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ABSTRACT 
Information extraction is one of the most important techniques 
used in Text Mining. One of the main problems in building 
information extraction (IE) systems is that the knowledge elicited 
from domain experts tends to be only approximately correct. In 
addition, the knowledge acquisition phase for building IE rules 
usually takes a tremendous amount of time on the part of the 
expert  and of the linguist creating the rules. We therefore need an 
effective means of revising our IE rules whenever we discover 
such an inaccuracy. The IE revision problem is how best to go 
about revising a deficient IE rules using information contained in 
examples that expose inaccuracies. The revision process is very 
sensitive to implicit and explicit biases encoded in the specific 
revision algorithm employed. In a sense, each revision algorithm 
must provide two forms of biases: bias as to the place of the 
revision and bias as to the type of the revision that should be 
performed. In this paper we present a framework for writing 
approximate IE rules that are provided with explicit bias. The 
proposed framework can be used by many existing revision 
algorithms. The purpose of the revision bias framework is to allow 
the user to declare his own bias in a simple and structured way, 
i.e. to express the conditions placed on the domain knowledge for 
a given revision operator to be applied. This language extends and 
generalizes the work reported in [Feldman et. al. 1993]. It attacks 
the problem of writing IE rules from a novel perspective, one 
which enables a much faster development of IE systems.   

Keywords 
Text Mining, Theory Revision, Information Extraction, User 
Guided Revision. 

1. INTRODUCTION 
One of the main problems in building information extraction (IE) 
systems [1,3,5,6,22,23] is that the knowledge elicited from 
domain experts tends to be only approximately correct. Although 
knowledge so obtained might make a good first approximation to 
the real world, it typically contains inaccuracies that are exposed 
when the model asserts a fact that does not agree with empirical 
observation. This paper proposes a means of automatically 
revising a set of IE rules - whenever we discover such an 
inaccuracy - using a predefined bias scheme. 

 

Informally, the IE rule revision problem is about how best to go 
about revising a deficient set of IE rules using information 
contained in examples that expose inaccuracies. In order to 
characterize the attributes that are desirable in a IE rules revision 
system, let us briefly examine the process by which IE rules are 
constructed.  

Typically, a domain expert sits with a linguist and encodes his or 
her expert knowledge as a collection of IE rules. Sometimes more 
than one domain expert is involved, leading to possible 
inconsistencies in the rule base, although inconsistencies are not 
uncommon in large rule bases even if there is only one domain 
expert. 

After the knowledge has been encoded, it is used to extract events 
from documents. These events are usually obtained over a long 
period of time as the IE system is put to use. As errors and 
inaccuracies are encountered, the rule base must be refined 
manually by the linguist. Some may be simple encoding errors, 
while others may represent deeper, conceptual, errors in the 
expert’s understanding of the domain. IE revision systems are in 
some sense nothing more than biased concept learning systems. 
The bias comes in the form of an approximately correct concept 
description (rule base) which is then patched and brought into line 
with the provided examples. The intuition is that patching an 
approximately correct IE rule set will be substantially cheaper and 
more accurate than an IE rule set built from scratch.  

The IE rules revision problem is related to the problem of 
propositional and relational theory revision. Among the 
propositional theory revision systems which can handle both 
specialization and generalization we can count EITHER[18], 
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KBANN [24] and RAPTURE [17]. Among the relational theory 
revision systems  we can count AUDRY [25], FORTE [21] and 
FOCL [16]. A common theme to all these systems is that they do 
not distinguish between aspects of the original knowledge base 
that are firmly held and those which are more conjectural. 

An IE rules revision system should, in practice, replace this 
knowledge refinement process. A useful solution to the IE rules 
revision problem should integrate smoothly with the traditional 
approach to knowledge engineering. Thus, it is important that an 
IE rules revision system have certain qualities. First, the system 
should be incremental - meaning that it should operate on 
examples as they are obtained. IE rules revision systems which 
require examples be provided all at once do not fit in well with 
the traditional knowledge engineering process. Second, a system 
which reconfigures the rule base so that it no longer makes sense 
to the linguist lacks referential transparency: a useful system 
should largely preserve the structure of the original rule base so 
that, at any time, the rule engineer may examine and understand 
its internal structure. Third, a domain expert may know a priori 
which portions of the rule base should be trusted and which are 
more conjectural. Thus the changes undertaken by the system 
should reflect the expert’s intuitive confidence in the individual 
components of the rule base. Fourth, the domain expert may have 
preferences as to which revision operators should be used for 
revision specific elements should they be flawed.  

