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1. Introduction

We shall study conditions for the approximate normality of the distribution of the
number of local maxima of a random function on the set of vertices of a graph when the
values of the random function are independently identically distributed with a continuous
distribution function. For a regular graph, the distribution of the number of local maxima
is approximately normal if and only if its variance is large.

A precise statement of this result is given in Section 3. This result covers a number
of interesting special cases that were not covered by an earlier paper of Baldi and Rinott
(1988). Section 2 contains a basic lemma on normal approximation for sums of indicator
random variables. Section 3 contains the main result. Section 4 contains a number of
examples. In particular, Example 4 shows that, without the conditions of regularity,
asymptotic normality is not implied by a large variance.

Before writing down expressions for the mean and variance of W, the number of local
maxima of the random function, we recall some terminology and introduce some notation.
A graph (V,£) consists of a finite set V of vertices and a set £ of edges, which may be
thought of as two-element subsets of V. If {v1,v2} € £, the vertices v; and vy are said to be
neighbors. The distance 6(v,v’) is the smallest number n for which there exist vy,...,v,
with vo = v and v, = v', such that each pair {v;,vi;1} belongs to £. The degree d(v) of a
vertex v is the number of edges to which it belongs. A graph is regular if all vertices have
the same degree, which we denote by d. A triangle is a set of three vertices v, vq,v3 with
8(v1,v2) = 6(vg,v3) = 8(vs,v1) = 1.

For a regular graph, the mean and variance of W are given by

Vi

(1.1) 7 A=EW = -,

where |V| is the number of elements in the set V and

(1.2) 0? = VarW = E s(u,v)(2d + 2 — s(u,v)) " (d+ 1)72,
6(u,;‘;=2

where s(u,v) is the number of common neighbors of u and v. Observe that

S S
. : — <2< —
(13) 2d+1¢ =7 T (d+1)p
where
(1.4) S= Y s(u,v)=|V|d(d—1)—6T
6(11.’:’0’.1‘;:2



and T is the number of triangles in the graph. From (1.1), (1.3), and (1.4) it follows that
the variance is always less than the mean. More precisely

1d(d—1) T o> _d(d-1) T
8 STy (1 ~ V= 1)> =X S iy (1 BN 1))'

Finally note that by (1.5), the variance o2 is large if A = |V|/(d + 1) is large and the ratio
of T to the maximal possible number of triangles in a regular graph of degree d, which is
of the order of £|V|d(d — 1), is suitably bounded away from 1.

2. A Normal approximation theorem
for sums of indicator random variables

In this section we develop a normal approximation theorem that will be used, in section
3, to study the distribution of the number of local maxima of a random function on a regular
graph. The basic idea of this proof was developed by Stein (1972) and other versions are
treated in Stein (1986) and elsewhere. The present version was influenced by a paper by
Barbour (1982). It exploits the fact that we are interested in a sum of indicator random
variables. The first lemma, related to work of Chen (1975) is an identity applicable to any
sum W of indicator random variables. The second lemma, gives an expression for the error
of the normal approximation to the expectation of any reasonable function of W. With
the aid of a third lemma, of a technical nature, which is stated without proof, this leads
to the main theorem, which gives a bound for the error of the normal approximation to
the distribution of W. We shall write E? Z for the conditional expectation of the random
variable Z given the random variable @ (not necessarily real valued).

LEMMA 2.1. Let V be a finite set and X and X* random functions on V taking on only
the values 0 and 1. Also let V be a random variable uniformly distributed in V, independent
of X. Let the unconditional distribution of X* be the same as the conditional distribution
of X given that Xy = 1. Define

(2.1) W= X,=|VIEXXy
z€V
(2.2) A= EW = |V|EXy
and
(2.3) wr=>"X;.
veEY
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Then, for all f: Z+ - R

(2.4) EW f(W) = AEf(W*).

PROOF.
EW f(W) = E([VIEXXv)f(W)
= [VIEXv f(W)
= |[V|EXyvEXY f(W)
= |VIEXvE [f(W)| Xy =1] = AEf(W™).

This lemma, is useful if we have a good approximation to the conditional distribution
of W* given W. Starting on p. 90 of Stein (1986) it was used in order to show that, if
E|W +1— W?*| is small, then W has approximately a Poisson distribution. The argument
is essentially equivalent to an earlier argument of Chen (1975).

