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ABSTRACT
We consider a dataset S held by an agency, and a vector query of interest, f(S) ∈ Rk, to be posed
by an analyst, which contains the information required for certain planned statistical inference. The
agency releases the requested vector query with noise that guarantees a given level of Differential
Privacy – DP(ε, δ) – using the well-known Gaussian mechanism. The analyst can choose to pose the
vector query f(S) or to adjust it by a suitable transformation that can make the agency’s response
more informative. For any given level of privacy DP(ε, δ) decided by the agency, we study natural
situations where the analyst can achieve better statistical inference by adjusting the query with a
suitable simple explicit transformation.

Keywords Gaussian Mechanism · Normal Datasets · Random Differential Privacy · Confidence Region

1 Introduction
Throughout the paper we consider a dataset or sample S given as an n × d matrix, where each row pertains to an
individual in the sample, and d variables are measured for each of the n participant in the sample. The sample S is held
by some agency and an analyst is interested in a vector function f(S) = (f1(S), . . . , fk(S)) ∈ Rk of the data, to be
called a query. Thus, a query consists of k functions of the data to be posed to the agency by the analyst. We consider
throughout the case k > 1. We assume that for privacy considerations, the agency releases the response to the query
f(S) with noise, using a standard Gaussian mechanism that adds independent N(0, σ2) noise to each coordinate of
f(S). The distribution of the added noise is always assumed to be known to the analyst, a standard assumption in the
differential privacy literature. Two samples S and S′ are said to be neighbors, denoted by S ∼ S′, if they differ by a
single individual, i.e., a single row. See, e.g., [7] for all needed details on Differential Privacy (henceforth DP). When
we consider S and S′ together we always assume that they are neighbors.

More generally, consider a noise mechanisms applied to S via a query h(S) ∈ Rk of the formMh(S) = h(S)+U ∈
Rk, where U is a random vector. A mechanismMh is said to be DP(ε, δ) if for all (measurable) sets E we have

P (Mh(S) ∈ E) ≤ eεP (Mh(S′) ∈ E) + δ (1)

for all S ∼ S′ ∈ D, where the probability refers to the randomness of U , and D is the universe of potential datasets.
For example, if S is a sample of a given size n from some population, then D is the universe of all samples that could



have been drawn and considered for dissemination. The standard definition of DP takes D to be a product Cn where C
consists of all possible rows. Our results hold for any given ε > 0 and δ ∈ (0, 1), which we fix for the rest of this paper.

Our goal is to describe some simple natural examples where posing a linear transformation of the query f(S),
getting the agency’s response via a mechanism that guarantees DP, and inverting the response to obtain the required
information on f(S) yields better inference on f(S) in the case where S is a given fixed dataset, and on the model that
generates f(S), when S is a random sample.

Some related work: The principle of modifying queries for better results is not new. The Matrix Mechanism (MM)
is put forward in a line of work that started with [15]. Further literature includes [8, 16, 17, 19] and numerous references
therein. For given queries, MM linearly modifies the original data by applying a matrix that depends on the queries to
be answered. The modified data is released with noise, and the answer to the original queries is computed. The above
literature studies algorithms for finding optimal modifying matrices that minimizes the distance between the original
queries and the mechanism’s output relative to different utility metrics.

The difference between the above papers and ours is fourfold. First, we provide simple explicit transformations
for the situations we consider rather than a numerical optimization algorithm; second, we consider continuous data
while MM is directed mostly toward frequency tables and counting queries. Applying MM to continuous data leads to
large and sparse tables of counts (contingency tables) and high complexity of the algorithm; third, our transformations
are aimed toward specific statistical goals, rather than standard norms (metrics); and fourth, we consider also random
datasets where inference is on the data-generating process.

For certain specific utility metrics and queries, optimal noise mechanisms have been found; see, e.g., [11, 12], but
in general many researchers consider simple mechanisms with a well-known distribution (e.g., addition of Laplace or
Gaussian iid noise) without considering optimality. In [20] a noise mechanism is proposed where the variance of the
Laplace noise is random. Given a query and its sensitivity, an algorithm for optimal choice of the distribution of the
Laplace variance from a certain class of distributions is provided. Optimality is with respect to the expected distance
(metric) between the original query and the output of the mechanism.

When a dataset is randomly generated by some assumed distribution, it is well known that the analyst has to adjust
the statistical procedure to the distribution of the observed data, taking the distribution of the added noise into account;
see, e.g., [25, 22, 26, 4, 10] and references therein. Most of these results are asymptotic.

2 Fixed (non-random) datasets
Consider a dataset S held by an agency and an analyst who poses a query f(S) in terms of measurement units of his
choosing. For example, the components of f(S) could be average age, average years of schooling, and median income
in the sample S. The observed response is given with noise through a privacy mechanism applied by the data-holding
agency. The analyst’s goals are to construct a confidence region for f(S) and to test simple hypotheses about it. For any
given level ε, δ of DP, we show that instead of posing the query f(S), the analyst can obtain a smaller confidence region
for f(S) by computing it from a query of the form fξ(S) = Diag(ξ)1/2f(S) for a suitable ξ ∈ Rk≥0 (a vector having
nonnegative coordinates), where Diag(ξ) is a diagonal matrix whose diagonal elements form the vector ξ. For the goal
of testing hypotheses, it turns out that a different choice of ξ maximizes the power of the standard likelihood-ratio test.
Thus, the analyst can achieve better inference by adjusting his queries to the planned statistical procedure.

