
ar
X

iv
:1

50
8.

07
26

7v
1 

 [
m

at
h.

PR
] 

 2
8 

A
ug

 2
01

5

Functional BKR Inequalities, and their Duals, with

Applications

Larry Goldstein and Yosef Rinott∗

University of Southern California, Hebrew University of Jerusalem

August 31, 2015

Abbreviated Title: Functional BKR Inequalities

Abstract

The BKR inequality conjectured by van den Berg and Kesten in [11], and proved
by Reimer in [8], states that for A and B events on S, a finite product of finite sets
Si, i = 1, . . . , n, and P any product measure on S,

P (A�B) ≤ P (A)P (B),

where the set A�B consists of the elementary events which lie in both A and B for
‘disjoint reasons.’ Precisely, with n := {1, . . . , n} and K ⊂ n, for x ∈ S letting
[x]K = {y ∈ S : yi = xi, i ∈ K}, the set A�B consists of all x ∈ S for which there
exist disjoint subsets K and L of n for which [x]K ⊂ A and [x]L ⊂ B.

The BKR inequality is extended to the following functional version on a general
finite product measure space (S,S) with product probability measure P ,

E



 max

K∩L=∅
K⊂n,L⊂n

f
K
(X)g

L
(X)



 ≤ E {f(X)} E {g(X)} ,

where f and g are non-negative measurable functions and f
K
(x) = ess infy∈[x]K f(y)

and g
L
(x) = ess infy∈[x]L g(y). The original BKR inequality is recovered by taking

f(x) = 1A(x) and g(x) = 1B(x), and applying the fact that in general 1A�B ≤
maxK∩L=∅ fK

(x)g
L
(x).

Related formulations, and functional versions of the dual inequality on events by
Kahn, Saks, and Smyth [6], are also considered. Applications include order statistics,
assignment problems, and paths in random graphs.
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1 Introduction

This paper is a minor revision of [5], correcting an error in equation (5) that was pointed out
to us by Richard Arratia during the preparation of [2], a draft of which he shared with us.
Inequality (5) was earlier incorrectly stated as an equality. While the correction is important
on its own, the error is inconsequential for the purposes of our original work. As (5) was
only applied to show (20), for which we now provide a much simpler argument not involving
(5), no results depended on its validity. In particular, the statements of all theorems here
are the same as in [5].

For x = (x1, . . . , xn) ∈ S, where S =
∏n

i=1 Si any product space, and K = {k1, . . . , km} ⊆
n := {1, . . . , n} with k1 < · · · < km, define

xK = (xk1 , . . . , xkm) and [x]K = {y ∈ S : yK = xK},

the restriction of x to the indicated coordinates, and the collection of all elements in S which
agree with x in those coordinates, respectively. For A,B ⊆ S we say that x ∈ A,y ∈ B

disjointly if there exist

K,L ⊆ n, K ∩ L = ∅ such that [x]K ⊆ A and [y]L ⊆ B, (1)

and denote

A�B = {x : x ∈ A,x ∈ B disjointly}. (2)

The operation A�B corresponds to elementary events which are in both A and B for disjoint
‘reasons’ in the sense that inclusion in A and B is determined on disjoint sets of coordinates.

Theorem 1.1 was conjectured in van den Berg and Kesten [11]. It was proved in [11] for A
and B increasing sets and S = {0, 1}n, and it was also demonstrated there that Theorem 1.1
follows from its special case S = {0, 1}n. Using the latter fact, the conjecture was established
in general by Reimer [8].

Theorem 1.1. For P =
∏n

i=1 Pi any product measure on S =
∏n

i=1 Si, Si finite,

P (A�B) ≤ P (A)P (B). (3)

Many useful formulations can be found in van den Berg and Fiebig [10], in addition to
the following motivating example which appeared earlier in [11]. Independently assign a
random direction to each edge e = {vi, vj} of a finite graph, with pe(vi, vj) = 1 − pe(vj , vi)
the probability of the edge e being directed from vertex vi to vj. With V1, V2,W1,W2 sets of
vertices, Theorem 1.1 yields that the product of the probabilities that there exist directed
paths from V1 to V2 (event A) and from W1 to W2 (event B) is an upper bound to the
probability that there exist two disjoint directed paths, one from V1 to V2 and another from
W1 to W2 (event A�B).

The main thrust of this paper is to show how Theorem 1.1 implies inequalities in terms of
functions, of which (3) is the special case of indicators, and similarly for the dual inequality
of [6]. These functional inequalities, and their duals, are stated in Theorems 1.2 and 1.5, and
their proofs can be found in Section 3. Applications to order statistics, allocation problems,
and random graphs are given in Section 2. Specializing to monotone functions, we derive

2



related inequalities and stochastic orderings in Section 4; these latter results are connected
to those of Alexander [1].

For each i = 1, . . . , n, let (Si, Si) be measurable spaces, and set S =
∏n

i=1 Si and S =⊗n
i=1 Si, the product sigma algebra. Henceforth, all given real valued functions on S, such

as fα, gβ, α ∈ A, β ∈ B are assumed to be (S,B) measurable where B denotes the Borel
sigma algebra of R, and functions on S with values in 2n, such as K(x) in inequality (d)
of Theorem 1.2 below, are assumed to be (S, 22

n

) measurable. Measurability issues arise
in definitions (9), (4), and (16), and are settled in Section 5. We also show in Section 5
that Theorem 1.2 applies to the completion of the measure space (S, S) with respect to the
measure P appearing in the theorem; similarly for Theorem 1.5.

For K ⊆ n we say that a function f defined on S depends on K if xK = yK implies
f(x) = f(y). The inequalities in Theorems 1.2 and 1.5 require one of two frameworks, the
first of which is the following.

Framework 1. {fα(x)}α∈A and {gβ(y)}β∈B are given collections of non-negative functions
on S, such that fα, gβ depend respectively on subsets of n Kα, Lβ in K = {Kα}α∈A and
L = {Lβ}β∈B, where A and B are finite or countable.

