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SUMMARY

A population can be entered at a known sequence of discrete times; it is sampled cross-
sectionally, and the sojourn times of individuals in the sample are observed. It is well known that
cross-sectioning leads to length-bias, but less well known and often ignored that it may result also
in dependence among the observations. We show that observed sojourn times are independent 10

only under a multinomial entrance process. We study asymptotic properties of parametric and
nonparametric estimators of the sojourn time distribution using the product of marginals in spite
of dependence, and provide conditions under which this approach results in proper or improper
and wrong inference. We apply the proposed methods to data on hospitalization time after bowel
and hernia surgeries collected by a cross-sectional design. 15

Some key words: Discrete entrance process; Length bias; Poisson cohort distribution; Survival analysis; Truncation.

1. INTRODUCTION

Consider a population S that can be entered at a fixed and known sequence of time-points. In
our motivating example S consists of patients in a hospital and the entrance times are the days
on which the relevant treatment is available. The population is cross-sectioned at a random time 20

and individuals in S present at that time comprise the sample. The main aim is to estimate the
sojourn time distribution function, G, of individuals in S . Cross-sectioning biases G, and also
results in a thinned entrance process. Moreover, sojourn times in the cross-sectional sample may
be dependent even when sojourn times in S are independent. This dependence, which seems to
be overlooked in part of the literature, plays an important role in this paper. 25

Let Aj denote the time from entering S to sampling and let Xj denote the total sojourn time
in S of subject j. We observe (Aj , Xj) for subjects present in S at the sampling time, that
is, those satisfying Aj ≤ Xj . This is a truncation model where observed pairs have the law of
(A,X) | A ≤ X . The standard approach estimates G conditionally on the times from entering
S to sampling, see Woodroofe (1985) and Wang et al. (1986). In general, these times are not 30

ancillary, that is, their distribution depends on G, and therefore, conditioning on them may lead
to loss of information.

The most common unconditional approach maximizes the likelihood of the observed lifetimes
assuming they are independent having a length biased distribution, (Cox, 1969; Vardi, 1985).
This assumption is justified when entrances to S follow a homogeneous Poisson process or when 35

the distribution of A is uniform; see Laslett (1982), Vardi (1989), and Asgharian et al. (2002).
We show that in our discrete entrance model, observed sojourn times are generally not inde-

pendent. Moreover, the dependence structure is rather complex, and a full likelihood approach
is not feasible. Instead, we study parametric and nonparametric estimators based on the inde-
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Fig. 1. An example with K = 4, and (N1, N2, N3, N4) =
(3, 5, 2, 3). Solid lines - observed sojourn times, dashed

lines - unobserved. (N∗
1 , N

∗
2 , N

∗
3 , N

∗
4 ) = (3, 3, 0, 1).

pendence likelihood, which consists of the product of univariate marginals (Chandler & Bate,40

2007). This approach is within the framework of composite likelihood inference (Varin et al.,
2011). We provide conditions for consistency and for asymptotic normality and non-normality,
and indicate situations where independence likelihood methods are more efficient than the stan-
dard conditional approach. We also indicate situations where the independence likelihood fails,
showing that the dependence in truncated cross-sectional data cannot be ignored unless certain45

conditions hold.

2. DISCRETE ENTRANCE PROCESS

Let N1, . . . , NK denote the random cohort sizes, that is, the numbers of individuals who enter
the population S at known and fixed time points −aK < · · · < −a1 ≤ 0, where 0 is set to be the
cross-sectioning time. The sojourn times of individuals in S are denoted by Xj , and the times50

from entrance to S to 0 are denoted by Aj ∈ {a1, . . . , aK}, where Aj may be smaller or larger
than Xj . We refer to Aj as the truncation time or age of individual j. A standard assumption
made throughout is that sojourn times {Xj} are independent, with Xj ∼ G independently of the
ages {Aj}.