Consider a row (x1, . . . , xd) in the sample S. For simplicity we assume that xi ∈ Ci for i = 1, . . . , d for suitable
sets Ci. In this case each row is in the Cartesian product C := C1 × . . . × Cd and we set D := Cn. We can also
write D := C1 × . . .× Cd, where Ci is the set of n-vectors whose coordinates are all in Ci. We assume that the agency
releases data under DP(ε, δ) relative to this universe D, which is known to both the agency and the analyst.

In Section 2 we assume that the components fi of the vector query f = (f1, . . . , fk) are functions of disjoint sets of
columns of S. This assumption is not needed in Section 3. The quantity

∆(f) := max
S∼S′∈D

||f(S)− f(S′)||,

where || · || denotes the L2 norm, is known as the sensitivity of f ; higher sensitivity requires more noise for DP. Under
simple assumptions on the functions fi such as monotonicity, the agency can readily compute ∆(f), as well as

(S̃, S̃′) := argmax
S∼S′∈D

||f(S)− f(S′)||; (2)
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see Lemma 2.2, where it is shown that the maximization can be done separately for each coordinate of f . In general,
the maximum in (2) is not unique, in which case arg max is a set of pairs.

The agency plans to release a response to the query f(S) via a standard Gaussian mechanism; that is, the response
is given by

M(S) = f(S) + U where U ∼ N(0, σ2I)

and I is the k×k identity matrix. The variance σ2 is the minimal variance such that the mechanism satisfies DP(ε, δ) for
given ε, δ; it can be determined by Lemma 2.3 below, which appears in [2]. This variance depends on ∆(f); however,
here f is fixed and hence suppressed.

Consider a family of queries adjusted by Diag(ξ):

fξ(S) := Diag(ξ)1/2f(S) =
(
ξ1

1/2f1(S), . . . , ξk
1/2fk(S)

)
.

In particular, for the vector ξ whose components are all equal to one we have fξ=1 = f . Given a query from this family,
the agency returns a perturbed response using a Gaussian mechanismMξ by adding to fξ a Gaussian vector U ∈ Rk

where U ∼ N(0, σ2I), that is,
Mξ(S) = fξ(S) + U.

It is easy to see directly or from Lemma 2.3 that we can fix σ2 and guarantee a given level of DP(ε, δ) by choosing ξ
appropriately. Hence fixing σ2 does not result in loss of generality. This is explained immediately following Theorem
2.1.

2.1 Confidence regions

The following discussion concerns the choice of ξ ∈ Rk>0 such that the standard confidence region CRtξ for µ∗ := f(S)

given in formula (3) below, which is based on the observedMξ(S), has the smallest volume. It is easy to see that
allowing the variance of U inMξ to depend on ξ does not lead to smaller volumes.

The idea is simple: intuitively it appears efficient to add more noise to the more variable components of f(S) rather
than “waste noise" on components with low variability. Note that “more variable" depends on both the population
being measured and the chosen units of measurement. Instead of asking the agency to adjust the noise to different
components, we adjust the query, and thus the agency can use a standard Gaussian mechanism. This intuition, as the
whole paper, is clearly relevant only for k > 1.

The analyst observesMξ(S) = fξ(S) + U , where

Mξ(S) =
(
Diag(ξ)1/2f(S) + U

)
∼ N(Diag(ξ)1/2f(S), σ2I).

Thus,
Diag(ξ)−1/2Mξ(S) =

(
f(S) +Diag(ξ)−1/2U

)
∼ N(µ∗, Diag(ξ)−1σ2),

where µ∗ := f(S).
The standard confidence region for µx based on X ∼ N(µx,Σ) is {µ : (X − µ)TΣ−1(X − µ) ≤ t}; see, e.g., [1],

p. 79. Thus, the confidence region for µ∗ = f(S) based on Diag(ξ)−1/2Mξ(S) becomes

CRtξ = {µ ∈ Rk :
(
Diag(ξ)−1/2Mξ(S)− µ

)T
(Diag(ξ)σ−2)

(
Diag(ξ)−1/2Mξ(S)− µ

)
≤ t}. (3)

For any ξ ∈ Rk>0 and any µ∗ ∈ Rk, the coverage probability P (µ∗ ∈ CRtξ) = P (Y ≤ t) where Y ∼ X 2
k (the

chi-square distribution with k degrees of freedom), and thus all the regions CRtξ have the same confidence (coverage)
level. We denote the volume by V ol(CRtξ). For a discussion of the volume as a measure of utility of confidence regions
see, e.g., [9]. We now need the notation

ψ := f(S̃)− f(S̃′) =
(
f1(S̃)− f1(S̃′), . . . , fk(S̃)− fk(S̃′)

)
,

where (S̃, S̃′) is any pair in the set defined in (2), and we assume that ψ2
i > 0 for all i.

Theorem 2.1.
(1) For any fixed t, all confidence regions CRtξ defined in Equation (3) have the same confidence level; that is, the

probability P (µ∗ ∈ CRtξ) depends only on t (and not on ξ).
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(2) Set

Λ(ξ) =

√
ψTDiag(ξ)ψ

σ
.

If for two vectors ξa and ξb the mechanismsMξa andMξb have the same level of DP (that is, the same ε and δ) then
Λ(ξa) = Λ(ξb).