The elements of K and L are not assumed to be distinct; we may have, say, Kα = Kγ

for some α 6= γ and fα 6= fγ. Note also that if a function depends on K, it depends on any
subset of n containing K. For notational brevity we may write α for Kα; for example, we
may use α ∩ β as an abbreviation for Kα ∩ Lβ , and also xα for xKα

.
The second framework is

Framework 2. f and g are two given non-negative functions, and K and L are any subsets
of 2n. With P a probability measure on (S, S) define for K ∈ K, L ∈ L,

f
K
(x) = ess inf

y∈[x]K
f(y), and g

L
(x) = ess inf

y∈[x]L
g(y), (4)

where the essential infimums for f
K
(x) and g

L
(x) are being taken with respect to the product

probability measure on the coordinates in Kc and Lc respectively.

Our functional extension of the BKR inequality (3) is

Theorem 1.2. Let X = (X1, . . . , Xn) ∈ S be a random vector and P a probability measure
on (S, S) under which X1, . . . , Xn are independent.

1. Under framework 1,

E

{
sup

α∩β=∅

fα(X)gβ(X)

}
≤ E

{
sup
α

fα(X)

}
E

{
sup
β

gβ(X)

}
. (a)

2. Under framework 2,

E



 max

K∩L=∅
K∈K,L∈L

f
K
(X)g

L
(X)



 ≤ E {f(X)} E {g(X)} . (b)
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The special case of (b)where K = L = 2n, the collection of all subsets of n, clearly
implies the inequality in general.

In [8], inequality (3) for the � operation was proven only for discrete finite product
spaces, that is, a finite product of finite sets; Theorem 1.2 applies to functions of a vector X
having independent coordinates taking values in any measure space. For f(x) = 1A(x) and
g(x) = 1B(x) for A,B ∈ S, we have

1A�B ≤ max
K∩L=∅

f
K
(x)g

L
(x). (5)

To see (5), note that replacing essential infimum by infimum in (4), the inequality becomes
equality. Hence (5) holds as stated because the essential infimum is at least as large as the
infimum. In other words, elements of A�B demand disjoint ‘reasons’ for A and B that hold
for all outcomes in the probability space, while the right hand side of (5) only requires that
the ‘reasons’ be almost sure.

In [5], the specialization of (b) to indicator functions and K = L = 2n, and ‘equality’ in
(5), was interpreted to mean that inequality (3) holds for general product spaces. However,
as (b) is an inequality, this interpretation now yields that for all A,B ∈ S the set in S whose
indicator appears in the right hand side of (5) contains A�B and has probability bounded
above by the product of the probabilities of A and B. This latter interpretation appears in
Corollary 4 of [2] when S is taken to be Euclidean space.

The following is a straightforward generalization of Theorem 1.2, stated here only for
inequality (a). Note that in the inequality below, as m increases the pairwise constraints
αi ∩ αj = ∅ become more restrictive, and the inequality less sharp.

Theorem 1.3. Let X ∈ S be a random vector with independent coordinates. Then for given
finite or countable collections of non-negative functions {fi,α}α∈Ai

depending on {Ki,α}α∈Ai
,

i = 1, . . . , m,

E





sup
(α1,...,αm)∈A1×···×Am

αk∩αl=∅, k 6=l

m∏

i=1

fi,αi
(X)





≤
m∏

i=1

E

{
sup
α∈Ai

fi,α(X)

}
.

Next we describe an inequality of Kahn, Saks, and Smyth [6], which may be considered
dual to the BKR inequality (3), and then provide a function version. We use a notation
compatible with (3). With ‘disjointly’ defined in (1), denote

A♦B = {(x,y) : x ∈ A,y ∈ B disjointly}.

Note that
1A�B(x) = 1A♦B(x,x).

The following, which we call the KSS inequality, is dual to Theorem 1.1 and is given in
[6].

Theorem 1.4. If P denotes the uniform measure over {0, 1}n, then for any (A,B) ⊆
{0, 1}n × {0, 1}n,

(P × P )(A♦B) ≤ P (A ∩ B). (6)
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Our functional extension of the KSS inequality is as follows.

Theorem 1.5. Let X = (X1, . . . , Xn) ∈ S be a random vector, P any probability measure
on (S, S) such that X1, . . . , Xn are independent, and Y an independent copy of X.

1. Under framework 1,

E

{
sup

α∩β=∅

fα(X)gβ(Y)

}
≤ E

{
sup
α,β

fα(X)gβ(X)

}
. (a′)

2. Under framework 2,

E



 max

K∩L=∅
K∈K,L∈L

f
K
(X)g

L
(Y)



 ≤ E {f(X)g(X)} . (b′)

The ♦ operation in Theorem 1.4 on {0, 1}n×{0, 1}n was defined implicitly in [6], and the
inequality was extended there to product measure on discrete finite product spaces. With
f(x) and g(x) the indicator functions of sets A and B respectively, we have the inequality

1A♦B(x,y)≤ max
K∩L=∅

f
K
(x)g

L
(y), (7)

where f
K
, g

L
are given in (4). Therefore, inequality (b ′) of Theorem 1.5 specialized to the

case where K = L = 2n and f and g are indicators says that the original KSS inequality (6)
for events in discrete finite product spaces extends to vectors having independent coordinates
taking values in any measure space in the sense that A♦B is a subset of the set whose
indicator is the function appearing on the right hand side of (7), and has probability bounded
by P (A ∩ B), by (b’).

We next discuss further formulations of Theorems 1.2 and 1.5 which are of independent
interest, and will be used in the proof. Under Framework 1, for any subsets K and L of n,
define

f̃K(x) = sup
α:Kα⊆K

fα(x) and g̃L(x) = sup
β:Lβ⊆L

gβ(x). (8)

For any given functions K(x) and L(x) defined on S and taking values in 2n, under Frame-
work 1, extend (8) to

f̃K(x)(x) = sup
α:Kα⊆K(x)

fα(x) and g̃L(x)(x) = sup
β:Lβ⊆L(x)

gβ(x), (9)

and under Framework 2, extend (4) to

f
K(x)

(x) = ess inf
y∈[x]K(x)

f(y), and g
L(x)

(x) = ess inf
y∈[x]L(x)

g(y). (10)

Proposition 3.1 shows that parts (c) and (d) of Proposition 1.1 are reformulations of (a) of
Theorem 1.2, and likewise (e) a reformulation of (b).
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Proposition 1.1. Let the hypotheses of Theorem 1.2 hold. In Framework 1 (c) and (d)
below obtain.