We shall now study the normal approximation to the distribution of W. For this

purpose the following notation will be convenient. For h: R — R of bounded variation,
let

1 too _lz'z
and
(2.7) : (Unh)(y) = 2V’ /_3/ [h(z) — Nh] e~ 3% dz.

LEMMA 2.2. Suppose the hypotheses of Lemma 2.1 are satisfied and let

(2.8) o? = E(W — )2
Then
(2.9) o2 = AE(W* - W),

and, for any h: R — R of bounded variation,
(2.10) Eh(zv—&——)-)
= Nh - %E{[EW(W* - W) - E(W* - W)](UNh)’(—VK;_—)‘)}
_ —0/—\5E /WW (W — w)d(UNh)'(EU—;—)\).
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For W* < W, it is understood that

w _ w* w—
(2.11\) /W‘ (w* — w)d(UNh)'(wT)‘) = — /W (W* — w)d(UNh)’(—a—)‘).

 PROOF. The second expression for o2 follows from Lemma 2.1 by setting f(w) = w—\.
In order to prove (2.10) we first rewrite (2.4), assuming f to be differentiable with derivative
of bounded variation, as

(2.12) EW f(W) = AEf(W*)

= AE[f(W) + (W* —= W)f'(W) + /WW (W — w)df'(w)]
= AEf(W) + o> Ef'(W)
+ AE{[EW(W* - W) — E(W* - W)] (W)}
+ AE /W*(W* — w)df'(w).
w
At the second equality sign we have used Taylor’s theorem with remainder and the last

equality follows from (2.9). We can rewrite (2.12) as

W -2

o2

(2.13) BIf (W) -

A w
= —SE{[EY(W* - W) - E(W* - W)If'(W) + /W (W* — w)df (w)}.

FOV)]

Next, observing that the function Unh, defined by (2.7), satisfies the differential equation

(2.14) (UNR)'(y) = y(Unh)(y) = h(y) — Nk,

we substitute

(215) f(w) = o OB =)

in (2.13) to obtain

%) - NH] = Blwwhy () - 2wy
T2

a

(2.16) E[h(W(:

)l

(e

_ —%E{[EW(W* — W) — E(W* = W)(Unh)/(
w* . _
- %E/ (W* — w)d(UNh)'('l’v‘j‘_A)’
w
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which is (2.10). | |

The following lemma will be used for the purpose of bounding the remainder in (2.10).
It is proved as Lemma 3, formulas (46) and (47) on p. 25 of Stein (1986). A trivial
improvement has been made in (2.17). :

LEMMA 2.3. If h: R — R is bounded and piecewise continuously differentiable with
bounded derivative, then

(2.17) sup|(Unh)'| < suph —inf A
and
(2.18) sup|(Unh)"| < 2sup|h’].

By combining Lemmas 2.2 and 2.3 we obtain a result that asserts, qualitatively, that,
under the hypotheses of Lemma 2.1, W is approximately normally distributed with mean
A and variance o? given by (2.9) if

\/ Var EW(W+* — W)

(2.19) EOV* — W)
and

1 E(W* — W)?
(2.20) o E(W* —W)
are small.

LEMMA 2.4. Under the hypotheses of Lemma 2.1, for arb1trary piecewise continuously
differentiable h: R — R,

(2.21) |Eh(—) _ Nh| < (suph — inf ) YLV2 VE(L;[V/V* (W;V) W)
+ suplh/| fg(}ij*__ﬂ;)

ProoF. This follows immediately from the identity (2.10) with the aid of (2.9) and
Lemma 2.3. |



Finally, we obtain a bound for the error in the normal approximation for the distri-

bution of W.

THEOREM 2.1. Under the hypothesis of Lemma 2.1, we have for all w€E€R

(2.22) POV <w)— (2= < ¥ e
2,172 |1 E(W* — W)2
+(3) \/E E(Wr W)~

Proor. We apply (2.21) with

1 if ¢ < w=2,

h(x) = 1 1 w—A if w—A <a < w—A .

— (@227 222 <z <B2R 4
0 , otherwise.

to obtain

W — A

(2.23) P(W < w) < Eh( )

V/Var EW(W* — W) 1 E(W*—-W)?
EW* W) | coB(Wr = W)
w— A € \/Var EW(W* — W)
S =+ 34 EOW* — W)
1 B(W* — W)2
ecE(W* — W)’

< Nh+

The latter expression is minimized by

1
2¢/21 E(W* = W)? | ?