In this paper we introduce our scheme for providing explicit 
revision bias in the revision of flawed IE rules. 

Other research on learning IE rules [1,3,5,6,22,23]  has focused 
on inducing new IE rules based on examples rather than revising 
existing IE rules based on examples. In addition, we use a more 
sophisticated extraction language, which is more suitable for 
handling real world tasks and achieving high precision and recall. 

The rest of the paper is organized as follows: in Section 2 we 
define the basic concepts and establish the terminology used 
throughout the paper. In Section 3 we motivate the need for a 
special language for defining explicit revision bias. In Section 4 
we describe our bias scheme and present examples. In Section 5 
we provide experimental evaluation, and finally, in Section 6 we 
present our conclusions and cite the major contribution of this 
paper, outlining future research directions to extend this work. 

2. FOUNDATIONS 
In this section, we define and introduce the basic notions used 
throughout this paper. 

2.1 Pattern Matching Elements (PME) 
The basic entity in a rule base is a Pattern Matching Element, 
which is one of the following cases: 

• String - e.g., “merger” 

• Word class element: a phrase that is a member of a 
predefined set of phrases that share a common semantic 
meaning e.g.,  WCCountries (a word class that contains the 
names of all the countries in the world) 

• Scanner feature (basic characteristic of a token) e.g., 
@Capital or @HtmlTag 

• Compound feature: a phrase comprising several basic feature 
-e.g. Match(@Capital & WCCountries) will match a phrase 
that belongs both to the word class WCCountries and start with 
a  capital letter. 

• Part of Speech tag - e.g., noun or adj. 

• Predicate Call - e.g., Company(C) 

• Skip Pattern: a pattern that enables the system to skip up to a 
certain number of tokens until it reaches an instance of a 
predicate - provided that it does not encounter a phrase that 
satisfies the Fail condition. For instance, skip(WCMerger, 
SkipFail, 20) tells the system to skip up to 20 tokens until it 
reaches a member of the word class WCMerger, provided it did 
not encounter an end of sentence or HTML tag along the way 
(based on the current definition of SkipFail, which may be 
changed by the user). 

2.2 Constraints 
Constraints do not try matching text fragments to patterns, but 
carry out on-the-fly Boolean checks for specific attributes. In 
addition, they can do these checks on any bit of text: not just 
fragments in the source document but also on results thrown up 
during processing that never appear in the output. The marker for 
a Constraint is the word verify, followed by brackets containing a 
specific function, which governs what it is it is checking for.   

For instance  
verify ( StartNotInPredicate ( c , @PersonName ) )  

makes sure that no prefix of the string assigned to variable c must 
match with the predicate PersonName. 

2.3 IE Rule Bases 
Throughout this paper we will view a rule base as a logic 
program. Thus, a rule base, Γ,  is a conjunction of definite clauses 
Ci: Hi ← Bi where Ci is a clause label, Hi (called the head) is a  
literal and Bi  = {Bi1 Bi2....} = Pi ∪ Ni (called the body) is a set of 
literals, where Pi  =  {pij}  is a set of  Pattern Matching Elements 
and Ni = {nij} is a set of constraints operating on Pi. The clause 
clause Ci: Hi ← Bi represents the assertion that Hi  is implied by 
the conjunction of the literals in Pi while satisfying all the 
constraints in Ni. The rules are written in a language called DIAL 
(Declarative  Information Analysis Language). DIAL is a 
language designed specifically for writing IE rules. The complete 
syntax of DIAL is beyond the scope of this paper. 

