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ASYMPTOTIC NORMALITY OF SOME 
GRAPH-RELATED STATISTICS 

PIERRE BALDI,* University of California, San Diego 
YOSEF RINOTT,** Hebrew University 

Abstract 

Petrovskaya and Leontovich (1982) proved a central limit theorem for sums of 
dependent random variables indexed by a graph. We apply this theorem to obtain 
asymptotic normality for the number of local maxima of a random function on 
certain graphs and for the number of edges having the same color at both endpoints 
in randomly colored graphs. We briefly motivate these problems, and conclude with 
a simple proof of the asymptotic normality of certain U-statistics. 

CENTRAL LIMIT THEOREM; DEPENDENT VARIABLES; MAXIMA OF RANDOM 

FUNCTIONS; RANDOM COLORINGS; U-STATISTICS; NEURAL NETWORKS 

1. Introduction: background and applications 

Sums of dependent 0-1 (indicator) or bounded random variables arise often in 
statistics, random graphs theory and other areas of applied probability. Since such 
variables have all moments, it is natural to study the limiting distributions of their sums 
by computing moments, a task which may however lead to tedious calculations. 

In this paper we study the asymptotic distribution of the number of maxima (or 
minima) of certain random functions on a hypercube, a problem which arises in 
connection with combinatorial optimization (Tovey (1985)), the study of neural 
networks (Baldi (1988)), and certain models in statistical mechanics (Derrida (1980), 
(1981), Gross and Mezard (1984)). An interpretation in terms of game theory will be 
briefly sketched. We also prove a central limit theorem for the distribution of the 
number of edges which have the same color at both endpoints in a randomly colored 
graph. This result can be applied to prove asymptotic normality of certain two-sample 
statistics based on nearest neighbor or minimal spanning tree graphs. Finally, we present 
a very simple proof of the asymptotic normality of U-statistics. 

To these problems we apply the moment approach via the following theorem which is 
a variant of a recent result of Petrovskaya and Leontovich (1982). Rates of convergence 
will be studied elsewhere. 
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Definition. The graph G = (V, E) is said to be a dependency graph for the random 
variables {Xa, a E V} if for any pair of disjoint sets A,, A2 in V such that no edge in E has 
one endpoint in Al and the other in A2, the sets of random variables (Xa, aEAl} and 
{Xa, aEA2} are independent. 

Theorem 1. Let {X,,, a E V,} be random variables having a dependency graph 
G, = (V,, E,), n = 1, 2, * . . For a in V, let Lakn denote the number of connected subsets 
of V, of cardinality at most k which contain a. Let S, = Ea,ev X,, an2 = Var S, < oo and 

