syntax, with a special construction for assigning concept
attributes. Notation shortcuts like [] and | can be used for easier writing. The non-
terminals referred by the rules must be declared before use. Some of them can
be declared as output concepts, which are the entities, events and facts that the
system is designed to extract. Additionally, two classes of terminal symbols also
require declaration: termlists and ngrams.

A termlist is a collection of terms from a single semantic category, either writ-
ten explicitly or loaded from external sources. Examples of termlists are countries,
cities, states, genes, proteins, people’s first names and job titles. Some linguistic
concepts, such as lists of prepositions, can also be defined as termlists. Theoret-
ically, a termlist is equivalent to a nonterminal symbol that has a rule for every
term.

An ngram is a more complex construction. When used in a rule, it can expand
to any single token. But the probability of generating a given token is not fixed in
the rules, but learned from the training dataset, and may be conditioned on one or
more previous tokens. Thus, ngrams is one of the ways the probabilities of TEG
rules can be context dependent. The exact semantics of ngrams is explained in the
next section.

Let us see a simple meaningful example of a TEG grammar:

output concept Acquisition(Acquirer, Acquired);
ngram AdjunctWord;
nonterminal Adjunct;
Adjunct :- AdjunctWord Adjunct | AdjunctWord;
termlist AcquireTerm = acquired bought (has acquired) (has bought);
Acquisition :- Company → Acquirer [ “,”Adjunct “,” ] AcquireTerm
Company→ Acquired;

The first line defines a target relation Acquisition, which has two attributes,
Acquirer and Acquired. Then an ngram AdjunctWord is defined, followed by
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a nonterminal Adjunct, which has two rules, separated by |, together defining
Adjunct as a sequence of one or more AdjunctWords. Then a termlist Ac-
quireTerm is defined, expanding as the main acquisition verb phrase. Finally,
the single rule for the Acquisition concept is defined—as Company, followed by
optional Adjunct, delimited by commas, followed by AcquireTerm and a second
Company. The first Company is the Acquirer attribute of the output frame and
the second is the Acquired attribute.

The final rule requires the existence of a defined Company concept. The fol-
lowing set of definitions defines the concept in a manner emulating the behaviour
of a HMM entity extractor:

output concept Company;
ngram CompanyFirstWord;
ngram CompanyWord;
ngram CompanyLastWord;
nonterminal CompanyNext;
Company :- CompanyFirstWord CompanyNext | CompanyFirstWord;
CompanyNext :- CompanyWord CompanyNext | CompanyLastWord;

Finally, in order to produce a complete grammar, we need a starting symbol
and the special nonterminal that would match the strings that do not belong to any
of the output concepts:

start Text;
nonterminal None;
ngram NoneWord;
None :- NoneWord None | ;
Text :- None Text | Company Text | Acquisition Text | ;

Those 20 lines of code are able to accurately find a fair number of acquisitions
after a very modest training. Note that the grammar is extremely ambiguous. An
ngram can match any token, so Company, None and Adjunct are able to match
any string. Yet, using the learned probabilities, TEG is usually able to find the
correct interpretation.

3.4 TEG training

Currently, there are three different classes of trainable parameters in a TEG rule-
book: the probabilities of rules of nonterminals, the probabilities of different ex-
pansions of ngrams and the probabilities of terms in wordclasses. All those proba-
bilities are smoothed maximum likelihood estimates, calculated directly from the
frequencies of the corresponding elements in the training dataset.

For example, suppose we have the following simple TEG grammar, which
finds simple person names:

nonterm start Text;
concept Person;
ngram NGFirstName;
ngram NGLastName;
ngram NGNone;
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termlist TLHonorific = Mr Mrs Miss Ms Dr;
(1) Person :- TLHonorific NGLastName;
(2) Person :- NGFirstName NGLastName;
(3) Text :- NGNone Text;
(4) Text :- Person Text;
(5) Text :- ;

By default, the initial untrained frequencies of all elements are assumed to
be 1. They can be changed using 〈count〉 syntax, an example of which is shown
below. The numbers in parentheses at the left side are not part of the rules and are
used only for reference. Let us train this rulebook on the training set containing
one sentence:

Yesterday, 〈Person〉Dr Simmons〈/Person〉, the distinguished scientist pre-
sented the discovery.