(2.24) = |~ BT | -

The resulting upper bound for P(W < w) and the symmetric lower bound yield (2.22).
|

REMARK: The classical De Moivre-Laplace CLT can be obtained from Theorem 2.1
as follows. Let X,..., X, be ii.d. Bernoulli random variables with P(X; =1) =p, W =
S°&,Xi. Let I* be a uniform random variable on {1,...,n} independent of Xji,...,X,
~and set Xf..= 1, X} = X; for i # I* and W* = Y . X}. It is readily seen that X*
satisfies the conditions of Lemma 2.1. Now the relations

E(W*—W)2=E(W*—W)=E(1—%)=1—p
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Var EW(W* — W) = Var (1 — %) = p(1 — p)/n,

combined with Theorem 2.1, yield the asymptotic normality of W.

3. A normal approximation for the
distribution of the number of local maxima

Returning to the problem described in Section 1, we consider a graph ¢ = (V,€)
and independently identically distributed continuous random variables Y = {Y,,v € V}.
We shall see in Theorem 3.1, that the distribution of W, the number of local maxima
of the random function Y, is approximately normal with mean A and variance o2 given
in section 1, with error bounded by Co~1/2, where C is an absolute constant. A more
careful argument in Section 2 presumably would yield an error of the form Co~! as in the
treatment of a similar problem by Barbour (1982).

Define X = {X,,v € V} by
(3.1) X, = {1 if Y, >.Yu for all u € N(v);
0 otherwise

where N(v) = {u € V: §(u,v) = 1}, the neighborhood of v. Let d(v) = |N(v)| denote
the degree of v. In order to apply Theorem 2.1 we shall construct a random function X*
which will be seen, in Lemma 3.1, to satisfy the condition required of X* in Section 2. Let
V* be a random variable, independent of Y, taking values in V and satisfying

(3.2) CP(V* =v) = (d(v) + 1)/ (d(w) + 1)L

u€V
For v € V define Z(v) to be the vertex in N(v) U {v} satisfying

(8.3) Yz() = Y.

max w
weEN(v)u{v}
Note that Z(v) is a random variable, depending on Y. Next define

YZ(V*) if u= V*;
-

(3.4) Yy if u=2Z(V*);

Y. otherwise.
In words, if V* is a vertex at which Y has a local maximum, then Y* =Y. Otherwise,
to obtain Y* from Y, interchange the Y-values of V* and the vertex Z(V™*) having the

largest Y-value in N(V*), leaving all other values of ¥ unchanged. Now define X* from
Y* by analogy to (3.1) and let

- (3.5) wW=> X, W'=> X;

vEY vEY



count the number of local maxima of Y and Y*, respectively.

LEMMA 3.1. Let V be a uniform random variable taking values in V, independently
of Y, and let Y* be defined in (3.4). Then, for any measurable set AC R VI |

P(Y* € A)=P(Y € AlXy = 1).

PROOF. The key observation is that under the present assumptions
(3.6) P(Y* e AlV* =v)=P(Y € A|X, =1).

Note simply that, conditioned on V* = v, Y, is a local maximum (i.e., X} = 1), and the
remaining Y, have the conditional distribution given a maximum at v. Similarly, X, =1
indicates a maximum of Y at v and the remaining ¥’s as above. From (3.2) and (3.6) we
have

(3.7) P(Y*c A)=) P(Y* € AlV* =v)P(V* =v)
veVY
=Y P(Y € A|X, = 1)(d(v) +1)7/ Y (d(u) + 1),

veY u€V
Also
(3.8) P(Xy=1)= > P(X, =1V =u)P(V = u)

uey
=7 dw)+ 1),
uey

and

P(Y € AlXy =1)=> PY €A4,X,=1V= v)/P(Xv = 1)

veY
=Y P(Y € A|X, =1)P(X, = 1)P(V =v)/P(Xy =1).
veyY
The desired result now follows from P(V = v) = |V|™!, P(X, = 1) = (d(v) + 1)7}, (3.7)
and (3.8). ‘ I

Before we state the main Theorem, we recall that a regular graph is one in which
all vertices have the same degree, which will be denoted by d. Also, for u,v € V let
s(u,v) = |[N(u) N N(v)]|.