(3) The choice ξ = ξ∗ := c (1/ψ2
1 , . . . , 1/ψ

2
k) with c = ||ψ||2/k minimizes V ol(CRtξ) for any t > 0 over all

vectors ξ ∈ Rk>0 and associated mechanismsMξ having the same DP level. In particular,

V ol(CRtξ∗) ≤ V ol(CRtξ=1),

with strict inequality when maxi(ψi) 6= mini(ψi). The right-hand side of the inequality pertains to the query f .

Fix σ2 to be the smallest variance such that the Gaussian mechanismMξ=1(S) guarantees DP (ε, δ) for the query f .
Part (2) of Theorem 2.1 or of Theorem 2.4 below shows that for anyMξ to have the same DP level asMξ=1 we must

have
√
ψTDiag(ξ)ψ

σ =

√
ψTψ

σ .
For the proof we need two lemmas that are given first.

Lemma 2.2. For any ξ ∈ Rk>0.

∆(fξ) ≡ max
S∼S′∈D

||fξ(S)− fξ(S′)|| = ||fξ(S̃)− fξ(S̃′))||,

where the pair (S̃, S̃′) is defined in Equation (2).

The proof is given in the Appendix.
For an agency willing to release the query f , releasing fξ under the mechanismMξ with the same DP level does

not add any complications. The agency needs to compute the sensitivity defined by ∆(fξ) ≡ maxS∼S′∈D ||(fξ(S)−
fξ(S

′)
)
||. By Lemma 2.2, this amounts to computing ||fξ(S̃) − fξ(S̃′))|| using the pair (S̃, S̃′) from Equation (2),

which is needed to compute the sensitivity of f . In particular, ∆(fξ) =
√
ψTDiag(ξ)ψ, and we shall see below that

the quantity ∆(fξ)/σ is determined by the DP level. Given a DP(ε, δ) level, the agency guarantees it by choosing σ
using Lemma 2.3 below.

The proof of Theorem 2.1 (and all other theorems) relies on the next lemma; it can be obtained readily from the
results of [2], which hold for any query f .

Lemma 2.3. LetM(S) = f(S) +U be a Gaussian mechanism with U ∼ N(0, σ2I), and for given datasets S and S′

set D := DS,S′ = ||f(S)− f(S′)||. (1) If

Φ

(
D

2σ
− εσ

D

)
− eεΦ

(
−D

2σ
− εσ

D

)
≤ δ, (4)

then for all E ⊆ Rk,
P(M(S) ∈ E) ≤ eεP(M(S′) ∈ E) + δ. (5)

(2) Setting D̃ := ∆(f) = ||f(S̃)− f(S̃′)||, with (S̃, S̃′) given in Equation (2), Equation (4) holds with D replaced by
D̃ if and only if the inequality (5) holds for all S ∼ S′ and E ⊆ Rk, that is, if and only if DP(ε, δ) holds.

Part (2) of Lemma 2.3 coincides with Theorem 8 of [2], and the first part follows from their method of proof.
Proof of Theorem 2.1. Part (1) follows from the fact mentioned above that all these regions have confidence level

P (Y ≤ t) where Y ∼ X 2
k . Part (2) is obtained by replacing f of Part (2) of Lemma 2.3 by fξ; then (D̃/σ) becomes√

ψTDiag(ξ)ψ

σ and the result follows.
To prove Part (3), note that the confidence region for the adjusted query given in Equation (3) is an ellipsoid whose

volume is given by:
V ol(CRtξ) = Vk · (σ2t)k/2

(
det[Diag(ξ)]

)−1/2
, (6)

where Vk is the volume of the unit ball in k dimensions. By Part (2), we have to minimize the volume as a function of
ξ subject to the constraint ψTDiag(ξ)ψ = ψTψ, which we do by using Lagrange multipliers. See the Appendix for
details.

4



Given a DP level, the volume is minimized by choosing ξi proportionally to 1/ψ2
i . Multiplying ξ by a suitable

constant guarantees the desired DP level. It is easy compute the ratio of the volumes of the optimal region and the one
based on the original query f :

V ol(CRtξ∗)

V ol(CRtξ=1)
=

((∏k
i=1 ψ

2
i

)1/k
1
k

∑k
i=1 ψ

2
i

)k/2
.

Clearly the ratio is bounded by one, which can be seen again by the arithmetic-geometric mean inequality. Also, if
one of the coordinates ψi tends to zero, so does the ratio, implying the possibility of a substantial reduction in the
volume obtained by using the optimally adjusted query fξ∗ . We remark that the ratio is decreasing in the partial order
of majorization applied to (ψ2

1 , . . . , ψ
2
k); see [18].

2.2 Testing hypotheses: Likelihood-ratio test

As in Section 2.1, consider a query f(S) ∈ Rk, which is observed with noise via a Gaussian privacy mechanism. Now
the analyst’s goal is to test the simple hypotheses H0 : f(S) = 0, H1 : f(S) = η. The null hypothesis is set at zero
without loss of generality by a straightforward translation. For any ξ ∈ R≥0 (a vector with nonnegative components),
let fξ(S) = Diag(ξ)1/2f(S) and letMξ(S) = fξ(S) + U , where U ∼ N(0, σ2I) and σ2 is the smallest variance
such that the Gaussian mechanismMξ=1(S) guarantees DP (ε, δ) for the query f .