This is done in two steps. First, the sentence is parsed using the untrained
rulebook, but with the constraints specified by the annotations. In our case, the
constraints are satisfied by two different parses, expanding Person by rules (1)
and (2), respectively. The ambiguity arises because both TLHonorific and NG-
FirstName can generate the token Dr. In this case, the ambiguity is resolved in
favour of the TLHonorific interpretation because, in the untrained rulebook, we
have

• P(Dr | TLHonorific) = 1/5 (choice of one term among five equiprobable
ones),

• P(Dr | NGFirstName) ≈ 1/N , where N is the number of all known words
(untrained ngram behaviour).

After the training, the frequencies of the different elements are updated, which
produces the following trained rulebook (only lines that were changed are shown).
Note the 〈count〉 syntax:

termlist TLHonorific = Mr Mrs Miss Ms 〈2〉Dr;
Person :- 〈2〉TLHonorific NGLastName;
Text :- 〈11〉NGNone Text;
Text :- 〈2〉Person Text;
Text :- 〈2〉;
Additionally, the training will generate a separate file containing the statistics

for the ngrams. It is similar in nature, but more complex, because the bigram fre-
quencies, token feature frequencies and unknown word frequencies are taken into
consideration. In order to understand the details of ngrams training, it is necessary
to go over the details of their internal working.

An ngram always generates a single token. Any ngram can generate any token,
but naturally the probability of generating depends on the ngram, on the token and
on the immediate preceding context of the token. This probability is calculated at
the runtime using the following statistics:

• Freq(∗) = total number of times the ngram was encountered in the training
set.
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• Freq(W ), Freq(F), Freq(T ) = number of times the ngram was matched to
the word W , the feature F and the token T , respectively. Note that a token T
is a pair consisting of a word W (T ) and its feature F(T ).

• Freq(T | T2) = number of times token T was matched to the ngram in the
training set and the preceding token was T2.

• Freq(∗ | T2) = number of times the ngram was encountered after the
token T2.

So, assuming all those statistics are gathered, the probability of the ngram gener-
ating a token T given that the preceding token is T2 is estimated as

P(T | T2) =1

2
· Freq(T | T2)

Freq(∗ | T2)
+1

4
· Freq(T)

Freq(∗)
+ 1

4
· Freq(W) · Freq(F)

Freq(∗)2

This formula linearly interpolates between the three models—the bigram
model, the back-off unigram model and the further backoff word+feature uni-
gram model. The interpolation factor was chosen to be 1/2, which is a natural
choice. However, the experiments have shown that varying the lambdas in reason-
able ranges does not significantly influence the performance.

Finally, the matters are made a bit more complicated by the unknown tokens.
The fact that a token was never encountered during the training gives by itself
an important clue to the token’s nature. In order to be able to use this clue, the
separate unknown model is trained. The training set for it is created by dividing
the available training data into two halves, and treating all tokens in one half, that
are not present in the other half as special unknown tokens. The model trained in
this way is used whenever an unknown token is encountered during runtime.

3.5 Additional features

There are several additional features that improve the system and help to customise
it for other domains. First, the probabilities of different rules of a nonterminal
need not be fixed, but may depend on their context. Currently, the rules for a
specific nonterminal can be conditioned on the previous token in a way similar
to the way ngram probabilities depend on previous token. Other conditioning is,
of course, possible, even to the extent of using maximal entropy for combining
several conditioning events.

Second, an external tokeniser and/or token feature generator can be substi-
tuted for the regular one. It is even possible to use several feature generators
simultaneously—different ngrams may use different token feature sets. This is
useful for languages other than English, as well as for special domains. For in-
stance, in order to extract the names of chemical compounds or complex gene
names, it may be necessary to provide a feature set based on morphological fea-
tures. In addition, an external part-of-speech tagger or shallow parser may be used
as a feature generator.