E



 max

K∩L=∅
K∈K,L∈L

f̃K(X)g̃L(X)



 ≤ E

{
sup
α

fα(X)

}
E

{
sup
β

gβ(X)

}
. (c)

E
{
f̃K(X)(X)g̃L(X)(X)

}
≤ E

{
sup
α

fα(X)

}
E

{
sup
β

gβ(X)

}
, (d)

holding for any given K(x) ∈ K and L(x) ∈ L such that K(x) ∩ L(x) = ∅.

In Framework 2 we have

E
{
f
K(X)

(X)g
L(X)

(X)
}
≤ E {f(X)}E{g(X)} , (e)

holding for any given K(x) ∈ K and L(x) ∈ L such that K(x) ∩ L(x) = ∅.

As in Theorem 1.2 the special cases of (c) and (d) where K and L both equal 2n implies
the inequality in general. Similarly, the special case of inequality (e) with K = L = 2n and
L(x) = Kc(x), where Kc denotes the complement of K, yields the inequality in general, that
is, (e) is equivalent to the statement that for any given K(x),

E
{
f
K(X)

(X)g
Kc(X)

(X)
}
≤ E {f(X)}E{g(X)} .

Parallel to the claims of Proposition 1.1, parts (c ′) and (d ′) below are reformulations of
(a ′) of Theorem 1.5, and (e ′) a reformulation of (b ′) . For given f and a function K(x,y)
taking values in 2n, define f̃K(X,Y) and f

K(X,Y)
by replacing K(x) by K(x,y) in (9) and (10)

respectively.

Proposition 1.2. Let the hypotheses of Theorem 1.5 hold. In Framework 1 (c ′) and (d ′)
below obtain.

E

{
max

K∈K,L∈L
f̃K(X)g̃L(Y)

}
≤ E

{
sup

α∩β=∅

fα(X)gβ(X)

}
. (c ′)

E
{
f̃K(X,Y)(X)g̃L(X,Y)(Y)

}
≤ E

{
sup

α∩β=∅

fα(X)gβ(X)

}
, (d ′)

holding for any given K(x,y) ∈ K and L(x,y) ∈ L replacing K(x) and L(x) in (9), respec-
tively, and satisfying K(x,y) ∩ L(x,y) = ∅.

In Framework 2 we have

E
{
f
K(X,Y)

(X)g
L(X,Y)

(Y)
}
≤ E {f(X)g(X)} , (e ′)

for given K(x,y) ∈ K and L(x,y) ∈ L replacing K(x) and L(x) in (10), respectively.
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2 Applications

Example 2.1. Order Statistics Type Inequalities Let X = (X1, . . . , Xn) be a vector of
independent non-negative random variables with associated order statistics X[n] ≤ · · · ≤ X[1].
Let A = B be the collection of all the singletons α ∈ n and fα(x) = gα(x) = xα. Then

max
α

fα(X) = X[1], max
α∩β=∅

fα(X)gβ(X) = X[1]X[2],

and inequality (a) of Theorem 1.2 provides the middle inequality in the string

EX[1]EX[2] ≤ EX[1]X[2] ≤ (EX[1])
2 ≤ EX2

[1].

The leftmost inequality is true since order statistics are always positively correlated (moreover
they are associated as defined by Esary et al [3], and even MTP2, see Karlin and Rinott [7]);
the rightmost inequality follows from Jensen.

Theorem 1.2 allows a large variety of extensions of this basic order statistics inequality.
For example, taking A and B to be all k and l subsets of n respectively, then with

fα(x) =
∏

j∈α

xj and gβ(x) =
∏

j∈β

xj (11)

we derive

E

(
k+l∏

j=1

X[j]

)
≤ E

(
k∏

j=1

X[j]

)
E

(
l∏

j=1

X[j]

)
.

Dropping the non-negativity assumption on X1, . . . , Xn, we have for all t > 0,

Eet(X[1]+X[2]) ≤ [EetX[1] ]2 = EetX[1]EetY[1] = Eet(X[1]+Y[1]),

with Yi’s being independent copies of the Xi’s. Likewise, for all t > 0,

Ee−t(X[n]+X[n−1]) ≤ [Ee−tX[n] ]2 = Ee−tX[n]Ee−tY[n] = Ee−t(X[n]+Y[n]).

Moment generating function and Laplace orders are discussed in Shaked and Shanthikumar
[9].

Returning to non-negative variables, a variation of (11) follows by replacing products with
sums, that is,

fα(x) =
∑

j∈α

xj and gβ(x) =
∑

j∈β

xj , (12)

which for, k = l = 2 say, yields

E max
{i,j,k,l}={1,2,3,4}

(X[i] +X[j])(X[k] +X[l]) ≤ [E(X[1] +X[2])]
2.

Though the maximizing indices on the left hand side will be {1, 2, 3, 4} as indicated, the choice
is not fixed and depends on the X’s; note, for example, that (X[1]+X[2])(X[3]+X[4]) is never
maximal apart from degenerate cases.
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Definition (11) and (12) are special cases where f and g are increasing non-negative
functions of k and l variables and

fα(x) = f(xα) and gβ(x) = g(xβ); (13)

when f and g are symmetric,

E max
{i1,...,ik,j1,...,j l}={1,...,k+l}

f(X[i1], . . . , X[ik])g(X[j1], . . . , X[j l])

≤ Ef(X[1], . . . , X[k])Eg(X[1], . . . , X[l]).

We now give an example which demonstrates that these order statistics type inequalities
can be considered in higher dimensions. Let X1, . . . ,Xn be independent vectors in Rm, and
for α, β ⊆ n with |α| = |β| = 3 let fα and gβ be given as in (13), where f(x1,x2,x3) =
g(x1,x2,x3) is, say, the area of the triangle formed by the given three vectors. Theorem 1.2
gives that the expected greatest product of the areas of two triangles with distinct vertices is
bounded above by the square of the expectation of the largest triangular area.