To follow is an example of a DIAL rule, which will be used 
throughout the paper: 

FMergerCCM(C1, C2) :- 

Company(Comp1) OptCompanyDetails "and" 

skip(Company(x), SkipFail, 10) 

Company(Comp2) OptCompanyDetails 

skip(WCMergerVerbs, SkipFailComp, 20) 

WCMergerVerbs skip(WCMerger, SkipFail, 20) 

WCMerger  

verify(WholeNotInPredicate(Comp1, 

@PersonName)) 

verify(WholeNotInPredicate(Comp2, 

@PersonName)) 
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{ C1 = Comp1; C2 = Comp2} ;  

This is one of ten rules that define the notion of Merger between 
two companies (where the names of the companies appear before 
the merger-related verb or noun). The rule looks for a company 
name (carried out by the predicate Company, which returns back 
the parameter Comp1) followed by an optional phrase describing 
the company, and then the word “and”. The system then skips 
(within the same sentence, and while not encountering any phrase 
matching the predicate SkipFail) up to ten tokens until it finds 
another company, followed by an optional company description 
clause. The system then skips up to 20 tokens until it finds one of 
the phrases belonging to the word class WCMergerVerbs. (This 
may be something like “approved”, “ made an announcement” 
etc.) Finally, the system skips up to ten tokens until it finds a 
phrase belonging to the word class WCMerger.  Finally, the rule 
also contains two constraints ensuring that the names of the 
companies are not names of people. 

2.4 Examples 
In addition to the rule base, we have some additional background 
knowledge, denoted K. K  is a collection of facts and clauses 
defining some background predicates: we assume that K is correct 
and no revision is attempted to K.  

An example, E, is a tuple <S,P,I> made of three parts: a string S 
which is a text fragment, a top-level predicate P, and a ground 
instance I of P. Let Γ be a rule base, we denote Γ+K ⇒S  E , if 
when we apply the predicate P on the string S, we get the instance 
I. For instance if S = “AOL and Time Warner announced a 
merger”, and P =  FMergerCCM, then I = FMergerCCM(“AOL”, 
“Time Warner”).  We define a function Γ such that for an example 
E=<S,P,I>,  Γ(E) = true if Γ+K ⇒S  E  and Γ(E) = false otherwise. 

2.5 Relevant Examples 
The decision to add new structures rather than delete a 

flawed element is made on the basis of the examples affected by 
the revision of the flawed element. Thus, before we decide which 
revision operator to apply to the flawed element, we must 
determine which of the examples are relevant to this revision. If 
we were to use all the given examples when adding a new 
structure, the new structure would be equivalent to an alternative 
rule base that handles all the examples correctly. In other words, 
we would be using the inductive algorithm to build a new IE rule 
base from scratch - one that reflects none of the structure of the 
original IE rule base.  So instead, we focus the inductive 
algorithm by finding an appropriate smaller set of relevant 
examples -ones that are directly affected by the revision of the 
flawed element. In this way, by using only the relevant examples, 
we reduce the processing time needed for the inductive algorithm, 
while retaining the original structure of the rule base.  

With regard to a specific rule base element e we divide the 
relevant examples into two sets: 

• needed examples (denoted N):  these  are examples for which 
e contributes to their correct classification (i.e, e must be part of 
Γ in order to get a correct classification of the example). 

• obstructive examples (denoted O) : examples for which e is 
obstructive to the goal of achieving their correct classification 
(i.e, e must not be part of Γ in order to get a correct 
classification of the example). The computation of N and O is 
done in a similar way to the algorithm described in [8]. 

2.6 Incremental Theory Revision 
We provide a skeleton of an incremental revision algorithm that 
processes examples one at a time, and when elements of a rule 
base become candidates for revision we perform an appropriate 
revision based on the information known at the time. The input to 
the algorithm is an initial flawed rule base and a set of pre-
classified examples {Ei} which are used to refine the initial rule 
base. The algorithm produces as output a revised version of Γ, Γ’ 
which handles correctly all given examples. 

While there exists any misclassified example do: 

For E ∈{Ei} do: 

Find S - the set of elements to be revised 

For e ∈ S do: 

N = the set of needed examples 

O = the set of obstructive examples 

Pick a revision operator ¨  

Using ¨� UHYLVH� e based on the 
example sets N and O. 

end do. 

end do. 

end do. 