THEOREM 3.1. Let (V,€) be a regular graph and Y a random function on V whose
values are independently distributed with a common continuous distribution and let W be
the number of of local maxima of Y. Then the mean and variance of W are given by

A=EW = ——

and ‘
ol =VarW = Z s(u,v)(2d + 2 — s(u,v))"Hd +1)72,

u,v
6(u,v)=2

and, for all w eR ™,

“= s o,

(3.9) |IP(W < w) — &(

where C is an absolute constant.

For the proof of Theorem 3.1 we need the following lemma, where we use the notation
aV b=max(a,b).

LEMMA 3.2. Let u; and S; denote elements and subsets of V, respectively, and assume
that for all ¢ and j, u; € S;j, and let Ys = maxyes Yy, for S C V. Then

(a) P({Yy, > Yo, VY5, } N{Yy, > Y5, }) = (IS1 U S2| +2)7 (151 + )77
In general

k .
(b) P(n§=2{y‘ui > Yui—l v YSi} n {Yu1 > YS1}) = H(l U;’:l Sll + i')_l‘

=1

PROOF. The left hand side of (a) equals
P(Yu2 > Yu1 N YSz v YS1 )P(Yu1 > YSlIYuz > Yu1 \ YS: v YSl)'

Since |[{u; }U{u2}US1US,| = |S1US;|+2 and the Y-values arei. i. d. (hence exchangeable,
in fact Y’s exchangeable would suffice) we have

P(Yy, > Y, VY5, VY5 ) =(|S1US;| +2)71.

Conditionally on the event Yy, > Y,, VY5, VYg,, the Y-values in S; and Yy, are againi.i.d.
and exchangeable and Y,, is the largest among {Y,,,Ys,} with conditional probability

9



lug U S1|™! = (]S1] +1)7! and (a) follows. A similar argument and induction lead to (b).

|
PRrROOF OF THEOREM 3.1. First note that
EVY(W*—-wW)=EVEY(W* -W),
fmplying
(3.10) Var EW(W* — W) < Var EXY(W* — W).

Thus, in order to apply Theorem 2.1 we need only bound the quantities

E(W* — W)2/E(W* — W) and (Var EY(W* — W))1/2/E(W* — W). In order to write.
down an expression for W* — W, which is needed for the computation of the bounds, we
observe that

Xu if §(u, V*) > 3;

) Xu+A(u,V*) if 6(u,V*) =2

(3.11) Xu=190 if 6(u, V*) = 1;
1 ifu=V™*

where A(u,v) is the event that §(u,v) = 2 and Y does not have a local maximum at u but,
if the values of Y at v and Z(v) of (3.3) are interchanged, then the value at u will be a
local maximum for the new function. In the sequel, we identify an event with its indicator
function. It follows that

(3.12) W —W = Z(X* X.)
=[1-(Xv-+ D X+ A, V*).
uEN(V*) u

In order to compute EY (W* — W) we observe that, because the graph is regular and V*
is independent of Y/, PY(V* =v)=P(V*=v) = |V|‘1. Thus it follows from (3.12) that

(3.13) BY(W* W)= (1 - TEW) + o ZZA(u ).
Next let us verify the formulas for the mean and variance of W. Clearly
H4s
EW = EZ Xo= -4
and thus, by (3.13),
(3.14) E(W* — W) = ﬁ 33 P(A(,v).

10



Let B(u,v,z) be the event that A(u,v) occurs and Z(v) = z. Observe that this can only
occur with z € N(u) N N(v) and é(u,v) = 2. In order to express the B(u,v, z) explicitely
in terms of Y, let

(3.15) C ={v}UN(u)— {2}

and

(3.16) D = {v} UN(v) — {z}.

Then

(3.17) B(u,v,z) ={Y, > Y, VYp}n{Y, > Yc}.