Let hξi denote the density ofMξ(S) under the hypothesis Hi, i = 0, 1. The log-likelihood ratio based on the

observedMξ(S), log
{hξ1(Mξ(S))
hξ0(Mξ(S))

}
, is proportional to Mξ(S)TDiag(ξ)1/2η

σ2 , which under H0 has the N(0, η
TDiag(ξ)η

σ2 )

distribution. The likelihood-ratio test (which by the Neyman–Pearson lemma has a well-known optimality property)
rejects H0 when the likelihood ratio is large. For a given significance level α, the rejection region has the form

Rξ =
{
Mξ(S) :

Mξ(S)TDiag(ξ)1/2η

σ2
> t

}
, where t = Φ−1(1− α)

√
ηTDiag(ξ)η

σ
. (7)

Let π(Rξ) := PH1
(Mξ(S) ∈ Rξ) denote the power associated with the region Rξ.

Theorem 2.4.
(1) For any fixed α and for all ξ ∈ R≥0, the rejection regions Rξ defined in (7) have significance level α, that is,

PH0
(Rξ) = α.
(2) Assume that for two vectors ξa and ξb the mechanismsMξa andMξb have the same level of DP (same ε and δ);

then Λ(ξa) = Λ(ξb), where Λ(ξ) =

√
ψTDiag(ξ)ψ

σ .
(3) Let j∗ = arg maxi(η

2
i /ψ

2
i ), and define ξ∗ by ξ∗j∗ = ||ψ||2/ψ2

j∗ and ξ∗i = 0 ∀ i 6= j∗; then the choice ξ = ξ∗

maximizes the power π(Rξ) over all vectors ξ ∈ Rk≥0 and the associated mechanismsMξ having the same DP level,
and in particular π(Rξ∗) ≥ π(Rξ=1), with strict inequality unless maxi(η2

i /ψ
2
i ) = mini(η

2
i /ψ

2
i ).

The right-hand side of the latter inequality pertains to the original query f , and thus a query of just one coordinate of f ,
the one having the largest ratio of (loosely speaking) signal (η2

i ) to noise (ψ2
i ) maximizes the power of the test. Note the

difference between the optimal query of Theorem 2.4 and that of Theorem 2.1, which uses all coordinates of f .
Proof of Theorem 2.4. Part (1) follows from (7) and the discussion preceding it with standard calculations; Part (2)

is similar to that of Theorem 2.1. The proof of Part (3) is given in the Appendix.

3 Random, normally distributed data

So far the dataset S was considered fixed, that is, nonrandom. Statisticians often view the data as random, model the
data-generating process, and study the model’s parameters. Accordingly, we now assume that the dataset, denoted
by T , is randomly generated as follows: the rows of T , T1, . . . , , Tn are iid, where each row T` ∈ Rd represents d
measurements of an individual in the random sample T . We also assume that f is a linear query, that is,

f(T ) = (f1(T ), ..., fk(T )) =
( 1

n

n∑
`=1

q1(T`), ...,
1

n

n∑
`=1

qk(T`)
)

for some functions q1, . . . , qk. In addition, we assume that q(T`) :=
(
q1(T`), . . . , qk(T`)

)
∼ N(µ∗,Σ) for some

unknown µ∗ and a known covariance matrix Σ. The normality assumption holds when the entries of T are themselves
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normal, and qi are linear functions. Assuming normality, possibly after transformation of the data, and iid observations
is quite common in statistical analysis. It follows that f(T ) ∼ N(µ∗,Σn), where Σn = Σ/n. This may hold
approximately by the central limit theorem even if normality of the dataset is not assumed. Here we assume that Σ

is known. The case where it is obtained via a privatized query is beyond the scope of this paper. Assuming that Σ is
known is sometimes natural. For example, when we test hypotheses on means of subpopulations, we sometimes use the
covariance matrix estimated from the general population. In annual economic surveys, for example, the focus is on
change between consecutive years in, say, average income or unemployment rate; however, one can assume that the
past years’ covariance matrix is roughly unchanged. In Section 4 we give an example of blood-test data, where we use a
correlations matrix estimated from the general population.

Since the observed data will depend only on q(T`), we now redefine the dataset to be S, consisting of the n iid rows
S` := q(T`), ` = 1, . . . , n. The assumption q(T`) ∼ N(µ∗,Σ) implies that these rows can take any value in C := Rk.
The universe of all such matrices S is D := Cn = Rn×k.

Our goal is to construct a confidence region for the model parameter µ∗ and test hypotheses about it. This can be
done via the query f(S) = 1

n

∑n
`=1 S` having the distribution N(µ∗,Σn); however, we show that posing the query

g(S) := Σ
−1/2
n f(S) under the same Random Differential Privacy parameters (RDP, to be defined below) results in

smaller confidence regions. We also compare the powers of certain tests of hypotheses.
We say that a query f is invariant if f(S) is invariant under permutations of the rows of S. This happens trivially

when f is a linear query as defined above. If f is invariant then the distribution of the output of any mechanism that
operates on f is obviously unchanged by permutations of rows. In this case it suffices to consider neighbors S ∼ S′ of
the form S = (S1, . . . , Sn−1, Sn), S′ = (S1, . . . , Sn−1, Sn+1). We assume that S1, . . . , Sn+1 are iid rows having
some distribution Q.

Definition 3.1. (ε, δ, γ)-Random Differential Privacy ([13]). A random perturbation mechanismM whose distribution
is invariant under permutations of rows is said to be (ε, δ, γ)-Randomly Differentially Private, denoted by RDP(ε, δ, γ),
if

PS1,...,Sn+1

(
∀ E ⊆ Rk, P (M(S) ∈ E|S) ≤ eεP(M(S′) ∈ E|S′) + δ

)
≥ 1− γ,

where S and S′ are neighbors as above, the probability PS1,...,Sn+1
is with respect to S1, . . . , Sn+1

iid∼ Q and the
probability P (M(S) ∈ E|S) refers to the noise U after conditioning on S.