I V, -, oo. Suppose that for all k _ 3 

~~~(1) C~~~E £~~()EX, . Ik = o(cro). 
aE Vn 

Then 
S, - ES, Sn -ESn 

(0, 1) as n -oo. 
,n 

Remark. The proof in [14] yields a stronger result, namely convergence of all 
moments. 

Corollary 2. Under the conditions of Theorem 1, let D, denote the maximal degree 
of G, and suppose I X,, I < Bn a.s. If instead of (1) we have 

I V.ID.2B-- (2) 
V DB 0 asn-oo 

cn7 

then 
S, - ES, Sn 

--ESn .(0, 1). 
(7n 

The proof of Corollary 2 and of the applications below will be given in Section 2. 

Remark. We learnt while preparing this manuscript that this result can also be 
obtained as a special case of a theorem of Janson (1988). His proof is based on semi- 
invariants rather than moments. 

Application A. Consider the n-dimensional cube Cn = (0, }" and let { Ya,, aE C,) 
be i.i.d. continuous random variables. For a E C define the 0-1 indicator variable Xa, by 
Xan = 1 if and only if Ya, > Yf, for all EJ Cn such that H(a, f) = 1, where H(a, f) 
denotes the Hamming distance between the vertices a, f? of C,. Thus Xan = 1 if Yan is a 
'local maximum'. (Note that the Yan's are used only to induce a random ranking on the 
vertices.) Let Sn = 2aEcn Xa,, that is Sn counts the number of local maxima on the cube. 

Proposition 3. 

S, - ES, 
(3) Sn 1/2 

- '(0, 1) as n -oo. 
(Var SO)12 

More generally, we can replace Cn by C,* = (0, 1, * , s}n and (3) holds where now for 
a, f E C,*, H(a, P) denotes the number of coordinates (out of n) in which a and P differ. 
In game theory, this problem arises when we consider a game in which each of n players 
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chooses one of the strategies {0, * * *, s , thus forming a vertex a E Cn*. Then each player 
is paid Y,n. A local maximum in this case is called a Nash equilibrium of the (stochastic) 
game, hence S, counts the number of equilibria. In a similar setting, Powers (1986) 
obtained Poisson limit theorems when the number of strategies goes to infinity. 

Application B. Let n, = (An, n ) be a sequence of multigraphs (allowing more than 
one edge between a pair of vertices). Assume that each vertex is independently assigned 
one of two colors with probability p and q = 1 - p respectively. Let Tn denote the 
number of edges whose endpoints have the same color. Let A, denote the maximal degree 
of Wn. Poisson limit theorems for such models are given in Janson (1986). 

Proposition 4. If 

(4) A4n =o( |nl) 

then 
Tn - ETn 

(var TO)l/2 

In the case where W, is a k-nearest-neighbor multigraph or a minimal spanning tree, 
Proposition 4 is closely related to results of Schilling (1986), Henze (1988) and Friedman 
and Rafsky (1979) on the asymptotic normality of two-sample test statistics. For these 
graphs (4) holds because both the k- nearest neighbor and minimal spanning tree graphs 
in Rm have a bounded maximal degree (with bound depending on m). 

Application C. Let XI,..., Xn be i.i.d. random variables. Given a symmetric 
(invariant under permutations of the arguments) function h(xl,. * .,x) of m n 
variables, the corresponding U-statistics are defined as 

Un = U(X ,.. ., Xn)-( h(Xil,;,, ..,Xm) 
\m 

where the sum extends over all (n) subsets of indices from {1, * , n}. U-statistics and 
their asymptotic distribution were introduced and studied by Hoeffding (1948). We 
demonstrate the utility of Corollary 2 by giving a very simple proof of the asymptotic 
normality of bounded U-statistics. This approach can be extended to obtain easy proofs 
of asymptotic normality for generalized U-statistics and V-statistics (see Serfling (1980), 
Chapter 5), and to the cases when h is not bounded or is allowed to depend on n. For an 
example of the latter type see Abramson and Goldstein (1987). 

Proposition 5. Suppose X,* * *, Xn are i.i.d. random variables and h is a symmetric 
bounded function satisfying Var E {h (X,. * , Xm) I X } > 0. Then for any fixed m 

Un - EUn 
V U -'(O, 1) as n - oo. (Var Un)1/2 
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2. Proofs of applications 