Thus, by Lemma 3.2

(3.18) P(B(u,v,2)) =(|CUD|+2)7'(|C| + 1)}
=(2d+2 — s(u,v)) Hd+1)?

when z € N(u) N N(v) and é(u,v) = 2, otherwise 0. Finally, it follows from (3.14) that

(3.19) E(W* - W)
1
= — 2d +2 — -1 -1
> (2d +2 — s(u,v)) 7! (d + 1)
s(u,vy=2 2EN(W)NN(v)
_ ﬁ 3 s(u,0)(2d +2 — s(u, ) (d+ 1)1,
6(u‘,‘0’;;=2

Thus, by (2.9)

o2 = AE(W* - W) =(d+1)2 Z s(u,v)(2d + 2 — s(u,v))™?
6(14':;"),:2

A straightforward calculation which appears in Baldi and Rinott (1988) shows that, for
any graph (not necessarily regular),

(3.20) Var W = % S [(d(w) + 1) = (d(v) + )7

§(u,v)=1

+ Y s(uv)d(w) + 17 [dw) + 17 d(u) + d(v) + 2 — s(u,0)]

§(u,v)=2

The verification of the formula for the variance in our case was included because it is
similar to, but simpler than calculations that will be needed later.

11



We now return to the bounds required for the application of Theorem 2.1 and prove
first that

(3.21) E(W* —W)?/E(W* —W) < 10.

By (3.12),
(3.22) Ew*-wp <2{Ell-(Xv-+ 3 Xu))°
u€N(V*)
+EB[ Y AWV}
5(u,V*)=2

Since Xy X, =0 when u € N(V*), and E(Xv+ + 3, cn(v+) Xu) = 1, we have

(3.23) El—(Xv-+ Y X
u€EN(V*)
=EXv-+ Y XJ)'-EXv-+ Y  Xu)
wEN(V*) wEN(V*)

-8 ¥ ¥ XMXu?:thIZ Y Y EXu X,

* # #*
mEN(VT) &S v wmEN(v) 2z

If 6(u1,u2) =1, then Xy, X,, = 0. If §(uy,uz) = 2, then, by Lemma 3.2,

(3.24) EXu, Xy, = P{Y haslocal maxima at ujand uy}
= P({Yu, > Yu, VYN } N {Yas > YN(un) })
+ P({Yu, > Yu, VYN(up} N {Ya, > YN })
2[|N(u1) U N(uz)| +2]7(d +1)7"
2[2d + 2 — s(uyg,ug)] " H(d+ 1)1,

It follows from (3.23) and (3.24) that

(3.25) El—(Xv-+ Y X))
wEN(V*)
1 - -
=mz Z Z 2[2d + 2 — s(uy,uz)] " (d+ 1)1
uy v vEN(u1)NN(usz)

6(uq,ug)=2

=2E(W* - W).
by (3.19).

12



In order to bound the second term on the ﬁght hand side of (3.22) we recall the
formula (3.17) for B(u,v,2) and write

(3.26) A=E[ Y AWV -E Y A(wV*)

§(u,V*)=2 6(u,V*)=2 .
=20 3 2 P(B, VBl V)
uz#ux 2z
= MEZ Z EZP(B(ul,v z1)B(uaz, v, zz))
v w1 uz#"l z1

But for both B(u1,v,21) and B(uz, v, z3) to occur we must have z; = 2o € N(v)NN(uy )N
N{uz) and 6(uq,u2) = 2. In fact z; = 2, because both are the vertices in N(V*) where Y’
attains its maximum, z; € N(u;) because a local maximum is created at u; by exchanging
the value of Y at V* and the larger value at z; and 6(u1,uz) # 1 because there cannot be
local maxima at two neighboring vertices. With D as defined in (3.16) with z = 2; = 29
and C; defined for 7 € {1,2} by

Ci = {v} UN(u) — {2},
we use (3.17) and Lemma 3.2 to conclude that, under these conditions
(3.27) P>(B(u1,v, z)B(u2,v,z))
=P{Y.,>Y,, VY,,VYp}n{Yy, > Y, } N{Yy, >Yc,})
= (|C; UC,UD|+3)7}(|CL U Cy| +2)"}(|Cy| + 1)
+(|C1UC U D[ +3)71(|C1U Ca| +2)71(|Cs| +1)7!
< 2(2d + 2 — s(ug,uz)) H(d +1)72.
It follows from (3.26) and (3.27) and the associated remarks that
(3.28) A

|V| Z Z Z Z 2(2d + 2 — s(uy, uz)) " (d + 1)~2

u2 2EN(u)N (u2) vEN(2)

6(ug,ug)=2 .
1 —
S2g 3 s(un,u)2d+2 - s(u,u) A+ )
6(;;{;:;%:2
=2E(W* - W)

since, after u; and up have been chosen, z can be chosen in s(u;,us) ways and then v in
at most d ways for each choice of z. Combmmg (3.22), (3.25), (3.28) and the fact that, by
(3.14)

(3.29) EW*—W)=E > A(u,V*),
§(u,V*)=2

13



we obtain (3.21).