In words, instead of requiring the condition of differential privacy to hold for all S ∼ S′ ∈ D, we require that there be a
“privacy set" in which any two random neighboring datasets satisfy the DP condition, and its probability is bounded
below by 1− γ. An objection to this notion may arise from the fact that under RDP “extreme" participants, who are
indeed rare, are not protected, even though they may be the ones who need privacy protection the most. Since RDP is
not in the worst-case analysis spirit of DP, we remark that DP can be obtained if, instead of ignoring worst cases having
small probability as in RDP, the agency trims them by either removing them from the dataset or by projecting them to
a given ball (that is independent of the dataset) which determines the sensitivity. Such trimming, if its probability is
indeed small, corresponding to a small γ, will not overly harm the data analysis.

To define a mechanismMh(S) = h(S) + U (see (1)) that satisfies RDP(ε, δ, γ), we need to define a “privacy
set" H , which is a subset of D × D consisting of neighboring pairs (S, S′), that satisfies two conditions. (A):
P ((S, S′) ∈ H) = 1− γ, where the probability P is PS1,...,Sn+1 of Definition 3.1, and (B): Equation (1) holds for all
E, and any pair of neighboring datasets (S, S′) ∈ H . We then say thatMH

h (S) is RDP(ε, δ, γ) with respect to the
privacy set H and the query h.

To construct a suitable H satisfying condition (A) note that

f(S)− f(S′) =
1

n
[q(Sn)− q(Sn+1)] ∼ N(0, 2Σ/n2) (8)

and
||g(S)− g(S′) ||2 = ||Σ−1/2

n [f(S)− f(S′)]||2 = ||Σ−1/2[q(Sn)− q(Sn+1)] ||2/n ∼ 2X 2
k /n.

Thus, if Y ∼ X 2
k satisfies P (Y ≤ r2) = 1− γ then P

(
||g(S)− g(S′) ||2 ≤ 2r2/n

)
= 1− γ, and we can choose the

set H to be
Hg :=

{
(S, S′) ∈ D×D : ||g(S)− g(S′) ||2 ≤ 2r2/n

}
.
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Also, by (8), we have that ||f(S)− f(S′) ||2 is distributed as (2/n)ZTΣnZ with Z ∼ N(0, I), and it is well known
(by diagonalizing Σn) that the latter expression has the (2/n)

∑k
i=1 λiXi distribution, where λi denote the eigenvalues

of Σn and Xi are iid X 2
1 .

Another privacy set we consider is given by

Hf :=
{

(S, S′) ∈ D×D : ||f(S)− f(S′) ||2 ≤ C2
}
,

where C is such that P ((S, S′) ∈ Hf ) = 1− γ, and by (8) the constant C depends on Σ and n.
We consider three Gaussian mechanisms:

MHg
g (S) = g(S) + U, where U ∼ N(0, σ2

gI),

MHg
f (S) = f(S) + U with U ∼ N(0, σ2

fgI),

MHf
f (S) = f(S) + U with U ∼ N(0, σ2

fI),

where the first two are with respect to the privacy set Hg , and the third is with respect to Hf . For each of the three, an
appropriate noise variance σ2

g , σ2
fg , and σ2

f has to be computed, given the privacy set and the RDP parameters, so that
condition (B) above holds. To determine the noise variance we have to compute the sensitivity of the query g on the set
Hg and the sensitivity of f on both Hg and Hf .

Define the sensitivity of f and g on Hg , denoted by D(fg) and D(g), respectively, and the sensitivity of f on Hf ,
denoted by D(f), as follows:

D(fg) := max
(S,S′)∈Hg

||f(S)− f(S′)||,

D(g) := max
(S,S′)∈Hg

||g(S)− g(S′)|| =
√

2 r/
√
n , (9)

D(f) := max
(S,S′)∈Hf

||f(S)− f(S′)|| = C.

We compare the above three mechanisms with the same RDP level in terms of the volume of confidence regions
and the power of tests of hypotheses for the model parameter µ∗, computed from data given by these mechanisms. We
shall prove in Sections 3.1 and 3.2 that the mechanismMHg

g (S) is better thanMHg
f (S) in terms of the volumes of

confidence regions and the power of tests. It is easy to see that D(f) ≤ D(fg) and we show below that this implies that
MHf

f (S) is better thanMHg
f (S) both in terms of the volume of confidence regions, and the power of tests of simple

hypotheses. We shall also show that for small γ we have D(g) ≤ D(f), and thatMHg
g (S) is better thanMHf

f (S) in
terms of volume of confidence regions. The latter mechanism is discussed in Section 3.3.

By the definition of RDP, the mechanismMHg
f (S) satisfies RDP (ε, δ, γ) when (4) holds with D = D(fg) and

σ = σfg , as does the mechanismsMHg
g (S) with D = D(g) and σ = σg, and likewise the mechanismMHf

f (S) with
D = D(f) and σ = σf .

Lemma 3.2. IfMHg
g , MHg

f , andMHf
f have the same RDP, then D(g)/σg = D(fg)/σfg = D(f)/σf . The first

equality is equivalent to σ2
fg = λmax(Σn)σ2

g , where λmax(Σn) denotes the largest eigenvalue of Σn.