To explore the dual inequality in these settings, let X be a vector of independent variables
with support contained in [0, 1], and Y an independent copy. With A = B the collections of
all singletons α in n, and fα(x) = xα, gβ(x) = 1− xβ, inequality (a ′) of Theorem 1.5 gives

E

{
max
α6=β

Xα(1− Yβ)

}
≤ EX[1](1−X[n]). (14)

Note that maxα6=β Xα(1− Yβ) 6= X[1](1− Y[n]); the right hand side might be larger because of
the restriction α 6= β. Removing the restriction α 6= β reverses (14), that is,

EX[1](1−X[n]) ≤ EX[1]E(1−X[n]) = EX[1]E(1−Y[n]) = EX[1](1−Y[n]) = E

{
max
α,β

Xα(1− Yβ)

}
,

where the inequality follows by the negative association of X[1] and 1−X[n].
Following our treatment of applications of Theorem 1.2 we can extend (14) as follows:

with A and B the collection of all k and l subsets of n respectively, and

fα(x) =
∏

j∈α

xj and gβ(x) =
∏

j∈β

(1− xj),

we obtain

E

{
max
α∩β=∅

∏

i∈α,j∈β

Xi(1− Yj)

}
≤ E

{
∏

1≤i≤k,1≤j≤l

X[i](1−X[n−j+1])

}
.

We now consider resource allocation problems of the following type. Suppose that two
projects A and B have to be completed using n available resources represented by the
components of a vector x. Each resource can be used for at most one project, and an
allocation is given by a specification of disjoint subsets of resources. For any given subsets
α, β ⊆ n, let fα(x) and gβ(x) count the number of ways that projects A and B can be
completed using the resources xα and xβ respectively. The exact definitions of the projects
and the counts are immaterial; in particular larger sets do not necessarily imply more ways to
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carry out a project. For an allocation α, β, α∩ β = ∅, the total number of ways to carry out
the two projects together is the product fα(x)gβ(x). When the resources are independent
variables, inequality (a) of Theorem 1.2 bounds the expected maximal number of ways of
completing A and B together, by the product of the expectations of the maximal number
of ways of completing each project alone. The bound is simple in the sense that it does
not require understanding of the relation between the two projects. In particular, it can be
computed without knowledge of the optimal allocation of resources.

Example 2.2. With J a list of tasks, consider fulfilling the set of tasks on (not necessarily
disjoint) lists A ⊆ J and B ⊆ J , in two distant cities using disjoint sets of workers chosen
from 1, 2, . . . , n. Each worker may be sent to one of the cities and assigned a single task or
a set of tasks which he can perform. A worker may be qualified to fill more than one set of
tasks. For i ∈ n, let xi ⊆ 2J be the collection of possible assignments of tasks for worker i,
(that is, the sets of tasks worker i is qualified to fulfill.); For α, β ⊆ n and x = (x1, . . . ,xn),
let fα(x) equal the number of ways the collection of workers α can complete A, and gβ(x)
the number of ways the collection β can complete B. When the qualifications Xi, i ∈ n are
independent, Theorem 1.2 bounds the expectation of the maximal number of ways of fulfilling
the task requirements in both cities, by the product of the expectations of the maximal numbers
of ways that the requirements in each collection can be separately satisfied.

Example 2.3. Paths on Graphs Consider a graph G with an arbitrary fixed vertex set V =
{v1, . . . , vn}, where for each pair of vertices the existence of the edge {vi, vj} is determined
independently using a probability rule based on vi, vj, perhaps depending only on d({vi, vj})
for some function d. Let X = {X{i,j}} where X{i,j} is the indicator that there exists an
edge between vi and vj. For instance, with V ⊆ Rm and Z{i,j}, 1 ≤ i, j ≤ n independent
non-negative variables, we may take for vi, vj ∈ V,

X{i,j} = 1(d({vi, vj}) < Z{i,j}) where d({vi, vj}) = ||vi − vj|| (Euclidean distance) .

Note that since the variables Z{i,j} do not have to be identically distributed, we can set Zi,i = 0
and avoid self loops should we wish to do so.

Let a path in the graph G from u to w be any ordered tuple of vertices vi1 , . . . , vip with
vi1 = u, vip = w and X{ik ,ik+1} = 1 for k = 1, . . . , p − 1, and having all edges {vik , vik+1

}
distinct. For u, v and w in V and α, β ⊆ {{i, j} : 1 ≤ i, j ≤ n}, let fα(X) be the number
of paths in the graph from u to v which use only edges {vi, vj} for {i, j} ∈ α; in the same
manner, let gβ(X) be the number of paths in the graph from v to w which use only edges
{vi, vj} for {i, j} ∈ β.

The “projects” A and B in this framework are to create paths from u to v using α, and
from v to w using β, respectively, which combine together, when α ∩ β = ∅, to give the
overall project of creating a path from u to w passing through v. As the product fα(X)gβ(X)
for α ∩ β = ∅ is the number of paths from u to w via v for the given allocation, Theorem
1.2 provides a bound on the expected maximal number of such paths over all allocations in
terms of the product of the expectations of the maximal number of paths from u to w and
from w to v when the paths are created separately. Though finding the optimal allocation
may be demanding, the upper bound can be computed simply, for this case in particular by
monotonicity of fα(x), gβ(x) in α and β for fixed x, implying that the maximal number of
paths created separately is attained when using all available edges, i.e. at α = β = n.
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However, the result and the upper bound hold even in constrained situations where the
existence of more edges does not lead to more paths, that is, in cases where the functions
fα, gβ are not monotone in α and β. One such case would be where the existence of a
particular edge mandates that all paths from u to v use it. More specifically, for some fixed
{i0, j0} suppose that if {i0, j0} ∈ α and x{i0,j0} = 0 then fα(x) counts the number of paths
from u to v. On the other hand if x{i0,j0} = 1 then fα(x) counts the number of paths from u

to v which use the edge {vi0, vj0}. In general such fα will not be monotone.
This example easily generalizes to paths with multiple waypoints. We may also consider

directed graphs where for 1 ≤ i 6= j ≤ n the directed edge (vi, vj) from vi to vj exists when
Xij = 1, the directed edge (vj, vi) from vj to vi exists when Xij = −1 and Xij = 0 when
no edge exists. Returning to the graph example following the statement of Theorem 1.1,
when the signed edge indicators {Xij}1≤i<j≤n are independent, inequality (a) of Theorem 1.2
provides a bound on the expected maximal number of paths from vertices v1 to v2 and w1 to
w2 using disjoint edges. Another possible extension is to consider paths between subsets of
vertices.