 

Figure 1 - A skeleton for an incremental theory revision 
algorithm 

3. THE NEED FOR AN EXPLICIT 
REVISION BIAS 
The revision process of a flawed IE rule base can be viewed as a 
search in an hypothesis space for the most appropriate concept 
definition - where the hypothesis space consists of all the 
candidate IE rules for the definition of the target concept 
consistent with all known examples.  

Consider, for example, a vastly simplified rule base which 
includes the following IE rules: 

Company(C):- CapitalWords -> head 

WCCompanySuffix -> suffix {C=head+suffix}; 

Company(C):- NP->head WCCompanyVerb  

  { C = head };    

//NP = Noun Phrase 

WCCompanySuffix = Inc Ltd Gmbh Ag; 

WCCompanyVerb = announced merged “took 

over”; 

Suppose that we then determine independently that the string 
“Microsoft Corp signed a contract with Excite” contains the 
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instance Company (“Microsoft Corp”). None of the above rules 
will enable us to reach this conclusion - an indication that the 
original knowledge base is deficient. 

There are many solutions to this deficiency. To name a few 
(among many other possible solutions): 

Solution 1 
Create a new clause for the predicate Company : 

Company(C) :- CapitalWords -> head  

    “Corp”-> suffix   

   { C = head+suffix }; 

Solution 2 
Generalize the first clause by dropping the literal 
WCCompanySuffix  : 

Company(C) :- CapitalWords -> head  

   { C = head }; 

Solution 3 
Generalize the second clause by adding the phrase “signed” to  
WCCompanyVerb 

 

Solution 4 
Generalize the first clause by adding the phrase “corp” to  
WCCompanySuffix. 

 

How do we decide which revision is most appropriate? We might 
apply a syntactic criterion (e.g., minimize number of changes to 
the original theory) to prefer the third or fourth solutions, since 
these require adding one phrase to a word class rather then adding 
a new clause or dropping a complete PME. Note that such 
syntactic methods implicitly assume that every knowledge base 
element is of equal importance. In many cases, these heuristics 
may lead to performing the wrong revision.  

Suppose the domain expert was able to supply additional 
information reflecting his or her confidence in the second rule. 
We can exploit this information to prefer the third revision, since 
it entails changes to a rule, which is a priori less credible.  Our 
claim is that such bias knowledge that controls the selection of a 
revision operator should be clearly elicited, so that it can be 
integrated into the revision process. 

Using declarative biases allows us to distinguish clearly between 
control and data, and furthermore between the parts of the 
revision algorithm that need fixing and those that may be 
modified by means of parameters. Revision biases could therefore 
be defined as parameters that are shifted depending on the 
application area and depending on the part of the theory that 
needs to be revised.  These would be based on two main types of 
criteria: syntactic and semantic. 

Our purpose here is to show how the user’s capacity to express 
flexible biases can be extended and systematized through a 
revision bias language. The purpose of such a language is to allow 
the user to declare his own bias in a simple and structured way, 
that is to express the conditions placed on the domain knowledge 
for a given revision operator to be applied. This language extends 
and generalizes the work reported in [7,8] by considering a larger 
family of conditions.  

In the absence of a bias scheme the system will use a predefined 
cost scheme (each revision operator has a cost associated with its 
application), and suggest revisions that have a minimal cost.  

3.1 Typical Situations In Which An Explicit  
Bias Is Needed 

In this section we provide typical examples of situations in 
which the expert writing the approximate rule base can provide 
specific biases that direct the system to perform the correct 
revisions. In these cases, providing an explicit bias is the most 
natural way to guiding the revision system toward the desired 
theory. 

Predicate stubs: In some cases the user only wants to 
specify that a certain predicate exists without supplying any of its 
definitions. In the absence of any bias information, a naive 
revision would just delete all instances of this predicate from the 
clauses it appears in, since clearly they will all fail. To remedy this 
problem, the user specifies that the suitable revision operator for 
all instances of the predicate is to add new clauses to it. When a 
literal which is an instance of the predicate is a candidate for 
revision, we activate the inductive component in order to learn a 
definition for that predicate. The user can also specify the 
primitive predicates from which the definition should be 
constructed, and the inductive component will give priority to 
these primitives in the construction of the clauses. 