The cross-sectional sample consists of those individuals for whomAj ≤ Xj . With some abuse55

of notation, these observations will be denoted by (A∗
j , X

∗
j ). We shall use the generic notation

X ∼ G, and X∗ ∼ G∗, and denote the corresponding densities or probability functions by g and
g∗. The observed number N∗

k of subjects who joined S at −ak and are still in S at time 0 is
thinned relative to the unobserved Nk, thus N∗

k | Nk ∼ Bin{Nk, Ḡ(ak−)}, where Ḡ = 1−G.
The total population and sample sizes are M =

∑
kNk and M∗ =

∑
kN

∗
k . See Figure 1.60

The cross-sectional sample does not include sojourn times smaller than a1 and therefore G(x)
is not estimable for x ≤ a1; and the estimable function is pr(X ≤ x | X ≥ a1). For notational
convenience, we henceforth assume that a1 = 0. The sojourn time Xj of individual j is denoted
by Xki when we want to emphasize that it is the ith individual in cohort k. The data comprise
{(a∗j , x∗j ) : j = 1, . . . ,m∗}, the ages and sojourn times of the m∗ observations; the number of65

individuals of age ak in the cross-sectional sample is n∗k =
∑

j I(a
∗
j = ak), andm∗ =

∑K
k=1 n

∗
k.

Under this discrete truncation model, individual sojourn times in the sample are depen-
dent, even asymptotically. For a simple example, let K = 2, a1 = 1, a2 = 5, and (N1, N2) =
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(10, 100) or (100, 10) each with probability 0·5. Let the sojourn times be Unif(0, 100), and sup-
pose m∗ = 100. Observing x∗1 = 3 implies a∗1 = 1 and makes the event {(N1, N2) = (100, 10)} 70

more likely. This suggests that other x∗j ’s will tend to be small.
Since conditions for independence of the pairs (A∗

j , X
∗
j ) are often not stated clearly in the

survival literature, it is important to point out exactly when independence holds.

THEOREM 1. The pairs (A∗
1, X

∗
1 ), . . . , (A

∗
M∗ , X∗

M∗) are independent conditionally on M∗ if
and only if (N1, . . . , NK) |M = m has a multinomial distribution for allm, which for indepen- 75

dent N1, . . . , NK is equivalent to Nk ∼ Poisson(λk), k = 1, . . . ,K.

All proofs are given in the Supplementary Material. By Theorem 1, strong assumptions
are needed for the sojourn times in the cross-sectional sample, {X∗

j }, to be independent. On
the other hand, conditionally on {A∗

j}, the sojourn times {X∗
j } are independent under any

distribution of {Nk}. Hence, the conditional approach, based on the conditional likelihood 80∏
k

∏
i dG(x

∗
ki)/Ḡ(ak−), is robust with respect to the entrance process model.

Although the multinomial model is a reasonable approximation of many entrance processes,
it does not always hold. A natural example is of an infectious disease, where N1, . . . , NK denote
the number of infected individuals in different months, and X denotes the infection period. As
entrance times are dependent, the multinomial model is violated and sojourn times in the cross- 85

sectional sample are dependent.

3. INDEPENDENCE LIKELIHOOD

3·1. Likelihood construction

In this section, we study the consequences of using the independence likelihood approach
which bases inference on the product of marginals of the (A∗

j , X
∗
j )’s. Our goal is to find condi- 90

tions under which maximizing the independence likelihood provides consistent estimators, and
to compute their asymptotic distribution and variance, taking the dependence into account.

We start with Aj , the age of subject j, chosen at random among those who entered S at one
of the points −aK , . . . ,−a1. With 0/0 = 0 by convention, we have

pr(Aj = ak) =
∑
N

nk∑K
s=1 ns

pr(N1 = n1, . . . , NK = nK) = E(Nk/M), (1)

where the sum is over N =
{
(n1, . . . , nK) :

∑K
k=1 nk ≥ 1 , nk ∈ {0, 1, 2, . . .} k = 1, . . . ,K

}
. 95

In expressions derived from (1), we shall replace pr(Aj = ak) = E(Nk/M) by ηk =
E(Nk)/E(M); they are equal when (N1, . . . , NK) |M has a multinomial distribution, holding,
for example, when Nk’s are independent Poisson, and when Nk’s are exchangeable, in which
case ηk = E(Nk/M) = 1/K. Otherwise, it is an approximation justified by Lemma 1 below.

Recalling Xj ∼ G, the assumption of independence of Aj and Xj , and that (A∗
j , X

∗
j ) are 100

distributed as (Aj , Xj) | {Aj ≤ Xj}, the joint density of (A∗
j , X

∗
j ) is

fA∗
j ,X

∗
j
(ak, x) =

pr(Aj = ak)dG(x)

β
I(ak ≤ x) =

ηkdG(x)

β
I(ak ≤ x), (2)

where β = pr(Aj ≤ Xj) =
∑K

k=1 ηkḠ(ak−). The marginal density of an observed sojourn time
is obtained by summing over ak:

dG∗(x) =
∑

k:ak≤x

ηkdG(x)

β
=
w(x)dG(x)

β
, (3)
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a weighted version of G, with weights given by the step-function w(x) =
∑

k:ak≤x ηk. The dis-
tribution obtained in (3) depends on the joint distribution of N1, . . . , NK only through the ηk’s.105

Under exchangeability, the weight function at x reduces to w(x) = K−1
∑K

k=1 I(ak ≤ x) =
K−1max{k : ak ≤ x}, which is proportional to the potential number of time-points at which
an individual having sojourn time x could enter the population and still be included in the sam-
ple.