For application of the dual inequality, consider for example two directed graphs on the
same vertex set, determined by equally distributed and independent collections of signed edge
indicators X and Y, each having independent (but not necessarily identically distributed)
components. Let α, β ⊆ {(i, j) : 1 ≤ i 6= j ≤ n}, and fα(X) be the number of directed paths
in the graph from vertices u to v which use only X edges (vi, vj) with (i, j) ∈ α; in the same
manner, let gβ(Y) be the number of directed paths in the graph from v back to u which use
only Y edges (vi, vj) with (i, j) ∈ β. Consider the expected maximal number of paths, over
all α and β with α ∩ β = ∅, that go from u to v using the X edges α and return to u from
v using the Y edges β. Then Theorem 1.5 implies that this expectation is bounded by the
expected maximal number of paths, over all α and β, to move from u to v using α, and then
returning to u using β, all with X edges, but where edges used on the forward trip may now
also be used for the return.

3 Proofs

3.1 Proofs of Proposition 1.1 and Theorem 1.2

We first reduce the problem by proving the following implications between the parts of
Theorems 1.2 and Proposition 1.1.

Proposition 3.1. (a) ⇒ (c) ⇒ (d) ⇒ (a) and (b) ⇔ (e).

Proof: (a) ⇒ (c): Apply inequality (a) to the finite collections {f̃K}K∈K, {g̃L}L∈L and use

sup
α∩β=∅

fα(x)gβ(x) = max
K∩L=∅

K∈K,L∈L

(
sup

Kα⊆K,Lβ⊆L
fα(x)gβ(x)

)

= max
K∩L=∅

K∈K,L∈L

(
sup

Kα⊆K
fα(x) sup

Lβ⊆L
gβ(x)

)
= max

K∩L=∅
K∈K,L∈L

f̃K(x)g̃L(x). (15)

(c) ⇒ (d): Apply f̃K(x)(x)g̃L(x)(x) ≤ maxK∩L=∅,K∈K,L∈L f̃K(x)g̃L(x).
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(d) ⇒ (a): Note that the right hand side of (15) equals f̃K(x)(x)g̃L(x)(x) for some K(x) ∈ K
and L(x) ∈ L with K(x) ∩ L(x) = ∅.

(b) ⇒ (e): Apply f
K(x)

(x)g
L(x)

(x) ≤ maxK∩L=∅,K∈K,L∈L fK
(x)g

L
(x).

(e) ⇒ (b): Use the fact that there exist some disjoint K(x) ∈ K, L(x) ∈ L such that

max
K∩L=∅

K∈K,L∈L

f
K
(x)g

L
(x) = f

K(x)
(x)g

L(x)
(x). (16)

Let FC be the sigma algebra generated by a collection of sets C. We say FC is a finite
product sigma sub algebra of S when

C =

{
n∏

i=1

Ai, Ai ∈ Ci

}
, with Ci ⊆ Si finite for all i = 1, . . . , n. (17)

It is easy to see that every finite sigma algebra, F , contains a subset G, not containing the
empty set, such that every element of F can be represented uniquely as a disjoint union of
elements of G. Call G the disjoint generating set of F .

Our next objective is proving the inequalities of Framework 1, to be accomplished by
proving (d) in Lemma 3.6. We start with a simple extension of inequality (3), expressed in
terms of indicator functions, from finite spaces to spaces that may not be finite, but which
are endowed with a finite product sigma algebra.

Lemma 3.1. Let Q be any probability product measure on the finite product sigma algebra
FC with C given by (17). Then, inequality (a) holds when expectations are taken with respect
to Q, and {fα}α∈A, {gβ}β∈B are FC measurable indicator functions.

Proof: For i = 1, . . . , n, let Gi be the disjoint generating set of FCi . By Theorem 1.1,
applied on the space G =

∏n
i=1Gi,

Q(A�B) ≤ Q(A)Q(B). (18)

Let events A and B be defined by the indicator functions

1A(x) = max
α

fα(x), 1B(x) = max
β

gβ(x), (19)

and let Aα and Bβ be the sets indicated by fα(x) and gβ(x) respectively. Suppose x ∈ S

satisfies fα(x)gβ(x) = 1 for disjoint α, β. Clearly Aα ⊆ A, and as fα depends on Kα, we
have [x]α ⊆ Aα ⊆ A. As a similar statement holds for B, x ∈ A�B, hence,

max
α∩β=∅

fα(x)gβ(x) ≤ 1A�B(x). (20)

Now (20) gives the first inequality below, (18) the second inequality, and (19) the last
equality in

EQ

{
max
α∩β=∅

fα(X)gβ(X)

}
≤ Q(A�B) ≤ Q(A)Q(B) = EQ

{
max

α
fα(X)

}
EQ

{
max

β
gβ(X)

}
.

We say a collection of functions is FP if it generates a finite product sigma algebra
contained in S; note that a finite union of FP collections is FP.
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Lemma 3.2. Inequality (a) is true for P any probability product measure on (S, S), and
{fα}α∈A, {gβ}β∈B, any finite collections of FP indicator functions.

Proof: Let H be the sigma algebra generated by {fα}α∈A, {gβ}β∈B, and Q := P |H, the
restriction of P to the finite product sigma algebra H. For h an H measurable indicator
function, that is, for h(x) = 1A(x) for some A ∈ H, we have

EQh = Q(A) = P (A) = EPh. (21)

Since the product of H measurable indicators is an H measurable indicator, and the same
is true for the maximum, we have by Lemma 3.1 and (21),

EP

{
max
α∩β=∅

fα(X)gβ(X)

}
= EQ

{
max
α∩β=∅

fα(X)gβ(X)

}

≤ EQ

{
max

α
fα(X)

}
EQ

{
max

β
gβ(X)

}

= EP

{
max

α
fα(X)

}
EP

{
max

β
gβ(X)

}
.

Let P denote the collection of all product sets of the form C = {
∏n

i=1 Si, Si ∈ Ci} where
Ci ⊆ Si are finite for all i = 1, . . . , n. Then

S = FJ where J =
⋃

C∈P

FC. (22)

Lemma 3.3 generalizes the inequality from FP indicator functions to S measurable indi-
cator functions.