Extraneous literals: some users prefer to add many literals 
to the body of a clause just in case they are needed. The user can 
then specify for such literals that the appropriate revision operator 
is deletion. In such case, even if there are some negative examples 
that might be misclassified due to the deletion of the literal, the 
literal will be deleted anyway, and the negative examples will be 
taken care of in another place in the theory. This bias eliminates 
the addition of new intermediate concepts to this clause. 

Under constrained clauses: there are times when the user 
would like to provide a general skeleton to the definition of a 
predicate, where it is clear that some literals are missing from the 
clauses of the predicate. In such cases, the user can provide this 
extra information by specifying that the revision operator of 
choice should be refinement of the clause by adding new literals 
to its body. The user can also specify the primitive (or 
intermediate) literals that should be used by the inductive learner. 

Climbing up and down a hierarchy: There are two 
situations in which a hierarchy can be used. First, a hierarchy of 
predicates can be specified directly as part of the rule base. The 
clauses specifying the hierarchy are of the form Class :- SubClass, 
indicating that SubClass is a kind of Class. Each class can be a 
sub-class of several other classes, which implies that hierarchy is a 
dag. When we want to generalize a literal, we climb up the 
hierarchy;  to specialize it, we descend the hierarchy. The user can 
specify which direction should be attempted for the literal, and 
even the maximum number of levels allowed in traversing the 
hierarchy. The second type of hierarchy is a type hierarchy. Type 
information can be of real use when specifying constraints on the 
arguments of certain literals. Each argument is assigned a type, 
from a given type hierarchy. The user can then specify the 
preferred revisions at argument level for each literal. The bias 
attached to specific arguments is similar to that of the predicate 
hierarchy. 
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4. A FRAMEWORK FOR EXPLICIT BIAS  

4.1 The Language 
Each clause in the approximate rule base has the following form: 

C:{CFH,BiasH} H :- B1:{CFB1,BiasB1}.....Bn:{CFBn,BiasBn}. 

C is the label of the clause, H is the head of the clause, and 
B1,....Bn are the literals of the clause. For each literal L, CFL is a 
number between 1 and 0 that  represents the expert’s current 
degree of confidence that a given literal  need not be revised. 
BiasL is an expression of the form {Revision-Operator/Pre-
Conditions}*. The semantics of such a bias is: apply the first 
revision operator for which all the preconditions are satisfied.  

Before we describe the current revision operators and the exact 
form of the biases allowed, let us consider the factors which might 
affect the selection of an appropriate revision operator: 

• The location of the element in the rule base graph (in 
particular, its depth ) 

• The current contents of the rule base (the definition of one 
predicate might be affected by the definition of another) 

• The negative examples that might be affected by the 
element’s revision. 

• The positive examples that might be affected by the 
element’s revision. 

In the next section we describe the current revision operators. As 
noted earlier, the system is designed to be easily extendible to 
accommodate new revision operators should they be required. 

4.2 Revision Operators 
We divide the revision operators into four classes according to the 
syntactic change they perform. 

4.2.1 Deletion Operators 
We have two deletion operators: we can either delete a literal from 
a clause (leading to greater generalization or specialization of the 
clause) or we can delete a clause from the definition of a predicate 
in order to specialize it. These operators perform radical revision 
since they delete complete elements from the rule base. In general, 
such operators will be used only if no additional problems can 
arise from their application.  

4.2.2 Addition Operators 
It is often the case that instead of deleting a clause c, we can 
remedy its original flaw by merely adding constraints to the body 
of c . These constraints should be chosen in such a way as to 
prevent the use of the clause by specifically those negative that 
have been using it to achieve an undesired proof. At the same 
time, it is equally important to ensure that these added conditions 
do not inadvertently prevent the acceptance of positive examples.  

By analogy, when a literal l (where l is an instance of 
predicate p) becomes a candidate for revision, we can add clauses 
to the definition of p that produce alternative definitions of l 
under appropriate conditions. These additional clauses serve to 

generalize l, obviating the need to delete it from the clause in 
which it appears. 