For the exchangeable case and more generally for known ηk’s. e.g., Fluss et al. (2012), the110

independence likelihood is a product of the marginals of the observed sojourn times as in (3),

L(G) =

m∗∏
j=1

g∗(x∗j ) =

m∗∏
j=1

w(x∗j )g(x
∗
j )

β
. (4)

Clearly, L(G) is proportional to the product of the joint densities of (A∗
j , X

∗
j ), see (2).

3·2. Asymptotic results
Our goal is to study the independence likelihood estimator Ĝ = argmaxL(G) in the presence

of dependence among X∗
1 , . . . , X

∗
M∗ . An important device to be used below is a representation115

of ℓ(G) = logL(G) =
∑M∗

j=1 log g
∗(X∗

j ) in terms of the independent variables Xki ∼ G:

ℓ(G) =
K∑
k=1

Nk∑
i=1

I(ak ≤ Xki) log
w(Xki)g(Xki)

β
=

K∑
k=1

Nk∑
i=1

hk(Xki). (5)

The hk(Xki) defined in the sum above are independent but not identically distributed.
In our data, and quite typically for truncation models, the relevant asymptotics appear to be

associated with increasing the sample size while keeping the marginals of (A∗
j , X

∗
j ) fixed; see,

Woodroofe (1985) and Wang et al. (1986). We consider large entrance numbers Nk, with a fixed120

number of entrance pointsK. Asymptotics obtained by considering largeK are technically easy,
leading to standard consistency and normality results; see Supplementary Material. Set Nk =

N
(ν)
k satisfying limν→∞ pr(N

(ν)
k ≥ n) = 1 for all n. For simplicity, we henceforth assume that

the sequence is parameterized so that ν = E(M (ν)) and E(N
(ν)
k ) = ηkν. We often omit the

superscript ν and expressions like Nk/E(Nk) → 1 appearing in Lemma 1 or in Theorem 2125

below are taken with respect to ν → ∞. The following lemma is straightforward; it justifies the
approximation described in Section 3·1 of replacing E(Nk/M) by ηk = E(Nk)/E(M).

LEMMA 1. Let E(Nk) = ηkν with
∑

k ηk = 1, and assume Nk/E(Nk) → 1 in probability.
Then for k = 1, . . . ,K, E(Nk/M) → ηk as ν → ∞.

3·3. Parametric models130

Suppose G = G(· ; θ) is indexed by a parameter θ ∈ Θ ⊆ R, taken to be univariate for sim-
plicity; extensions to the multi-parameter case and to models with covariates are discussed in the
Supplementary Material. We write ℓ(θ), βθ, and hk(·; θ) instead of ℓ(G), β, and hk(·) of (5). The
next theorem deals with consistency.

THEOREM 2. Let Nk/E(Nk) → 1 in probability and assume that g(x; θ) is differentiable135

with respect to θ for all x, and the standard regularity conditions of identifiability, common
support for all θ, and the true parameter θ0 being an interior point of the parameter space.
Then there exists a consistent sequence θ̂ν of roots of the independence likelihood score equation
∂ℓ(θ)/∂θ = 0.
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The regularity conditions above appear as Conditions (A0), (A1), and (A3) in Lehmann and 140

Casella (1998, p. 444–5); their Condition (A2) is that ℓ(G) is a sum of independent and identi-
cally distributed random variables. We extend the proof to our case, where hk(Xki) are indepen-
dent but not identically distributed.

When the root is unique, it is the independence likelihood estimator, and the resulting sequence
is consistent. In particular, if G belongs to a canonical exponential family, then so does G∗(·; θ) 145

and if the independence likelihood estimator exists, it is unique. Also, if the parameter space is
compact, then any sequence of maximum independent likelihood estimators is consistent and
differentiability of g(x; θ) is not needed (Ferguson, 1996).