Lemma 3.3. Inequality (a) is true for any probability product measure P and finite collec-
tions {fα}α∈A and {gβ}β∈B of S measurable indicator functions.

Proof: For R,S subsets of A ∪ B satisfying R ∩ S = ∅ and R ∪ S = A ∪ B, we pro-
ceed by induction on the cardinality of the set S in the statement I(R,S): inequality
(a) is true when {fα}α∈R∩A, {gβ}β∈R∩B are finite FP collections of indicator functions, and
{fα}α∈S∩A, {gβ}β∈S∩B are any finite collections of S measurable indicators. Lemma 3.2 shows
that I(A∪B, ∅) is true, and the conclusion of the present lemma is I(∅,A∪B). Assume for
some such R,S with S 6= A ∪ B, that I(R,S) is true. For γ ∈ R with, say γ ∈ A, let M
be the collection of all sets A ⊆ S such that (a) holds for fγ = 1A, and when {fα}α∈R∩A\{γ}

and {gβ}β∈R∩B are finite FP indicators, and {fα}α∈S∩A, {gβ}β∈S∩B are any collection of S
measurable indicators. The singleton collection fγ is FP for any A ∈ J given by (22).
Therefore, for any A ∈ J , the union fγ, {fα}α∈R∩A\{γ}, {gβ}β∈R∩B is FP. By the induction
hypothesis, J ⊆ M. Since M is a monotone class and J is an algebra which generates S,
the monotone class theorem implies S ⊆ M. This completes the induction.

We now relax the requirement that the functions be indicators.

Lemma 3.4. Inequality (d) is true for any product measure P and finite collections of S
measurable functions {fα}α∈A and {gβ}β∈B which assume finitely many non-negative values.

12



Proof: We prove (d) by induction on m and l, the number of values taken on by the
collections {fα}α∈A, {gβ}β∈B, respectively. By Lemma 3.3 inequality (a) is true for finite
collections of measurable indicators, and hence by Proposition 1.1, so is inequality (d). Now
the base case m = 2, l = 2 follows readily by extending from indicators to two valued
functions by linear transformation.

Assume the result is true for some m and l at least 2, and consider a collection {fα}α∈A
assuming the values 0 ≤ a1 < · · · < am+1; a similar argument applies to induct on l. For
some k, 2 ≤ k ≤ m, define

Aα,k = {x : fα(x) = ak},

and for ak−1 ≤ a ≤ ak+1, let

ha
α(x) = fα(x) + (a− ak)1Aα,k

(x),

the function fα with the value of ak replaced by a. We shall prove that for all a ∈ [ak−1, ak+1]
inequality (d) holds with {ha

α}α∈A replacing {fα}α∈A. By the induction hypothesis we know
it holds at the endpoints, that is, for a ∈ {ak−1, ak+1}, since then the collection {ha

α}α∈A
takes on m values; clearly, the case a = ak suffices to prove the lemma.

Given Γ(x), a function with values in 2A, with some abuse of notation denote

f̃Γ(x)(x) = sup
α:α∈Γ(x)

fα(x). (23)

Note that f̃K(x)(x) in (9) corresponds to Γ(x) = {α : Kα ⊆ K(x)}, and similarly for g̃L(x)(x);
for measurability issues see Section 5. For any function Γ(x) with values in 2A, we have for
all a ∈ [ak−1, ak+1],

CΓ := {x : h̃a
Γ(x)(x) = a, f̃Γ(x)(x) 6∈ {ak−1, ak+1}} = {x : f̃Γ(x)(x) = ak},

showing that CΓ does not depend on a.
Let D = CΓ for Γ(x) = A, and note that

sup
α

ha
α(x) = a1D + sup

α
fα(x)1Dc .

Then the right hand side of (d), with {ha
α}α∈A replacing {fα}α∈A, equals aδ + λ, where

δ = P (D)

∫
sup
β

gβ(x)dP (x) and λ =

∫

Dc

sup
α

fα(x)dP (x)

∫
sup
β

gβ(x)dP (x)

do not depend on a. Now, let E = CΓ for Γ(x) = {α : Kα = K(x)} and note that

h̃a
K(x)(x) = a1E + f̃K(x)(x)1Ec. Similarly, the left hand side of (d), with {ha

α}α∈A replacing
{fα}α∈A, equals aθ + η, where

θ =

∫

E

g̃L(x)(x)dP (x) and η =

∫

Ec

f̃K(x)(x)g̃L(x)(x)dP (x)

do not depend on a. When a ∈ {ak−1, ak+1} the collection hα, α ∈ A takes on m values, so
by the induction hypotheses (d) holds with {ha

α}α∈A replacing {fα}α∈A and we obtain

aθ + η ≤ aδ + λ, for a ∈ {ak−1, ak+1}. (24)

By taking a convex combination, we see that inequality (24) holds for all a ∈ [ak−1, ak+1], so
in particular for ak, completing the induction.
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Lemma 3.5. Inequality (d) is true for any probability product measure P and finite collec-
tions of non-negative S measurable functions {fα}α∈A and {gβ}β∈B.

Proof: Lemma 3.4 shows that the result is true for simple functions. By approximating the
functions fα, gβ below by simple functions, fα,k ↑ fα, gβ,k ↑ gβ as k ↑ ∞, and applying the
monotone convergence theorem, we have the result for arbitrary non-negative functions.

Lemma 3.6. Inequality (d) is true for countable collections of non-negative S measurable
functions {fα}α∈A and {gβ}β∈B.

Proof: For K,L ∈ 2n, let

ϕK(x) = f̃K(x) and φL(x) = g̃K(x),

recalling definition (8). Noting

f̃K(x)(x) = sup
α:Kα⊆K(x)

fα(x) = sup
K⊆K(x)

sup
α:Kα⊆K

fα(x) = sup
K⊆K(x)

f̃K(x) = ϕ̃K(x)(x),

and

sup
K

ϕK(x) = sup
K

f̃K(x) = sup
α

fα(x),

and similarly for {gβ}β∈B, the result follows immediately upon applying Lemma 3.5 to the
finite collections {ϕK}K∈2n and {φL}L∈2n .