Next we bound Var EY(W* — W). In view of (3.13), we start with a bound for
Var ((d + 1)W/|V|). We obtain

d+1 (d+1)2 ,
3.30 Var =
(330 T = "or
=7 > s(u,0)(2d + 2 — s(u,v)) 7
6(1::;';:2
Next we deal with
(3.31) Var (|V|~ 12A(u v)) = |[V| 72 Z Var A(u, v)

6(u. v) 2

+VI72 D D Cov(A(ua, 1), A(uz, vs)),

U1,V U2,V2

where in the last double sum uy, vy, uz,v2 satisfy 8(u;,v;) = 8(uz,v2) = 2 and (uj,v;) #
(u2,v2). Recalling the fact that

(3.32) A(u,v) = Z B(u,v,z)

zEN(u)NN(v)

and henceforth suppressing the condition z € N(u) N N(v) in the summations, we have
(3.33) Var A(u,v) = Var E B(u,v, z)

< E Var B(u, v, 2)

the inequality following from E(B(u,v,z1)B(u,v,22)) = 0 for 2; # z;. Clearly
Var B(u,v, z) < P(B(u,v, z)), and with (3.18) and (3.33) we obtaln that the first term on
the right hand side of (3.31) is bounded by

(3.34) VIT2 Y s(u,v)(2d +2 — s(u,v)) " (d + 1)
5(u,v)=2

We now consider the sum of the covariances on the right hand side of (3.31), which
by (3 32) equals

(3.35) VI72 Y. Y Cov(B(ui,vi,21), B(uz, vz, 22)),

U1,U1,21 U2,V2,22
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where again ui,v1,usz,vs satisfy 8(ui,v1) = 8(uz,v2) = 2 and (u1,v1) # (u2,v2). In
order to obtain a bound for this expression, we shall consider different cases depend-
ing on the distances 6(uy,uz), 6(vi,v2), etc. For each case we calculate a bound for
Cov(B(u1,v1,21 ), B(uz,v2,22)) and a bound for the number of (u1,v1,21), (u2,v2,22) of
this case, thus obtaining a bound for the sum of all covariances. We consider the following
cases, with subcases where z; = 29 and z; ;é 29,

Case 1: all 8(u1,uz),6(u1,v2),6(v1,u2),6(vi,v2) >3
Case 2: all the above distances are > 2 and at least one is equal to 2.
Case 3: all the above distances are > 1 and at least one is equal to 1.

Case 4: at least one of them is equal to 0.

In case 1, the corresponding covariances of (3.35) vanish because in this case the
indicated events B(ui,v1,21), B(usz, vy, 22) are independent.

Next we consider case 2, with z; # z;. In order to compute a bound on Cov(B(u1,v1,21),
B(ugz,v2,22)), define C; = {v;} U N(u;) — {2}, Di = {vi} U N(v;) — {z:} and for brevity
write B; for B(u;,vi, zi), ¢ = 1,2. Then we can write the probability of B; N B as a sum
of six terms, each of which can be computed with the aid of Lemma 3.2. We have

P = P({Yzl > Y22 > Yu2 > Yul} NnBiN B2)
= (|C;UCUD; UD,y| +4)"1(|C; UCyu Dy +3)71
(IC1 U Ce|+2)7H (|G| + 1)

P,=P{Y, >Y,>Y,, >Y,,} N B1NBy)
=(|C;UC,UD,UD,y|+4)"(|CrUC U Dy +3)71
(IC1 U Ca| +2)7 (|G| +1)77
Py =P({Y,, >Y,, >Y,, >Y,,} N B1 N By)
= (JC1UC, U Dy UCy|+4)"}(|C1UC,UDy| +3)7!
(IC2 U Do +2)7*(|Ca| + 1) |
and we define Py, Ps, Ps similarly with the indices 1 and 2 interchanged. It follows that
Py +Py=(|CLUC,UD; UD;|+4)"Y(|C; UC, UDy| +3)*

(G314 17 (Cal + 171 + g 2

and consequently
P+ P+ P = (ICl ucCuDy U Dzi + 4)_1“02 U D2| + 2)—1(|Cl| + 1)_1

15



IClﬂCQI ICQUD2|+2 IC] ﬂ(CQ U.Dz)l ] ’