For real-life IE tasks, it is often necessary to extract very rare target concepts.
This is especially true for relations. While there could be thousands of persons
or organisations in a dataset, the number of acquisitions could well be less than
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50. The ngrams participating in the rules for such concepts are surely to be under-
trained. In order to alleviate this problem, the shrinkage technique can be used. An
infrequent specific ngram can be set to shrink to another, more common and more
general ngram. Then the probability of generating a token by the ngram is inter-
polated with the corresponding probability for the more common parent ngram. A
similar technique was used with great success for HMM [3], and we found it very
useful for TEG as well.

3.6 Example of real rules

Here we shall demonstrate a fragment of the TEG rules, written for the extrac-
tion of the PersonAffiliation relation from a real industry corpus. The fragment
will show a usage of the advanced features of the system, as well as give another
glimpse of the flavour of rule writing in TEG.

The PersonAffiliation relation contains three attributes—name of the person,
name of the organisation and position of the person in the organisation. It is de-
clared as follows:

concept output PersonAffiliation(Name, Position, Org);

Most often, this relation is encountered in the text in the form
Mr.Name,PositionofOrg or OrgPositionMs.Name. Almost any order of the com-
ponents is possible, with commas and prepositions inserted as necessary. Also, it is
common for Name, Position, or both to be conjunctions of pairs of corresponding
entities: Mr.Name1 and Ms.Name2, the Position1 and Position2 of Org, or Org’s
Position1 and Position2, Ms.Name. In order to catch those complexities, and for
general simplification of the rules, we use several auxiliary nonterminals: Names,
which catches one or two Names; Positions, which catches one or two Positions
and Orgs, which catches Organisations and Locations, which can also be involved
in PersonAffiliation, as in Bush, president of US:

nonterms Names, Positions, Orgs;
Names :- PERSON → Name | PERSON → Name1 “and”
PERSON → Name2;
Positions :- POSITION → Position | POSITION → Position1 “and”
POSITION → Position2;
Orgs :- ORGANIZATION→Org | LOCATION→Org;

We also use auxiliary nonterminals for catching pairs of attributes: PosName
and PosOrg:

nonterms PosName, PosOrg;
PosName :- Positions Names | PosName and PosName;
wordclass wcPreposition = at in of for with;
wordclass wcPossessive = (’s) ’ ;
PosOrg :- Positions wcPreposition Orgs;
PosOrg :- Orgs [wcPossessive] Positions;

Finally, the PersonAffiliation rules:

PersonAffiliation :- Orgs [wcPossessive] PosName;
PersonAffiliation :- PosName wcPreposition Orgs;
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PersonAffiliation :- PosOrg [,] Names;
PersonAffiliation :- Names , PosOrg;
PersonAffiliation :- Names is a PosOrg;

The rules above catch about 50% of all PersonAffiliation instances in the texts.
Other instances do not conform to the patterns above in several respects. So, in
order to improve the accuracy, additional rules need to be written. First, the organ-
isation name is often entered into a sentence as a part of a descriptive noun phrase,
as in: Ms.Name is a Position of the industry leader Org. In order to catch this in
a general way, we define an OrgNP nonterm, which uses an external PoS tagger:

ngram ngOrgNoun featureset ExtPoS restriction Noun;
ngram ngOrgAdj featureset ExtPoS restriction Adj;
ngram ngNum featureset ExtPoS restriction Number;
ngram ngProper featureset ExtPoS restriction ProperName;
ngram ngDet featureset ExtPoS restriction Det;
ngram ngPrep featureset ExtPoS restriction Prep;
nonterm OrgNounList;

OrgNounList :- ngOrgNoun [OrgNounList];
nonterms OrgAdjWord, OrgAdjList;
OrgAdjWord :- ngOrgAdj | ngNum | ngProper;
OrgAdjList :- OrgAdjWord [OrgAdjList];
nonterm OrgNP;
OrgNP :- [ngDet] [OrgAdjList] OrgNounList;
OrgNP :- OrgNP ngPrep OrgNP;
OrgNP :- OrgNP and OrgNP;

The external PoS tagger provides an alternative token feature set, which can be
used by ngrams via the ngram featureset declaration. The restriction clause in the
ngram declaration specifies that the tokens matched by the ngram must belong to
the specified feature. Altogether, the set of rules above defines an OrgNP nonterm
in a way similar to the way a syntax-parsing grammar would define a noun phrase.
In order to use the nonterm in the rules, we simply modify the Orgs nonterminal:

Orgs :- [OrgNP] ORGANIZATION → Org | LOCATION → Org;

Note that, although OrgNP is defined very generally (it is able to match any
noun phrase whatsoever), the way it is used is very restricted. During training,
the ngrams of OrgNP learn the distributions of words for this particular use and,
during the run, the probability of OrgNP generating a true organisation-related
noun phrase is much greater than for any other noun phrase in the text.