Proof of Corollary 2. First observe that Lk) < (k - 1)!Dk- . To see this construct a 
connected set containing a inductively by choosing at the mth step a vertex from the 
m < k vertices already in the set and adding an adjacent vertex. For each such step there 
are at most mDn possibilities, m = 1, ·, k - 1. Therefore 

(5) k , Lak)EIX~n k ) I Vn IDOk-lBk (5) k k L^E^^ ^ 

' 

n n 

For k = 3, the right-hand side converges to 0 by (2). Also Dn IVn implies 
(DnBn/an)3 _V I V Dn2Bn/an -3 0, so that Dn Bn Ia - O, implying together with (2) that the 
right-hand side of (5) converges to 0 for all k > 3 and application of Theorem 1 
completes the proof. 

Proof of Proposition 3. We first prove Proposition 3 for the cube C,. For vertices 
a, f E Cn satisfying H(a, p) > 2, Xan and Xpn are independent, and in applying Corollary 
2 we take Vn = Cn and the edge set En consists of edges between vertices a, fB such that 
H(a, p) < 2. Hence Dn = n + (2) < n2. Notice that Xan = 1 requires Y, > Yn for n other 
vertices p and since the Y's are i.i.d. (any exchangeable Y's would give the same result), 
P(Xan = 1)= l/(n + 1). If H(a,/) )= 1 we have EXa,,Xn = O. Hence Cov(Xa, X,) = 
- l/(n + 1)2. If H((a, ))=2 then an elementary calculation yields EXa Xn = 

I/n(n + 1) and combining these results we obtain E ae X, an = 2n/(n + 1), and an2 = 

Var Z2c,Xa =2"'(n - l 1)(n + 1)2. Since I Vn I = C =2" and Xan 1, con- 
dition (2) of Corollary 2 follows from the fact that 2"n4[(2 n-l(n - l)/(n + 1)2)1]-3/2 0. 

For the case of C* we obtain by similar calculations E 2aEc3 Xan = (s + l)"/(sn + 1) 
and an2 = Var ,Ec, Xan = (s + l)s(n - 1)/2(sn + 1)2 while Dn, (sn)2 and Corollary 2 

applies. 

Proof of Proposition 4. In order to apply Corollary 2, we construct a dependency 
graph G, = (Vn, En). The vertex set of G, is the edge set of In, i.e., Vn == gn. For 
a = (v, w)E 4n,, let Xan be the 0-1 indicator variable defined by Xan = 1 if and only if v 
and w have the same color, whence Tn = ,aE, Xan. Then for a = (v, w), / = (r, s) E V, 

Xan and X,in are independent unless a and /B have a common vertex in Yn, i.e., 
{v, w) n {r, s} - 0. Thus, for a given a = (v, w) there are at most 2(An - 1) pairs of the 
form (v, s) or (r, w), and if we construct En by connecting all these pairs to a we obtain a 

dependency graph Gn = (Vn, E) for the variables {Xa ) with maximal degree Dn = 

2(A - 1). In order to apply Corollary 2, we now compute an2 = Var a,,V Xan. First 
notice that EXan = p2 + q2 and that Var Xan = (p2 + q2)2pq. In the multigraph cn, 
suppose a, fl E 8n are two edges connecting the same pair of vertices. Then Xan = Xpn so 
that Cov(Xan, XAT) = (p2 + q2)2pq. Let m(n) be the number of such (unordered) pairs a, 

f, in n,n. Next let a, /BE n have exactly one common vertex in n. Then EXanXpn = 

p3+ q3. There are Z^(d) - 2m(n) such pairs, where for vE· , d, denotes the 

degree of the vertex v in the multigraph ,n. If a, f E n have no common 

vertex then Cov(X,,, X,n) =O. Combining these facts a2 = I I (p2 +q2)2pq + 

2m(n)( p + q2)2pq + [v dv(dv - 1) - 4m(n)][(p3 + q3) - (p2 + q2)2]. Since all the 
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terms in the latter expression are non-negative, we obtain a , | > , I (p2 + q2)2pq = 
c | , for some c > 0. Therefore I V, I D2/a,3 < I i 1(2A, - 2)2/a3 -= (A2/I 1 n 1/2). The 
right-hand side converges to 0 by (4), and the desired result follows from Corollary 2. 

Proof of Proposition 5. We construct a dependency graph for the (m) variables 

(n)- lh(Xil, , Xi,^) The vertices of the graph are subsets {i,, , im,} of { 1, * , n}, 
hence I V =( ( ). Two vertices are connected by an edge if and only if their correspond- 
ing subsets have a non-empty intersection. Therefore the maximal degree of the graph 
satisfies Dn - m( - \ ). Also, Var Un > c/n, for some constant c > 0 (see Serfling (1980), 
p. 183). If Ih(x, , xm) I < B then B- ( )-'B and thus 

Vn ID2(Bn/ (n)3 m < 0 n m m Bn) m Or 
- 

1/, 0. 
rm) m - 4 m9 

Proposition 5 follows now from Corollary 2. 
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