By Proposition 3.1, at this point we have completed proving all inequalities pertaining to
Framework 1. The next proposition connects the two frameworks and completes the proof
of Theorem 1.2, and again applying Proposition 3.1, that of Proposition 1.1.

Proposition 3.2. Inequality (a) holds in Framework 1 for all collections {fα}α∈A, {gβ}β∈B
of given functions, if and only if inequality (b) holds in Framework 2 for all given functions
f and g and collections K and L.

Proof: (a) ⇒ (b). For L ⊆ n let PL(x) denote the marginal of P in the coordinates indexed
by L. Let functions f , g and collections K and L of subsets of 2n be given.

By Fubini’s theorem, for any K ⊆ 2n,

P (f
K
(x) ≤ f(x)) =

∫
1(f

K
(x) ≤ f(x))dP (x) =

∫ ∫
1(f

K
(x) ≤ f(x))dPKc(x)dPK(x)

=

∫
PKc(f

K
(x) ≤ f(x))dPK(x) =

∫
1dPK(x) = 1,

where the fourth equality holds by definition of the essential infimum. As K is finite,

P (max
K∈K

f
K
(X) ≤ f(X)) = 1, implying E

{
max
K∈K

f
K
(X

}
≤ E {f(X)} ,

with a similar inequality holding for g. Now we see that (b) holds by applying (a) to the
collections {f

K
(x)}K∈K and {g

L
(x)}L∈L as in (4).

14



(b) ⇒ (a): Given collections of functions fα, gβ depending on Kα, Lβ , define

f(x) = sup
α

fα(x) and g(x) = sup
β

gβ(x). (25)

Now letting f
K
, g

L
be as in (4), we have

fα(x) = fαKα
(x) ≤ f

Kα
(x) and likewise gβ(x) ≤ g

Lβ

(x).

Now, for α, β disjoint,

fα(x)gβ(x) ≤ f
Kα

(x)g
Lβ

(x) ≤ max
K∩L=∅

K∈2n,L∈2n

f
K
(x)g

L
(x).

Taking supremum on the left hand side over all disjoint α, β and then expectation, the result
now follows by applying inequality (b) and (25).

3.2 The Dual Inequality

As observed in [6], the techniques in [10] extend the dual inequality (6) from uniform measure
on {0, 1}n×{0, 1}n to any product measure on a discrete finite product space S. Specifically,
Lemmas 3.2(iii), 3.4, and 3.5 of [10] carry over with minimal changes, essentially by replacing
� by ♦ and ∩ by × appropriately; for example, the dual version of Lemma 3.4 would begin
with the identity

(f × f)−1(A♦B) =
⋃

C1,C2

{
(f × f)−1(C1 × C2)

}

where the union is over all C1, C2 such that C1 is a maximal cylinder of A, C2 is a maximal
cylinder of B, and C1 ⊥ C2; see Sections 3 and 2 of [10] for the formal definitions of maximal
cylinder, and perpendicularity ⊥, respectively.

Now the proof of Theorem 1.5 and Proposition 1.2 follow in a nearly identical manner to
that of Theorem 1.2 and Proposition 1.1. For instance, to prove (d ′) , consider

CΓ = {(x,y) : h̃a
Γ(x,y)(x) = a, f̃Γ(x,y)(x) 6∈ {ak−1, ak+1}} = {(x,y) : f̃Γ(x,y)(x) = ak}.

Setting D = CΓ for Γ(x,y) = {α : Kα = K(x,y)} we can write the left hand side of (d ′) as
aθ + η, with

θ =

∫

D

g̃L(x,y)(y)dP (x)dP (y) and η =

∫

Dc

f̃K(x,y)(x)g̃L(x,y)(y)dP (x)dP (y),

and using E = CΓ for Γ = A, the right hand side becomes aδ + λ, where

δ =

∫

D

sup
β

gβ(x)dP (x) and λ =

∫

Dc

sup
α,β

fα(x)gβ(x)dP (x)

with θ, η, δ and λ not depending on a.
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4 A PQD ordering inequality

Consider a collection {fα(x)}
m
α=1 of functions which are all increasing or all decreasing in

each component of x = (x1, . . . , xn) ∈ Rn. Let X = (X1, . . . , Xn) ∈ Rn be a vector of
independent random variables, Y = (Y1, . . . , Yn) an independent copy of X, and for each
α = 1, . . . , m, let Hα ⊆ n, and

Zα = (Z1,α, . . . , Zn,α), (26)

where Zi,α = Yi if i ∈ Hα, and Zi,α = Xi, if i 6∈ Hα. Now let

U = (f1(Z1), . . . , fm(Zm)) and V = (f1(X), . . . , fm(X)). (27)

Inequalities between vectors below are coordinate-wise. When (28) below holds, we say that
the components of V are more ‘Positively Quadrant Dependent’ than those of U, and write
U ≤PQD V.

Theorem 4.1. For every c = (c1, . . . , cm) ∈ Rm and Hα ⊆ n, α = 1, . . . , m,

P (U ≥ c) ≤ P (V ≥ c) and P (U ≤ c) ≤ P (V ≤ c). (28)

Proof: Since (28) holds for U,V if and only if it holds for −U,−V, by replacing the col-
lection {fα(x)}

m
α=1 by {−fα(x)}

m
α=1 when the functions are decreasing, it suffices to consider

the increasing case.
For k ∈ {0, . . . , n} let Hk

α = Hα∩{0, . . . , k}, and with Hα replaced by Hk
α, let Z

k
α and Uk

be defined as in (26) and (27) respectively. We prove the first inequality in (28) by induction
on k in

P (Uk ≥ c) ≤ P (V ≥ c); (29)

the second inequality in (28) follows in the same manner. Inequality (29) is trivially true,
with equality, when k = 0, since then Hk

α = ∅ and Zα = X for all α ∈ m. Now assume
inequality (29) is true for 0 ≤ k < n and set

B = {α : k + 1 ∈ Hα}.