Proof. The first part follows from Lemma 2.3 and the above discussion. For the second part it suffices to prove
that [D(fg)]2 = λmax(Σn)[D(g)]2. To see this note that the maximization in (9) is equivalent to maximizing
(g(S)−g(S′))TΣ(g(S)−g(S′)) subject to ||g(S)−g(S′)||2 = [D(g)]2, and the result follows readily from Rayleigh’s
theorem; see, e.g., [14], Chapter 4.

3.1 Confidence regions

We have

Σ1/2
n MHg

g (S) ∼ N
(
µ∗,Σn(1 + σ2

g)
)
, MHg

f (S) ∼ N(µ∗,Σn + σ2
fgI), MHf

f (S) ∼ N(µ∗,Σn + σ2
fI).
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The standard confidence regions for µ∗ := E[f(S)] based onMHg
g (S),MHg

f (S), andMHf
f (S) are

CRtg =
{
µ ∈ Rk :

(
Σ1/2
n MHg

g (S)− µ
)T

(Σn(1 + σ2
g))−1

(
Σ1/2
n MHg

g (S)− µ
)
≤ t
}
,

CRtfg =
{
µ ∈ Rk :

(
MHg

f (S)− µ
)T

(Σn + σ2
fgI)−1

(
MHg

f (S)− µ
)
≤ t
}
,

CRtf =
{
µ ∈ Rk :

(
MHf

f (S)− µ
)T

(Σn + σ2
fI)−1

(
MHf

f (S)− µ
)
≤ t
}
.

The next theorem shows that confidence regions based onMHg
g have a smaller volume than those based onMHg

f ,

and, for γ sufficiently small, also than those based onMHf
f . Thus, of the three natural candidates we consider,MHg

g is
the best mechanism for small γ.

Theorem 3.3.
(1) For any fixed t, the confidence regions CRtg, CRtfg, and CRtf have the same confidence level; that is, for any

µ∗ we have P (µ∗ ∈ CRtg) = P (µ∗ ∈ CRtfg) = P (µ∗ ∈ CRtf ).

(2) If the mechanismsMHg
g ,MHg

f , andMHf
f have the same level ofRDP (ε, δ, γ) thenD(g)/σg = D(fg)/σfg =

D(f)/σf .
(3) V ol(CRtg) ≤ V ol(CRtfg), with strict inequality unless all the eigenvalues of Σn are equal.
(4) For sufficiently small γ, V ol(CRtg) ≤ V ol(CRtf ), with strict inequality, unless all the eigenvalues of Σn are

equal.

Proof. Part (1) holds as in Theorem 2.1, and Part (2) holds by Lemma 3.2. The proof of Part (3), given in the Appendix,
uses the relation σ2

fg = λmax(Σn)σ2
g of Lemma 3.2, and a straightforward eigenvalue comparison. The proof of Part

(4) is somewhat more involved. It uses a comparison of distribution functions of weighted sums of independent gamma
random variables and a majorization argument. Details and references are given in the Appendix.

3.2 Testing hypotheses: Likelihood-ratio test

With E[f(S)] = µ∗ we consider the hypotheses H0 : µ∗ = 0 and H1 : µ∗ = η and the mechanisms MHg
f (S)

andMHg
g (S) defined above. IfMHg

f (S) is observed then the rejection region Rfg of the likelihood-ratio test with
significance level α has the form

Rfg =
{
MHg

f (S) :MHg
f (S)T (Σn + σ2

fgI)−1η > t
}
, where t = Φ−1(1− α)

√
ηT (Σn + σ2

fgI)−1η.

IfMHg
g (S) is observed then the testing problem becomes H0 : µ∗ = 0 vs. H1 : µ∗ = Σ

−1/2
n η, and the rejection region

Rg of the likelihood-ratio test with significance level α has the form

Rg =
{
MHg

g (S) :MHg
g (S)T [(1 + σ2

g)I]−1Σ−1/2
n η > t

}
, where t = Φ−1(1− α)

√
ηTΣ−1

n η

σ2
g + 1

.

Theorem 3.4.
(1) The rejection regions Rfg and Rg have the same significance level α.
(2) If both mechanismsMHg

g andMHg
f have the same level of RDP (ε, δ, γ) then D(g)/σg = D(fg)/σfg .

(3) Let π(Rg) and π(Rfg) denote the power associated with the rejection regions Rg and Rfg, respectively; then
π(Rg) ≥ π(Rfg) with strict inequality, unless all the eigenvalues of Σn are equal.

Proof. Part (1) is similar to Part (1) of Theorem 2.4. Part (2) is already given in Theorem 3.3. The proof of Part
(3), given in the Appendix, involves a simultaneous diagonalization argument and a comparison of eigenvalues using
σ2
fg = λmax(Σn)σ2

g .

3.3 The mechanismMHf
f (S)

It is easy to see that the sensitivity D(f) (on Hf ) satisfies D(f) ≤ D(fg). An equal RDP level implies by Lemma
3.2 that D(fg)/σfg = D(f)/σf and therefore σfg ≥ σf . The power of the likelihood-ratio test based onMHf

f (S)

is the same as in (11), with σfg replaced now with σf . This power is easily seen to be decreasing in σ and therefore
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the likelihood-ratio test based onMHf
f (S) has a higher power than the test based onMHg

f (S). On the other hand,

an extensive computational study shows that the power of the test based onMHg
g (S) may be higher or lower than

that based onMHf
f (S) depending on the parameters involved. In the case of Figure 1 we see that the test based on

MHg
g (S) has a higher power than that based onMHf

f (S).