Finally, we will demonstrate the usage of ngram shrinkage. There are Per-
sonAffiliation instances, in which some irrelevant sentence fragments separate
the attributes. For example, ORG . . . . . . said the company’s Position Mr.Name. In
order to catch the “. . . . . . ” part, we can use the None nonterm, which generates
all irrelevant fragments in the text. Alternatively, we can create a separate ngram
and a nonterminal for the specific use of catching irrelevant fragments inside
PersonAffiliation. Both those solutions have their disadvantages. The None
nonterminal is too general and doesn’t catch the specifics of the particular case. A
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specific nonterminal, on the other hand, is very much undertrained. The solution
is to use a specific nonterminal but shrink its ngram to None:

nonterm BlaBla;
ngram ngBlaBla, ngNone;
BlaBla :- ngBlaBla [BlaBla];
PersonAffiliation :- Orgs BlaBla PosName;

The rules described above catch 70% of all PersonAffiliation instances, which
is already a good result for relationship extraction from a real corpus. And the
process of writing rules can be continued to further improve the accuracy.

4 Experimental evaluation

For evaluation of our system, we used three different corpora, available to us:
MUC-7, ACE-2 and an industry corpus, which we will call INC.

4.1 MUC-7 evaluation—comparison with HMM-based NER

The MUC-7-named entity recognition corpus consists of a set of news articles
related to aircraft accidents, altogether containing about 200 K words, with the
named entities manually categorised into three basic categories: PERSON, OR-
GANIZATION and LOCATION. Some other entities are also tagged: dates and
times, monetary units, etc., but they did not take part in our evaluation.

The corpus does not contain tagged relationships, so it was used to evaluate
the difference in the performance between the four entity extractors: the regular
HMM, its emulation using TEG, a set of hand-craft rules written in DIAL and the
Full TEG system, which consists of the HMM emulation augmented by a small
set of hand-crafted rules (about 50 lines of code added).

The results of our experiments are summarised in Table 1.
The small accuracy difference between the regular HMM and its emulation

is due to slight differences in probability conditioning methods. It is evident that
the hand-crafted rules performed better than the HMM-based extractors but were
inferior to the TEG extractor. Significantly, the hand-crafted rules achieved the
best precision; however, their recall was far worse.

The HMM named-entity recognition results published in [3] are somewhat
higher than we were able to produce using our version of a HMM entity extractor.

Table 1 Accuracy results for MUC-7.

HMM entity Emulation using DIAL Full TEG
extractor TEG Rules system

R P F1 R P F1 R P F1 R P F1

Person 86.91 85.13 86.01 86.31 86.83 86.57 81.32 93.75 87.53 93.75 90.78 92.24
Org 87.94 89.75 88.84 85.94 89.53 87.7 82.74 93.36 88.05 89.49 90.9 90.19
Location 86.12 87.2 86.66 83.93 90.12 86.91 91.46 89.53 90.49 87.05 94.42 90.58
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We hypothesise that the reason for the difference is the usage of additional training
data in the Nymble experiments. The paper mentions using approximately 750 K
words of training data, while we had only 200 K. Regardless of the reasons for
the difference, the experiment clearly shows that the addition of a small number
of handcrafted rules can further improve the results of a purely automatic HMM-
based named entity extraction.

4.2 ACE-2 evaluation—extracting relationships

The ACE-2 was a follow-up to ACE-1 and included, in addition to tagged entities,
also tagged relationships. The ACE-2 annotations are more complex than those
supported by the current version of our system. Most significantly, the annota-
tions resolve all anaphoric references, which is outside the scope of the current
implementation. Therefore, it was necessary to remove annotations that contained
anaphoric references. This was done automatically, using a simple Perl script.