Then

P (Uk+1 ≥ c)

= P (f1(Z
k+1
1 ) ≥ c1, . . . , fm(Z

k+1
m ) ≥ cm)

= E[P (f1(Z
k+1
1 ) ≥ c1, . . . , fm(Z

k+1
m ) ≥ cm|Xl, Yl, l 6= k + 1)]

= E[P (fα(Z
k
α) ≥ cα, α 6∈ B|Xl, Yl, l 6= k + 1)P (fα(Z

k+1
α ) ≥ cα, α ∈ B|Xl, Yl, l 6= k + 1)]

= E[P (fα(Z
k
α) ≥ cα, α 6∈ B|Xl, Yl, l 6= k + 1)P (fα(Z

k
α) ≥ cα, α ∈ B|Xl, Yl, l 6= k + 1)]

≤ E[P (f1(Z
k
1) ≥ c1, . . . , fm(Z

k
m) ≥ cm)|Xl, Yl, l 6= k + 1]

= P (Uk ≥ c)

≤ P (V ≥ c),

where the third equality follows from the independence of Xk+1 and Yk+1 and the fourth from
the fact that {fα(Z

k
α)}α∈B has the same conditional distribution when either Xk+1 or Yk+1
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appears as the k + 1st coordinate of the Z vector; the first inequality follows from the fact
that conditioned on Xl, Yl, l 6= k+1, the functions fα(Z

k
α) are all increasing in Xk+1 and are

therefore (conditionally) associated, and the second inequality is the induction hypothesis
(29). In fact, for the first inequality above it suffices to see that the product of the two
probabilities conditioned on Xl, Yl, l 6= k + 1 is the product of (conditional) expectations of
two increasing functions of Xk+1, which is smaller than the (conditional) expectation of the
product.

Taking c = (c, . . . , c) we immediately have

Corollary 4.1. For all c ∈ R,

P (max
α

fα(Zα) ≤ c) ≤ P (max
α

fα(X) ≤ c) or equivalently max
α

fα(X)≤ST max
α

fα(Zα).

Application 1. Consider the framework of Theorem 1.2, with fα(x), gβ(x), α ∈ A, β ∈ B
all increasing or all decreasing functions which depend on coordinates Kα, Lβ. Define D to
be a collection of functions

D = {fα(X) + gβ(X) : Kα ∩ Lβ = ∅},

and for Y = (Y1, . . . , Yn) as above, set

D∗ = {fα(X) + gβ(Y) : Kα ∩ Lβ = ∅}.

By Theorem 4.1 we have
D∗ ≤PQD D.

Applying Corollary 4.1,

max
α∩β=∅

{fα(X) + gβ(X)} ≤ST max
α∩β=∅

{fα(X) + gβ(Y)}.

Exponentiating the last relation and replacing efα by fα, using obvious properties of the
max, we obtain

max
α∩β=∅

{fα(X)gβ(X)} ≤ST max
α∩β=∅

{fα(X)gβ(Y)}. (30)

and therefore

E{max
α∩β=∅

fα(X)gβ(X)} ≤ E{max
α∩β=∅

fα(X)gβ(Y)} ≤ E{max
α

f(X)}E{max
β

g(X)},

for nonnegative monotone functions fα and gβ. Thus the relation (30) is stronger than the
BKR inequality for monotone sets, which was proved in [11]. Alexander [1] presents similar
functional versions in this context.

As an example we return to order statistics as in Section 2.1. From (30) we derive, for
example, that

X[1]X[2] ≤ST X[1]Y[2] ∨ Y[1]X[2].

Generalizing by using the functions (11), we obtain for any p+ q = m,

m∏

j=1

X[j] ≤ST max
{i1,...,ip}∪{j1,...,jq}={1,...,m}

∏
X[iq]Y[jq].

17



5 Appendix on Measurability

In this section we briefly deal with various measurability issues. The measurability of the
functions defined in (9) can be seen from

f̃K(x)(x) =
∑

K

f̃K(x)1(K(x) = K),

since the given function K(x) is assumed measurable. Similarly for (23),

f̃Γ(x)(x) =
∑

A∈2A

sup
α∈A

fα(x)1(Γ(x) = A).

We next prove that given a non-negative, (S,B) measurable function f : S → R and any
K ⊆ n, the function f

K
(x) defined in (4) is (S,B) measurable. Letting

fr(x) = min(f(x), r)

and PL(x) be the marginal of P (x) on the coordinates xL, we have

lim
p→∞

(∫
(r − fr(x))

pdPKc(x)

)1/p

= ess sup
y∈[x]K

(r − fr(y)) = r − ess inf
y∈[x]K

fr(y).

Tonelli’s theorem (see e.g. [4]) now implies that ess infy∈[x]K fr(y) is measurable. Letting
r ↑ ∞ shows that (4) is measurable.

The only complication regarding measurability of the pair (K(x), L(x)) in (16) is that
the maximum may not be uniquely attained, since otherwise we would simply have

{x : K(x) = K,L(x) = L} =
⋂

K ′∩L′=∅

{x : f
K
(x)g

L
(x) ≥ f

K ′(x)gL′(x)},

a finite intersection of measurable sets, so measurable. To handle the problem of non-
uniqueness, let ≺ be an arbitrary total order on the finite collection of subsets of n× n, so
that when the max is not unique we can choose (K(x), L(x)) to be the first disjoint pair
that attains the maximum. Then {x : K(x) = K,L(x) = L} = F ∩G where

F =
⋂

(K′,L′)≺(K,L)

K ′∩L′=∅

{x : f
K
(x)g

L
(x) > f

K ′(x)gL′(x)}

and
G =

⋂

(K′,L′)�(K,L)

K ′∩L′=∅

{x : f
K
(x)g

L
(x) ≥ f

K ′(x)gL′(x)}

and again measurability follows. Similar remarks apply to the maximizing K(x), L(x) in
(15) for the implication (d) ⇒ (a).

Finally, we note inequality (a), and therefore also (b), holds on the completion of (S, S)
of (S, S) with respect to P . Proposition 2.12 of [4] shows that for every S measuable function
f there exists an S measurable function f such that f = f with (completed) measure one.
Hence, replacing all S measurable functions in (a) by their S measurable counterparts and
applying (a) over the space (S, S) shows (a) holds on (S, S).

Acknowledgment: The authors would like to thank Richard Arratia for pointing out to us
that (5) is an inequality in general, and for other insightful comments.
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