3.4 Four degrees of naiveté

We consider the random query f(S) ∼ N(µ∗,Σn). The discussion below applies in principle to other distributions.
We discuss four ways of testing hypotheses on µ∗ in the presence of perturbation noise having a known distribution.
The discussion pertains either to a DP(ε, δ) mechanismMf , see (1), or to an RDP(ε, δ, γ) mechanismMH

f with some
privacy set H , which together with the RDP parameters determines the variance of the added noise.

1. The most naive approach to analyzing perturbed data is to ignore the added noise altogether and determine
rejection regions and significance levels as if f(S) is observed without noise. In this case the test may not be
optimal, and the significance level will be wrong. We call this approach super-naive analysis.

2. A less naive approach is to choose a test based as above on the wrong assumption that f(S) is observed
without noise, but to set its critical value t, which determines the significance level, according to the correct
distribution of the observed data, taking the noise into account. In Figure 1 we depict the power curve (denoted
by [a] in the example below) of this approach where RDP is with respect to the privacy set Hf . We call this
approach naive analysis.

3. An even better approach is to choose the test optimally by computing the likelihood-ratio test and the
significance level using the correct distribution of the observed response, taking the Gaussian noise into
account. For simple queries and Gaussian noise this approach is feasible analytically. In Figure 1 we show two
curves of the power under this approach, associated withMH

f when RDP is with respect to the privacy set Hg

(denoted by [b]) and Hf (denoted by [c]), respectively. We call this approach optimal analysis.

4. In this paper we propose adjusting the query to the statistical goals of the analyst and then using the optimal
rejection or confidence regions based on the observed response to the adjusted query, and on its correct
distribution, taking the adjustment and the noise into account. This is accomplished by the mechanism
MHg

g (S) discussed above. Its power curve is denoted by [d] in Figure 1. We call this approach adjusted
optimal analysis.

The first two approaches are sometimes used by practitioners; they may be acceptable for very large samples. Their
properties have been studied asymptotically.

4 A numerical example
We provide a simple data example. The privacy of medical data is of utmost importance. Consider a dataset consisting
of blood-test results. A standard blood test contains 30-40 variables measured in different units, with ranges and
variances that are very different. Some of these variables are highly correlated. Of the many blood-test measurements,
we chose for the sake of our examples to focus on six variables: Cholesterol, High Density Lipoprotein, Apo Protein
A-1, Low Density Lipoprotein, Total Lipid, and Glucose (all having the same units, MG/DL).

In this order, their covariance matrix Σ is given below. It is based on data from [21, 5, 3], and other Internet medical
sources. Clearly, our goal is to provide a simple example to make our point, and not as a study of how to protect
blood-test data.

Σ =



1600 −160 −400 840 800 −40

∗ 400 160 −175 −200 0

∗ ∗ 1600 280 600 0

∗ ∗ ∗ 1225 700 −35

∗ ∗ ∗ ∗ 2500 −50

∗ ∗ ∗ ∗ ∗ 100


We consider the release of averages of the above six variables over a sample of size n, which will vary in our

examples. It is quite standard for statisticians to assume (with justification by the central limit theorem) that such
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vectors of averages are multivariate normal. We assume the agency releases data under RDP (ε, δ, γ). If instead of
RDP we use DP and trimming as described in Section 3, we obtain essentially the same results, with DP(4ε, δ).

In the examples below we consider various parameters and alternatives.

Table 1: Examples 1–4

Example η n δ γ

(1) (10, 5, 10, 8.75, 12.5, 2.5) 50 0.0200 10−4

(2) (10, 5, 10, 8.75, 12.5, 2.5) 50 0.0004 10−6

(3) (0, 0, 20, 0, 25, 5) 50 0.0004 10−6

(4) (0, 0, 20, 0, 25, 5) 100 0.0001 10−6

Figure 1: Comparison of power of the likelihood-ratio test with significance level α = 0.05 as a function of ε for naive,
optimal, and adjusted optimal analyses.
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5 Appendix

Proof of Theorem 2.1 Part (3). The confidence region for the adjusted query given in (3) is an ellipsoid whose volume
is given by

V ol(CRtξ) = Vk · (σ2t)k/2
(
det[Diag(ξ)]

)−1/2
, (10)

where Vk is the volume of the unit ball in k dimensions. In view of Part (2) we minimize the log of the volume as a
function of ξ subject to the constraint ψTDiag(ξ)ψ = ψTψ. We consider the Lagrangian

L(ξ1, . . . ξk, λ) = −
k∑
i=1

log (ξi)− λ
[ k∑
i=1

ψ2
i ξi −

k∑
i=1

ψ2
i

]
.

We are minimizing a strictly convex function subject to a linear constraint. Differentiating and setting the Lagrangian to
zero we readily obtain the unique minimum when ξi is proportional to 1/ψ2

i . The constraint ψTDiag(ξ)ψ = ψTψ,
which by Part (2) guarantees the same DP level, implies that ξ∗ = c (1/ψ2

1 , . . . , 1/ψ
2
k) with c = ||ψ||2/k.

Proof of Lemma 2.2. It is easy to see that ∆2(fξ) = maxS∼S′∈D
∑k
i=1 ξi(fi(S) − fi(S

′))2. We assumed
that the components of the vector query f = (f1, . . . , fk) are functions of disjoint sets of columns of S. Since
D = C1 × . . .×Cd, the sum is maximized by maximizing each summand individually. Multiplying each summand by a
positive constant does not change the point where the maximum is achieved.