The decision to add new structures rather than deleting a flawed 
element is made on the basis of the examples affected by its 
revision. Therefore, before determining which revision operator to 
apply, we must decide which of the examples are relevant to this 
revision. If we were to make use of all given examples when 
adding a new structure, the new structure would be equivalent to 
an alternative rule base that correctly classifies all the examples. 
In other words, we would be using the inductive algorithm to 
build a new rule base from scratch – one that reflects none of the 
structure of the original rule base.  Instead, we choose to focus our 
inductive IE rule learning algorithm (which is a FOIL-based 
algorithm) by finding an appropriate smaller set of relevant 
examples, ones that are directly affected by the revision of the 
flawed element. By using only these examples, we reduce the 
processing time needed for the inductive algorithm while retaining 
the original structure of the rule base.  

4.2.3 Replacement Operators 
These operators are actually a combination of deletion operators 
and addition operators.  We delete one literal from a clause and 
immediately add a new set of literals to the clause instead. Since 
in this paper we are mainly concerned with incremental theory 
revision algorithms, and at each point we perform only a few 
revisions, the inclusion of macro operators such as replacement 
operators does make a difference. A special case of the 
replacement operators are literals that involve numeric constants 
such as, for example, skip elements (by changing the maximum 
number of skipped tokens allowed in them). Such literals are 
replaced by others where the numeric constants are changed in the 
appropriate direction in order to generalize or specialize the 
literal. In addition, when a word class becomes a candidate for 
revision, rather then deleting it, we can add another phrase to the 
word class. 

Another important kind of the replacement operators are those 
related to dealing with the predicate hierarchy. We have two 
kinds: one that climbs up the hierarchy and generalizes the literal 
and another that descends the hierarchy and specializes the given 
predicate. Both operators take an extra argument - a number that 
represents the maximum number of levels to be tried in the 
hierarchy in the direction specified by the operator. Thus, for 
example, to allow the system to climb only one level, we provide 
1 as an extra argument. In cases where there are several options 
for generalization or specialization, the program would pick the 
literal that best discriminates the positive examples from the 
negative ones in the set of relevant examples. 

4.3 A Taxonomy of Biases 
While in principle the preconditions attached to the revision 
operators might be any computable set of predicates, we propose 
to express preconditions using a small set of primitives. These are 
divided into three groups according to the type of information 
they examine.  

4.3.1 Example-based preconditions 
From our experience we have found that comparisons on the sets 
of needed and obstructive examples (N and O, respectively) are 
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sufficient in most cases. In particular, we have found that three 
particular conditions are of interest: 

1.   N or O ≠ ∅��PHDQLQJ�WKH�VHW�VKRXOG�QRW�EH�HPSW\ 

2.   N or O = ∅, meaning the set should be empty 

3.   N or O = X, meaning we do not care about the set’s contents. 

For instance we might specify {delete/(O = X, N = X)} as the bias 
for the revision of a given clause. This bias implies that even if 
there are examples that need this clause to be correctly classified, 
we prefer to delete the clause when it becomes a candidate for 
revision. Similarly, we provide {add new clause /(O = X, N = X)} 
as a bias for the revision of a given intermediate literal. This 
expression says that even if we do not have any obstructive 
examples, we should not delete the literal, but prefer to add a new 
clause instead. This simple language, while not able to capture 
every possible bias with regard to the example set, is powerful 
enough to express most common biases given by experts. If we lift 
the constraint that the preconditions must be expressed using the 
sets N and O and allow any computable set of predicates, we can 
use this scheme to define any form of example bias. 

4.3.2 Topology-based preconditions 
These preconditions concern the location of the flawed element in 
the rule base graph. The primitives are: 

mindepth <Rel> <numeric constant> where mindepth is 
the length of the shortest path between the flawed element and 
any top concept, and Rel ∈ {>,<,!=,≥,≤}. 

maxdepth <Rel> <numeric constant> where maxdepth is 
the length of the longest path between the flawed element and any 
top concept, and Rel ∈ {>,<,!=,≥,≤}. 

minheight <Rel> <numeric constant>  where minheight 
is the length of the shortest path between the flawed element and 
any leaf in the graph, and Rel ∈ {>,<,!=,≥,≤}. 

maxheight <Rel> <numeric constant> where maxheight 
is the length of the longest path between the flawed element and 
any leaf in the graph, and Rel ∈ {>,<,!=,≥,≤}. 