Cl+ 1)t 1 .
(1C2] +1) [ T CiUGC+2[C1UC,UD, [ 3 T [C1UC,UD,| +3

adding this to the quantity obtained by interchanging the indices and using (3.18) we obtain
(3.36) Cov(B1,B2) = P(B; N B;) — P(B1)P(B3)

6
=Y Pi—(IC1 UD1|+2)7(IC1| + 1)7}(IC2 U D2 | +2)7}(|Co| + 1)

i=1

= (IC1 UC, UD; UDy| +4)7X(|C1] + 1) (ICe| + 1)
[(lc1 N C|)(|C1 U C2] +2)"1((|C1 UC2 U Da| +3)™ + (|C1 UC2 U Dy |+ 3)7Y)

+ (|C1 N (C2 U DR)|)(|Co U Do +2) (|C1 U Co U Dy| + 3)1
+ (IC2 N (Cl U Dl)l)(lcl U .D1| + 2)_1(|Cl VU C2 U -Dll + 3)_1

+(I(C1 UDy) N (C2 U D))(|Cy U D | +2)~(|C2 U Dy +z>-l];

< 1 [ 5s(u1,u2) 2s(u1,v2)

T (d+1)*2d+2 - s(ug,uz) 2d 42— s(u1,v2)
2s(ug,v1) s(vy,v2)

2d+2 — s(uz,v1)  2d+2—s(vy,v2)"

+

We now sum over all (u1,v;,21) and (uz,v2,22) of case 2. The first term on the right hand
side of (3.36) gives

ﬁ Z Z s(u1,u2)(2d + 2 — s(u1,uz)) " [d(d — 1))?

where the term [d(d—1))? arises from the fact that given u;,us there are at most [d(d—1)]?
possible choices of 23, 2z9,v1,v2. With a similar argument for the other terms it follows
that the sum of covariances in (3.35) of case 2 and z; # 23 is bounded by

(3.37) 10[V]72D ) s(u1,u2)(2d + 2 — s(uz,uz))

Next, consider z; = z9 = z. Here and in all remairﬁng cases 1t suffices to use the bound
(338) COV(Bl,Bz) S E(BIBQ)
and the calculations become considerably simpler. In the present case, Lemma 3.2 yields

(3.39) E(Ble) = 2(|Cl uCUDy U Dz] + 4)—1
(IC1UCo|l +2)" (d+ 1)
< (2d+2 = s(ur,u2)) (d+ 1)1
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To obtain a bound for the sum of covariances in (3.35), we sum the right hand side of
(3.39) over uy,v1, 21, uz,v2,2 of this case. Observe that after choosing uy, v, the vertex
z = z; = z3 can be chosen in s(u1,v;) ways and given z, ug,vs € N(2) can be chosen in
(d—2)(d — 3) ways. Combining (3.38) and (3.39) we conclude that an upper bound on the
sum of covariances in case 2 when z; = z, is

(3.40) 2VI72D N " s(ur, u2)(2d + 2 — s(ua,v1)) 7

The remaining cases are treated similarly. For example in the case that 6(uy,uz) = 2,
6(v1,v2) =1 and z; # z2 we obtain

(3.41) E(éle) < 6(2d + 2 — s(uy,uz)) " (d + 1)

(with the factor 6 corresponding to the six arrangements described in case 2). The number
of terms in this case is counted as follows. Given u; and vy, 2; can be chosen in s(uy,v;)
ways, then vy in d — 1 ways since §(vq1,v2) = 1, and 2, u2 in d(d — 1) ways. This shows
that an upper bound on covariances in this case is given by

(3.42) 6|V|~2 Z s(ur,uz)(2d + 2 — s(uy,uz))™t.

ul,uz
6(ug,ug)=2

In other cases, the bound on E(Bj, B;) may be of order (2d + 2 — s(uy,us))™?

(d+1)7"i=1,2 or 3 but in each case the count of the associated terms leads to a bound
similar to (3.37), (3.40), (3.42). In conclusion of this discussion, we obtain

(3.43) Var EY (W* — W)
< a|V|™? Z s(ur,uz)(2d +2 — s(ul,ug))_l.
5(uy uad=2

where o is an absolute constant, independent of the particular graph. Recalling also (3.19)
and (1.2) we have '

Var EY (W* — W)

(3.44)

[E(W* - W)]?
<a(d+1)? [Z Z s(uy, uz)(2d + 2 — 3(u1au2))_1] -
- u
Theorem 3.1 now follows from Theorem 2.1, with (3.21) and (3.44). ]
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4. Examples

The emphasis in this section is on the asymptotics; the bounds of section 3 will be
computed only to the extent needed to verify asymptotic normality.