Proof of Theorem 2.4 Part (3). Note first that forMξ andMξ=1 to have the same DP(ε, δ) level we must have

Λ(ξ) =

√
ψTDiag(ξ)ψ

σ
= Λ(1) =

√
ψTψ

σ
.

The power of the rejection region Rξ is

π(Rξ) = PH1

(
Mξ(S)T ξ1/2η

σ2
> Φ−1(1− α)

√
ηTDiag(ξ)η

σ

)
= 1− Φ

(
Φ−1(1− α)−

√
ηTDiag(ξ)η

σ

)
,

which is increasing in ηTDiag(ξ)η. Thus in order to maximize the power we have to maximize ηTDiag(ξ)η over ξ
subject to ψTDiag(ξ)ψ = ψTψ. Defining vi = ξiψ

2
i the problem now is to maximize

∑
i vi

η2i
ψ2
i

over vi ≥ 0, subject to∑
i vi = ||ψ||2. Clearly the maximum is attained when vj∗ = ||ψ||2, where j∗ = arg maxi(η

2
i /ψ

2
i ), and vi = 0 for

i 6= j∗, completing the proof.

Proof of Theorem 3.3. The proof of Part (3) uses the fact that

V ol(CRtfg) = bk

√
det[Σn + σ2

fgI] and V ol(CRtg) = bk

√
det[Σn(1 + σ2

g)],

where bk = tk/2Vk and Vk is the volume of the k-dimensional unit ball, and the relation σ2
fg = λmax(Σn)σ2

g . The
required inequality follows from the relations

det
(
Σn(σ2

g + 1)
)

=

k∏
i=1

[
λi

λmax(Σn)
σ2
fg + λi

]
≤

k∏
i=1

[
σ2
fg + λi

]
= det

(
Σn + σ2

fgI
)
,

where λi denote the eigenvalues of Σn.
To prove Part (4), we need the following fact, which is a special case of a result stated in [6], Proposition 2.7 and

Equation (10). The last part is given by [23], p. 999, and [24], Theorem 2.2.

Fact. LetXi ∼ X 2
1 be iid. Without loss of generality assume that λ1, . . . , λk with λi > 0 satisfy λ :=

∑k
i=1 λi/k =

1. Define Fλ(x) = P (
∑k
i=1 λiXi ≤ x) and let F (x) denote the distribution function of X 2

k . Then for sufficiently large
x we have Fλ(x) ≤ F (x).

More specifically, the latter inequality holds for x > 2k.The latter lower bound, given by [23, 24], is far from being
tight, as suggested by numerical computations.
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Recall that C = D(f) satisfies P
(
(2/n)

∑k
i=1 λiXi ≤ C2

)
= 1− γ. For the rest of the proof set D = D(g); then

D is defined by P
(
(2/n)Y ≤ D2

)
= 1 − γ, where Y ∼ X 2

k ; see Equation (9). For λ = 1, which can be assumed
without loss of generality, the above Fact immediately implies that C2 ≥ D2 for sufficiently small γ. By the last part of
the above fact, for k = 6, 10, 20, and 30, sufficiently small means γ ≤ 1− P (Y < 12) = 0.062 and γ ≤ 0.03, 0.005,
and 0.001, respectively.

Proof of Part (4). As in the proof of Part (3), by Lemma 3.2 and then for sufficiently small γ such that C2 ≥ D2λ

(where λ = 1), we have det
(
Σn(σ2

g + 1)
)

=
∏k
i=1

[
λi + λiD

2

C2 σ2
f

]
≤
∏k
i=1

[
λi + λiσ

2
f/λ

]
and now it remains to

show that the latter product is bounded above by
∏k
i=1[λi + σ2

f ] = det
(

Σn + σ2
fI
)

. Dividing by
∏k
i=1 λi and taking

log, we see that the required bound is equivalent to
∑k
i=1 log

[
1 + σ2

f/λ
]
≤
∑k
i=1 log[1 + σ2

f/λi]. This follows from

the fact that log[1 + σ2
f/λ] is convex in λ and therefore

∑k
i=1 log[1 + σ2

f/λi] is a Schur convex function; see [18].

Proof of Theorem 3.4 Part (3). The power of the rejection region Rfg is given by

π(Rfg) = PH1

(
MHg

f (S)T (Σn + Iσ2
fg)
−1η > Φ−1(1− α)

√
ηT (Σn + Iσ2

fg)
−1η

)
= 1− Φ

(
Φ−1(1− α)−

√
ηT (Σn + Iσ2

fg)
−1η

)
(11)

= 1− Φ
(

Φ−1(1− α)−
√
ηT (Σn + Iλmax(Σn)σ2

g)−1η
)
.

Likewise π(Rg) = 1− Φ

(
Φ−1(1− α)−

√
ηTΣ−1

n η
σ2
g+1

)
. Therefore, π(Rg) ≥ π(Rfg) if and only if

ηTΣ−1
n η

σ2
g + 1

≥ ηT (Σn + Iλmax(Σn)σ2
g)−1η.

Diagonalizing the two matrices (1 + σ2
g)Σn and Σn + Iλmax(Σn)σ2

g by the common orthogonal matrix of their
eigenvectors, we see that the diagonal terms, that is, the eigenvalues (σ2

g + 1)λi of the first matrix are less than or equal

to those of the second one, λi + λmaxσ
2
g . It follows that Σ−1

n

σ2
g+1 � (Σn + Iλmax(Σn)σ2

g)−1, where A � B means that
A−B is nonnegative definite; see [14], Chapter 4. The result follows.
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