Suppose we want to specify a bias that revisions should be 
performed only at the leaves of the rule base graph. We would 
then add the condition, minheight = 0 to the list of 
preconditions of all elements. If this condition isn’t met, the 
revision doesn’t take place. 

4.3.3 Hierarchy-based preconditions 
These preconditions are related to the location of the element in 
the hierarchy and the topology of its ancestors and descendants. 

The primitives are: 

ancestors(N) - list of all Nth ancestors of the element 
(ancestors(1) is the list of direct parents). 

descendants (N) - list of all Nth descendants of the element 
(descendants(1) is the list of direct children) 

Thus, for example, we could specify a condition 
size(ancestors(1)) = 1  as a precondition for climbing up in 
the hierarchy (i.e., we may climb provided there is no ambiguity 
as to where to climb). 

4.4 Bias Tables 
In order to provide a friendly user interface, we view each of the 
biases attached to rule base elements as a structured table. Each 
element has a table that specifies its biases with regard to the 
selection of the appropriate revision operator. X represents “don't 
care”, i.e., that there are no preconditions vis-a-vis that category. 

The bias table of the literal company(C), for example, would look 
as follows: 

Table 1: Operator bias for Literal company(c)  

Operator 
Name 

Example 
preconditions 

Topology 
preconditions 

Hierarchy 
preconditions 

Delete N  = ∅, O = ∅ X X 

Climb(1) N  = ∅, O = ∅ X Size(parents(1)) = 1 

User(climb) N  = ∅, O = ∅ X Size(parents(1)) > 1 

NOP O = ∅ X X 

 

The above says that when the literal company(C) becomes a 
candidate for revision, we will delete it if there are no examples 
that rely on it to get a correct classification; while at the same time 
there are examples for which it is obstructive to correct 
classification. If any of these conditions are not met, we check if 
there is only one possible generalization of the literal. If that is the 
case, we replace it with its single generalization. Where there is 
more than one generalization we employ the interactive technique 
that involves the user picking the correct generalization operator. 
If there are no examples that benefit from the revision of this 
literal, we do nothing. This bias table was used for most the 
elements of the IE rule base. 
 

4.5 Inheritance of Biases 
Providing revision bias on an element-by-element basis might be 
unreasonable when dealing with large knowledge bases. We 
therefore propose using two hierarchies: the syntactic hierarchy 
and the semantic hierarchy. The syntactic hierarchy classifies 
elements according to their syntactic role (e.g., intermediate 
literals, clauses, skip elements, word classes etc.). The syntactic 
hierarchy is shown in Figure 2. The semantic hierarchy classifies 
elements according to their meaning (e.g., people-related, 
company-relationship, technology-related, product-related etc.). 
While the syntactic hierarchy is domain-independent, the semantic 
hierarchy is domain dependent. A specification of an element 
cluster is formed by combining the syntactic description with the 
semantic one. For instance, one possible cluster description might 
be the set of leaf literals that correspond to company-relationship 
predicates (such as those for “merger”, “joint venture”, and “take 
over”). All such elements would be assigned identical revision 
bias. The biases provided for the different clusters form an 
inheritance hierarchy. An element will be affected by the bias 
declared for the most specific clusters that contain it. In the bias 
table we can define that some preconditions are inherited from 
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more general clusters by indicating I in the suitable cell. We give 
the user the option of specifying a criterion for breaking ties in 
case of multiple inheritances. The default criterion is to pick the 
cluster that was defined previously. 