EXAMPLE 1. The graph {0,...,m — 1}*. Set ¥V = {0,...,m — 1}" and for u =
(u1,...,up), v = (V1,...,05) in V define §(u,v) = |{i € {1,...,n} : u; # v;}|. Thus two
vertices are connected by an edge if and only if they differ in exactly one coordinate. Here
V| =m", d=n(m—1), s(u,v) =2 for all u,v € V satisfying §(u,v) = 2, so that

(4.1) o2 = |V| (;‘>(m —1)%(d+1)"2d7.

It is readily seen that o? is of the order of m™®~!/n, diverging to co as m — oo for any
n > 2, or as n — oo for any m > 2, and asymptotic normality of W follows from Theorem
3.1.

REMARK. In the case n = 2, the exact distribution of W can be identified as the
hypergeometric distribution. We claim

m\ (m—1
(6) Gaci
2m—1
)
To see this, consider the graph {0,...,m — 1}? as a two dimensional array of m rows and
m columns. Each row (or column) may contain at most one local maximum. Let I; = I{
there exists a maximum in row j}. Then W = 377", I;. The I;’s are exchangeable and
by Lemma 3.2 accounting also for the m(m — 1)...(m — k + 1) possible locations of the

maxima at rows 1,...,k we obtain
| klm(m—1)...(m—k+1)
k 1(1-1
[Ty (1d + 1 - 24552)
Kmm—-1)...(m—k+1) _ (})
k = [m-1y"
IL= i(2m = 1) ' ( i )
This determines (4.2). Thus the distribution of the number of local maxima is the same

as that of the number of white balls obtained when m balls are drawn at random without
replacement from an urn containing m white balls and m — 1 black balls.

(4.2) P(W =k) = k=1,2,...,m.

E(I...I}) =
(4.3)

EXAMPLE 2. Again the graph {0,...,m — 1}" but with distance § defined for v =
(U1, 5Un), v =(v1,...,0,) €V by :

0 ifu=uv;
6(u,v) =4 1 if u # v and for some i, u; = v;;
2 otherwise.
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Thus the neighborhood of a vertex consists of the union of all n—1-dimensional hyperplanes
containing it. It is not hard to see that in this case

n—1

d=m"—-(m-1)"—1xnm™ ",

s =s(u,v) =m" —2(m —1)" + (m — 2)" & n(n — 1)m" "2,

and
S =[m(m-1)"s = n(n —1)m?**?

where the asymptotic expressions are valid if m — oo, n = o(m) (with n — oo allowed).
Therefore §(d+1)73 is of the order of m/n. We obtain asymptotic normality if m/n — oo.
If m/n is bounded, then 0? = Var W is bounded and aymptotic normality is impossible.

EXAMPLE 3. The complete bipartite graph Ky 4. In this graph V = V; UV, with
[Vi| = d and é6(v;,v2) =1 if and only if v; € V; and v € V2 or the reverse. This graph is
regular with degree d. Also

s(u,vy=d, S= 4(;)d, V| = 2d.

In this case Sd™® & 2 as d — oo and by (1.3) asymptotic normality is obviously ruled out.
In fact for k =1,2,...,d

dd—1)...(d—k+1)d

(4:4) P(W =k) =2 2d(2d —1)...(2d— k)

Note that as d — oo, P(W = k) — 27F and W 2, Geometric (3)

EXAMPLE 4. The complete bipartite graph K; 4 (star). Here {Vi| = 1, [V2| = d, with
notation as in Example 3. This graph is not regular. From (3.20) one can readily show
that 62 = Var W — oo as d — oo. However W is not asymptotically normal. In fact

N J2/(d+1), ifk=1,;
(4.5) P(W‘k)“{1/(d+1), ifk=2....d
So the distribution is nearly uniform and m;—& 2, Uniform (—+/3,+/3). This example
indicates that without some regularity conditions on the graph (perhaps local regularity)
the problem is much more complicated and obviously VarW — oo is not a sufficient
condition for asymptotic normality.
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