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Abstract

An evolutionarily stable strategy (ESS) is an equilibrium strategy
that is immune to invasions by rare alternative (“mutant”) strategies.
Unlike Nash equilibria, ESS do not always exist in finite games. In
this paper we address the question of what happens when the size of
the game increases: does an ESS exist for “almost every large” game?
Letting the entries in the n × n game matrix be independently ran-
domly chosen according to a distribution F , we study the number of
ESS with support of size 2. In particular, we show that, as n → ∞, the
probability of having such an ESS: (i) converges to 1 for distributions
F with “exponential and faster decreasing tails” (e.g., uniform, nor-
mal, exponential); and (ii) it converges to 1 − 1/

√
e for distributions

F with “slower than exponential decreasing tails” (e.g., lognormal,
Pareto, Cauchy).

Our results also imply that the expected number of vertices of the
convex hull of n random points in the plane converges to infinity for
the distributions in (i), and to 4 for the distributions in (ii).
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1 Introduction

The concept of evolutionarily stable strategy (ESS for short), introduced by

Maynard-Smith and Price (1973), refers to a strategy that, when played by

the whole population, is immune to invasions by rare alternative (“mutant”)

strategies (see Section 2.1 for precise definitions). Formally, an ESS corre-

sponds to a symmetric Nash equilibrium that satisfies an additional stability

requirement. Every (symmetric) finite game has a (symmetric) Nash equilib-

rium. But the same is not true for ESS: there are games with finitely many

pure strategies that have no ESS. Moreover, the nonexistence of ESS is not

an “isolated” phenomenon: it holds for open sets of games.1

This leads us to the question of what happens when the number of strate-

gies is large: does an ESS exist for “almost every large game”? Specifically,

assuming that the payoffs in the game are randomly chosen (they are indepen-

dent and indentically distributed random variables), what is the probability

that an ESS exists, and what is the limit of this probability as the size of the

game increases?

For pure ESS, the answer to this question is simple: the probability that

a pure ESS exists is 1 − (1 − 1/n)n, which converges to 1 − 1/e ≃ 63% as

n → ∞, where n is the number of strategies. What about mixed ESS? Here

we study mixed ESS with support of size two—called “two-point ESS”—

and find out that, unlike pure ESS, the answer depends on the underlying

distribution F from which the payoffs are drawn.

By way of illustration, consider the family of cumulative distribution func-

tions Fα(x) = 1 − e−xα

for all x ≥ 0, where α > 0. Our result is:

• When α ≥ 1 the probability that there is a two-point ESS

converges to 1 as2 n → ∞.

• When α < 1 the probability that there is a two-point ESS

converges to 1 − 1/
√

e ≃ 39% as3 n → ∞.

1For instance, the “rock-scissors-paper” game of Example 9.2.1 in van Damme (1991),
and all its small enough perturbations, have no ESS.

2So a fortiori the probability that an ESS exists converges to 1 in this case.
3We also show in this case that the probability that there is either a pure or a two-point

ESS converges to 1 − e−3/2 ≃ 78%.
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Moreover, we show that the distribution of the number of two-point ESS

converges to a Poisson distribution, with a parameter converging to infinity

when α ≥ 1, and with a parameter of 1/2 when α < 1.

This threshold phenomenon is not restricted to the class Fα. We identify

two classes of distributions. The first is a class of “light-tailed” distributions

with tail probabilities 1 − F (x) that decrease exponentially as x → ∞ (i.e.,

exponential distributions) or faster (e.g., normal distributions, uniform dis-

tributions on bounded intervals, logistic distributions); they all lead to the

same result as Fα for α ≥ 1. The second is a class of “heavy-tailed” dis-

tributions with tail probabilities that decrease slower than exponentially as

x → ∞ (including, in particular, the following distributions: Pareto, Cauchy,

lognormal, stable with parameter less than 2), which all behave like Fα for

α < 1. We refer to these two classes, respectively, as EF for “Exponential

and Faster decreasing tails,” and SE for “Slower than Exponential decreasing

tails” (see Sections 4 and 5 for precise definitions).