By Chebyshev’s inequality, pr{|Nk/E(Nk)− 1| > ε} ≤ var(Nk)/{εE(Nk)}2 so that for
models where the coefficient of variation vanishes, Nk/E(Nk) → 1 in probability. This holds 150

for Poisson or binomial, but not geometric or uniform variables.
The regularity conditions and parts of the analysis of the asymptotic distribution of the inde-

pendence likelihood estimator appear similar to those of Theorem 3.10 in Lehmann and Casella
(1998, page 449). However, the results are not the same; interestingly, the limiting distribution
of the independence likelihood estimator is not necessarily normal. 155

THEOREM 3. Assume all the conditions of Theorem 2, and additionally that in some neigh-
borhood of θ0 the following standard regularity conditions hold. (i) g(x; θ) is differentiable three
times with respect to θ for all x; (ii)

∫
dG(x; θ) can be twice differentiated under the integral; (iii)

the Fisher information −Eθ{∂2 log g(X; θ)/∂θ2} ∈ (0,∞); (iv) |∂3 log g(x; θ)/∂θ3| < ψ(x)
for all x, where Eθ0{ψ(X)} <∞. Let 160

U = U (ν) =
K∑
k=1

ck
Nk − ηkν

ν1/2
, ck = Eθ0

{
∂

∂θ
hk(X; θ0)

}
. (6)

If U (ν) → V in distribution for some random variable V , then for any consistent sequence θ̂ν of
roots of the independence likelihood score equation ∂ℓ(θ)/∂θ = 0,

M∗1/2(θ̂ν − θ0) →
β
1/2
θ0∑K

k=1 ηkEθ0

{
∂2

∂θ2
hk(X, θ0)

}(W + V ) (7)

in distribution, whereW ∼ N
[
0,
∑K

k=1 ηkvarθ0{∂hk(X; θ0)/∂θ}
]

is independent of V , and the

resulting asymptotic variance of M∗1/2(θ̂ν − θ0) is

βθ0

∑K
k=1 ηkvarθ0{

∂
∂θhk(X; θ0)}+ var(V )[∑K

k=1 ηkEθ0

{
∂2

∂θ2
hk(X, θ0)

}]2 . (8)

Remark 1. When (N1, . . . , NK) |M has a multinomial distribution, holding, for example, 165

when Nk ∼ Poisson(ηkν) independent, then by (6) var(U (ν)) =
∑
ηkc

2
k. In this case, standard

calculations show that (8) reduces to 1/Eθ0 {∂g∗(X∗, θ0)/∂θ}2, which has the usual interpre-
tation of Fisher’s information for independent X∗

j ’s. This is expected, since by Theorem 1 the
observed sojourn times are indeed independent. It follows that ignoring the dependence in vari-
ance calculations leads to anti-conservative inference if var(V ) >

∑
ηkc

2
k, and conversely. Thus, 170

when the Poisson model is reasonable or when the variance of cohort sizes is smaller than their
expectations, the observed Fisher information of the independence likelihood can be used as a
basis for a conservative variance estimator. However, if the variance of the cohort sizes is much
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larger than their expectation, this variance estimator is anti-conservative, and moreover, the esti-
mator itself may be inconsistent. In such cases, one may resort to the conditional approach.175

In general, var(W ) can be estimated by plugging θ̂ in (8), but var(V ) depends on the distri-
bution of the Nk’s. If the Nk’s are constant then var(V ) = 0; certain pre-scheduled allocations
are indeed close to being constant. If the distribution of the Nk’s is known from past experience,
then var(V ) can be evaluated.

In the Supplementary Material, we discuss various dependence structures of cohort sizes, lead-180

ing to different asymptotic distributions of V and hence of M∗1/2(θ̂ν − θ0), and study the effect
of correlations among the cohort sizes on the asymptotic variance of V .

3·4. Nonparametric models
In the nonparametric case, (4) has the form of a likelihood under biased sampling and is

maximized by the inverse weighting estimator, e.g., Vardi (1985):

Ĝ(x) =

∑M∗

j=1w(X
∗
j )

−1I(X∗
j ≤ x)∑M∗

j=1w(X
∗
j )

−1
.