 
  Element  

 PME  Constraint  

Word 
Class 

Predicate Basic 
Element 

Skip 
Pattern 

Members
hip based 

Predicate
based 

Equality 
based 

 Scanner Compound String POS  

 

Fig. 2: The Syntactic hierarchy 

 

5. EXPERIMENTAL EVALUATION 
We have tested the accuracy of the IE engine by analyzing 
collections of documents extracted by the integrated Agent from 
MarketWatch.com (over the period Oct 1999 – Feb 2000).  We 
started by extracting 15,950 articles from MarketWatch.com that 
mentioned the word “merger”.  We created 67 different event 
types centering on companies, people, locations, technologies, 
products and alliances. We defined 320 word classes and 2100 
rules to extract the aforementioned event types. The advanced 
debugging tools proved to be very useful in the debugging and 
refinement of the rule set.  After construction of the initial rule set 
we achieved an F-Score of  89.3%.  The IE revision module 
enabled us to boost the F-Score to 96.7% in several hours.  The 
actual revision of the rules is done interactively, enabling the user 
to pick the desired revision from the revisions proposed by the 
system.  

In Figure 3 we can see how the system proposes the revisions to 
the user. In the left upper pane we see all positive instances of 
FMergerCCM, and in the bottom pane we can see the clauses of 
FMergerCCM, along with possible revision schemes. We 
expanded one of the clauses and show the proposed revisions. 
Here the system suggested two revisions (marked with “R” icon). 
The first revision is to increase the skip range from 2 tokens to 4 
tokens, and the second revision is to add the word “merging” to 
the word class WCMerger. Performing these revisions enables the 
clause to extract the event FmergerCCM (“Banco Santander 
Corp.”, “Banco Central Hispano Corp.”)  from the string “Banco 
Santander Corp. and Banco Central Hispano Corp. announced 
that they are merging”. The revisions suggested by the system 
were based on the default bias scheme defined above. 

 

Fig. 3: Interactive revision of the IE rules of FMergerCCM 

 

We will now show how Textoscope [2,9,10,11,12,13] (The visual 
front-end of the Text Mining system) enables us to analyze the 
events and terms that were extracted from the 15,950 articles. In 
Figure 4 we can see an event map showing companies that are 
related to an event of “negative merger”, i.e., denying a planned 
merger, or merger plans that did not materialize1. 

 

Fig. 4: “Negative merger” Event map. 

In Fig. 5 we can see an Event Map (with filter set to 11, i.e. only 
events mentioned in at least 11 documents are shown) of actual 
and planned mergers.  We can see that the Time Warner-AOL 
mega merger is one of the main events shown. In Fig. 6 we can 
see the companies related to Time Warner in this collection. In 
Fig. 7 we can see the titles of the documents that support the 
merger event between AOL and Time Warner. In addition to the 
title we can see the exact sentence in each document from which 
the merger event was extracted. In Fig. 8 we see one of the 
documents that supports the merger event between AOL and Time 
Warner. 

                                                                 
1  Larger font size indicates a higher occurrence of the term in the 

collection.  The darker the color of the link between terms, the 
higher the support this event has in the collection.  
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Fig. 5: “Merger” Event Map.  

 

 

Fig. 6:  Companies related to Time Warner  

 

Fig. 7: Titles of Documents supporting the AOL-Time Warner 
Merger event.  

 

 

Fig. 8: One of the Documents supporting the AOL-Time 
Warner Merger event.  

 

6. Conclusions 
This paper presents a framework for performing biased 
incremental IE rules revision based on explicit bias. We have 
introduced a modular architecture for specifying revision bias, and 
have described a family of revision operators and preconditions 
needed for their appropriate application. The architecture is 
designed to enable easy specification of biases of both the 
aggregates of elements based on predefined semantic and 
syntactic hierarchies and of specific rule base elements. 
 
We view this paper as a further step toward building powerful 
bias-guided IE revision systems. In our case the bias comes from 
the operator bias attached to clusters of rule base elements. There 
are certainly other forms of biases, which might be used to 
construct efficient systems that perform accurate revisions, but we 
believe that those can be easily integrated into the proposed 
framework. It should be noted that the scheme of the operator bias 
presented here may be adopted by any incremental IE revision 
algorithm, and can be used in conjunction with any IE rule 
learning algorithm. This approach enabled us to achieve a much 
higher precision and recall than any of the other systems that were 
based only on inductive learning of IE rules. 
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