For the purpose of evaluating relationship extraction, we choose the ROLE re-
lation. The original ACE-2 annotations make finer distinctions between the differ-
ent kinds of ROLE, but for the purposes of current evaluation, we felt it sufficient
to just recognise the basic relationships and find their attributes.

The results of this evaluation are shown in Table 2. For Comparison, we also
show the performance of the HMM entity extractor on the entities in the same
dataset.

As expected, the accuracy of a purely Markovian SCFG without additional
rules is rather mediocre. However, by adding a small number of hand-crafted rules
(altogether about 100 lines of code), it was raised considerably (by 15% in F1).
The performances of the three systems on the named entities differ very little
because it is essentially the same system. The slight improvement of the Full TEG
system is due to better handling of the entities that take part in ROLEs.

In Fig. 1, we can see how the accuracy of the TEG system changes as a func-
tion of the amount of available training data. There are three graphs in the figure,
a graph that represents the accuracy of the grammar with no specific ROLE rules,
a graph that represents the accuracy of the grammar with four ROLE rules and,
finally, a graph that represents the accuracy of the grammar with seven ROLE
rules.

Analysis of the graphs reveals that, in order to achieve 70% accuracy the
system needs 125 K of training data when using all of the specific ROLE rules,

Table 2 Accuracy results for ACE-2.

HMM entity Markovian Full TEG system
extractor SCFG (with 7 ROLE rules)

Recall Prec F Recall Prec F Recall Prec F

Role 67.55 69.86 68.69 83.44 77.3 80.25
Person 85.54 83.22 84.37 89.19 80.19 84.45 89.82 81.68 85.56
Organization 52.62 64.735 58.05 53.57 67.46 59.71 59.49 71.06 64.76
GPE 85.54 83.22 84.37 86.74 84.96 85.84 88.83 84.94 86.84
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Fig. 1 Accuracy (F1) of the TEG system (with different grammars) as a function of the size of
the training corpus (ACE-2).

while 250 K of training data are needed when no specific rules are present. Thus,
adding a small set of simple rules may save 50% of the training-data requirements.

4.3 Internal news corpus evaluation—extracting real-world relationships

In addition to the classic data sets, we used one large new corpus that was anno-
tated internally by students (the INC Corpus). Clearly, the quality of the annotation
is not as good as the professional annotators that annotated the MUC and ACE cor-
puses. Based on our experiments, we estimate that about 5–10% of the tags in the
training corpus are erroneous. The INC corpus contains about 1 million tokens of
news articles, annotated with the common Person, Organisation, Location, Cur-
rency entities and three common relations—PersonAffiliation, OrgLocation and
Acquisition. OrgLocation has two attributes—an organisation name and its loca-
tion. Acquisition also has two attributes—the buyer company and the acquired
company. PersonAffiliation was described in one of the previous sections.

In Table 3, we can see the accuracy results of the relationship extraction from
the INC corpus. In the exact-match results, an instance of a relation is considered

Table 3 Accuracy results for relation extraction from the INC Corpus.

Partial match results Exact match results

Recall Prec F Recall Prec F

PersonAffiliation 89.61 94.52 92.00 75.33 79.46 77.33
OrgLocation 85.32 77.78 80.00 76.47 72.22 74.29
Acquisition 76.00 86.36 80.85 68.00 77.27 72.34



14 B. Rosendfeld et al.

Table 4 Accuracy results for entity extraction from the INC Corpus.

INC development test INC final test

Recall Prec F Recall Prec F

Person 93.816 83.397 88.30 93.437 89.127 91.23
Organization 80.856 78.248 79.53 83.481 78.859 81.10
Location 91.775 81.748 86.47 94.892 82.477 88.25
Currency 97.667 96.7 97.18 98.058 94.393 96.19

to be correctly extracted if every attribute of the relation is correctly assigned
and all boundaries are correctly set. In the partial-match results, an instance
is considered to be correctly extracted if at least one attribute is correct. The
accuracy results of the entity extraction from the INC corpus are summarised in
Table 4.