This nonparametric independence likelihood estimator can be represented in terms of the inde-
pendent and identically distributed variables Xki by185

Ĝ(x) =
M−1

∑K
k=1

∑Nk
i=1w(Xki)

−1I(ak ≤ Xki ≤ x)

M−1
∑K

k=1

∑Nk
i=1w(Xki)

−1I(ak ≤ Xki)
. (9)

We next discuss consistency and the asymptotic distribution of the nonparametric indepen-
dence likelihood estimator. For this purpose, set γk(x) = E{I(ak ≤ X ≤ x)/w(X)}, then

K∑
k=1

ηkγk(x) = E

{∑K
k=1 ηkI(ak ≤ X)

w(X)
I(X ≤ x)

}
= G(x). (10)

THEOREM 4. Suppose that Nk/E(Nk) → 1 in probability. Then for all x, Ĝ(x) → G(x) in
probability as ν → ∞, i.e., the independence likelihood estimator is consistent.

THEOREM 5. Suppose that Nk/E(Nk) → 1 in probability. For any given x, let U (ν)(x) =190 ∑K
k=1 ck(x)ν

1/2(Nk − ηkν), where ck(x) = γk(x)− γk(∞)G(x). If U (ν)(x) → V (x) in dis-
tribution for some random variable V (x), then

M∗1/2{Ĝ(x)−G(x)} → β1/2{W (x) + V (x)} (11)

in distribution, where W (x) ∼ N
[
0,
∑K

k=1 ηkσ
2
k(x)

]
with σ2k(x) = var[I(ak ≤ X){I(X ≤

x)−G(x)}/w(X)], and W (x) and V (x) are independent.

4. DATA ANALYSIS AND SIMULATION195

As part of a monitoring program in Israel, four cross-sectional studies were conducted in all
hospitals in the country. On each survey day, data on all patients who had undergone surgery
during the past 30 days were collected from the surgery day to 30 days afterward, see Fluss et al.
(2012) for more detail. In this section, we compare the nonparametric independence likelihood
and conditional estimators of the distribution of length of hospitalization, trimmed at 30 days.200

It is reasonable to assume that the numbers of urgent surgeries on different days of the week
are exchangeable, suggesting the assumption ηk = 1/K. However, the daily schedule of elective
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Fig. 2. Hospitalization time after bowel (left) and hernia
(right) surgery. Solid lines - urgent surgery, broken line -
elective surgery. Black - nonparametric independence like-

lihood, gray - nonparametric conditional likelihood.

surgeries suggests the possibility of unequal expected cohort sizes, see Fluss et al. (2012). It is
therefore expected that the independence likelihood estimator with ηk = 1/K will work well for
urgent surgeries, but may fail for elective ones. The data comprise 587 bowel and 232 hernia 205

surgeries of which 57% and 81% are elective, respectively.
Figure 2 presents the nonparametric estimates stratified by surgery type and urgency status.

Urgent surgeries typically require longer hospitalization compared to elective operations, and
the same holds for bowel versus hernia surgeries; median=11 versus 4 days for urgent surgeries,
median=8 versus 2 days for elective surgeries. The conditional and independence likelihood 210

estimates are quite similar except for the group of elective hernia surgeries. In the latter case,
the independence likelihood estimate for G(2) is 0·79 with standard error of 0·026, while the
conditional likelihood estimate is 0·69 with standard error of 0·039. Elective surgeries schedules
in general do not satisfy the exchangeability assumption of cohort sizes which may explain the
difference between the estimates. However, in this case the schedule may be known, leading to 215

good estimates of the relevant ηk’s (Fluss et al., 2012). We remark that the data we analyzed were
aggregated from several hospitals. This may moderate the problem of varying ηk’s if different
hospitals have different schedules.

We conducted a simulation study in order to compare small sample properties of the condi-
tional and the independence likelihood approaches, using K and sample size M∗ that are some- 220

what similar to the above data. The results show a clear advantage of the independence likelihood
approach for Poisson or relatively stable Nk’s, while for more variable Nk’s, the conditional ap-
proach is preferable. Details are given in the Supplementary Material.

5. DISCUSSION

Our results and simulations show that when the Nk’s are close to multinomial or to being 225

constant, independence likelihood inference is preferable to the conditional approach. Scheduled



8 M. MANDEL AND Y. RINOTT

processes lead to constant Nk’s, and for many random allocation processes, the multinomial
model appears to be reasonable. In certain non-exchangeable problems, the entrance process
may be learnt from past data and the independence likelihood approach can be used; if not, one
may resort to the conditional approach.230

We conjecture that when the entrance process is a continuous renewal process, Theorem 1
can be extended to show that sojourn times in a cross-sectional sample are independent if and
only if entrances are governed by a Poisson process. The proof may use a characterization of the
Poisson process, see Gan & Yang (1989).
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