4.4 INC corpus evaluation—effects of poor annotation quality

The INC corpus is annotated by nonexperts, and the quality of annotations is sig-
nificantly worse than the quality of MUC and ACE corpora. We estimate the anno-
tations to be about 90–95% accurate. The following experiment shows that TEG
can work robustly under poor training conditions, a very important trait it shares
with most other probabilistic-based systems.

It should be noted that, even in the case of poor training corpus quality,
the test corpus should be clean because, otherwise, the results of the evalua-
tion are misleading. Therefore, we randomly selected a small set of documents
(about 30 K words) from the corpus, manually double checked and cleaned
the annotations and used this clean corpus for the final test. The training cor-
pus and the development test corpus were left noisy. This is why the final
test results are actually better than the development test results, as we show in
Table 4.

As can be seen, the final results are 3–6% better than the development test
results. This shows the ability of TEG to effectively ignore bad or inconsistent
examples. And it shows the possibility of using TEG to improve the annotation
quality.

We also tested a HMM entity extractor on the INC dataset. As expected, it
also showed a robust behaviour and consistently achieved about 6–7% F-measure
less than TEG in all categories. By disabling different parts of the TEG ruleset,
we analysed exactly which of TEG abilities produces the improvement over the
baseline HMM. It turned out that there exist three distinctly different parts, con-
tributing about equally to the overall improvement. First, there are gazetteers—the
lists of known entities—which TEG is able to use and HMM is not. Second, there
are structural rules, which define the internal structure of concepts with greater
precision. And finally, there are context rules, which place entities into contexts
made of words and other entities. While the gazetteers and structural rules are pos-
sible to implement using FSA-based models, such as MEMM or CRF, the context
rules by their nature require stronger models.
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Fig. 2 Trading accuracy for performance.

5 Implementation issues

The current version of TEG is written in C++ and implements the agenda-based
probabilistic chart parser. The worst-case performance of the parser isO(CSN3),
where C is the number of nonterminals, S is the number of grammar states and N
is the sequence length. For reasonable grammars, the average case performance
is actually O(N2), which is much better than the worst case but still not as good
as the linear O(S2 N performance of HMM models. However, we found that, by
implementing a simple approximation, it is possible to greatly increase the per-
formance without reducing the extraction accuracy. The idea of the method is to
exclude a grammar edge from further consideration if its inner probability is less
than a small fraction of the best probability currently achieved for the sequence
spanned by the edge. By lowering the fraction constant it is possible to trade ac-
curacy for performance. The graph of their interdependence for the ACE-2 exper-
iment is shown in Fig. 2. Note that the left-most values where the best accuracy is
achieved are still about 15 times faster than the original nonoptimised version. The
optimised version achieves performance of 600 Kb/min on a 2-GHz processor.

6 Future work

The next stages of the TEG development will continue in three principal direc-
tions. First, we will improve the abilities of the system by adding desirable features
such as the ability to handle overlapping concepts and more refined probability
conditioning. Second, we plan to develop an integrated rule writing and tagging
GUI environment, which will allow the two tasks to be done in parallel, support-
ing and bootstrapping each other. There is also a significant practical problem of
checking the consistency of tagging and of helping the annotators find and fix
the tagging errors. Finally, in order to be more useful, the system itself should be
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integrated into a larger information extraction architecture, which might include
a knowledge base of known facts, a postprocessor resolving coreferences and an
ability to combine the extracted relations into complete scenario templates.

7 Summary

We have presented the TEG system, which is a novel information-extraction sys-
tem based on the SCFG formalism. The TEG system takes a middle ground be-
tween the knowledge-engineering approach and the machine learning-based ap-
proach. Because the rules used in TEG are far simpler than the typical information
extraction rules, it overcomes the knowledge acquisition bottleneck, which is the
main hurdle of the knowledge-engineering approach. In addition, compared with
the pure machine-learning approach, it enables getting better accuracies using a
smaller number of annotated documents. This reduction in the needed number of
annotated documents is crucial in real-world scenarios because it enables a much
more rapid deployment of the extraction technology.
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