An interesting consequence of our results concerns the classic problem of

the number of vertices of the convex hull of a collection of random points

in the plane, originally studied by Rényi and Sulanke (1963); see Section 3.

Taking symmetric versions of the distributions4 Fα, and assuming that the 2n

coordinates of the n points in the plane are independent and Fα-distributed,

we have:

• When α ≥ 1 the expected number of vertices of

the convex hull of n random points in the plane

converges to infinity as n → ∞.

• When α < 1 the expected number of vertices of

the convex hull of n random points in the plane

converges to 4 as n → ∞.

In addition, in the second case α < 1, the number of vertices converges in

probability to 4; thus, the convex hull is a quadrilateral with probability

4I.e., Fα(x) = (1/2)e−|x|α for x ≤ 0 and Fα(x) = 1−(1/2)e−xα

for x ≥ 0 (a distribution
F is symmetric if F (−x) = 1 − F (x) for all x).
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converging to 1. Here again, the results hold for the general classes FE and

SE , respectively.

The paper is organized as follows. The two classes of distributions are

defined in Sections 4.1 and 5.1, respectively. Our main results for ESS are

stated in Theorems 1 and 2 in Section 2.2 (see also Theorem 17 in Section 4.2

and Theorem 33 in Section 5.3), and, for the number of vertices, in Theorem

10 in Section 3. Section 2 presents the model—ESS and random games—

together with some preliminary results. Section 3 deals with the number of

vertices of random polygons. The detailed analysis is provided in Sections 4

and 5, and we conclude with a discussion in Section 6.

2 Preliminaries

2.1 Evolutionarily Stable Strategies

The setup is that of a symmetric two-person game, with the payoffs given by

the n × n matrix R = (R(i, j))i,j=1...n. The interpretation is that a meeting

between two players, the first playing the pure strategy i and the second

playing the pure strategy j (where 1 ≤ i, j ≤ n), yields a payoff of R(i, j) to

the first, and R(j, i) to the second (these payoffs may be viewed as a measure

of “fitness” or “reproductive success”).5 A mixed strategy p is a probability

vector on the set of pure strategies, i.e., p = (p1, ..., pn) ∈ ∆(n) := {x ∈ R
n
+ :

∑n
i=1 xi = 1}; the payoff function R is bilinearly extended to pairs of mixed

strategies: R(p, q) :=
∑n

i=1

∑n
j=1 piqjR(i, j).

A mixed strategy p ∈ ∆(n) is an evolutionarily stable strategy (ESS )

for the matrix R if it satisfies the following conditions (Maynard-Smith and

Price 1973):

[ESS1] R(p, p) ≥ R(q, p) for all q ∈ ∆(n).

[ESS2] If q 6= p satisfies R(q, p) = R(p, p) then R(q, q) < R(p, q).

5Thus the payoff matrix of the first player is R, and that of the second player is R⊤,
the transpose of R.
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This definition is equivalent to the requirement that for every q 6= p

there exists an “invasion barrier” b(q) > 0 such that R(p, (1 − ε)p + εq) >

R(q, (1−ε)p+εq) for all ε ∈ (0, b(q)). The interpretation of this inequality is

that any small enough proportion ε (i.e., less than b(q)) of q-mutants cannot

successfully invade a p-population, since the mutants’ (average) payoff is

strictly less than that of the existing population.

An ESS p is called an ℓ-point ESS if the support supp(p) = {i : pi > 0}
of p is of size ℓ. In particular, when ℓ = 1 we have a pure ESS. In the

biological setup, ℓ = 1 corresponds to “monomorphism,” and ℓ > 1 to “ℓ-

allele polymorphism.” Let S
(n)
ℓ ≡ S

(n)
ℓ (R) be the number of ℓ-point ESS for

the matrix R.

2.2 ESS of Random Games

Let F be a cumulative distribution function on R. We will assume throughout

this paper that F is continuous with a support (a, b) that is either finite or

infinite (i.e., −∞ ≤ a < b ≤ ∞). For every integer n ≥ 1, let R ≡ R(n) be

an n × n matrix whose n2 elements are independent F -distributed random

variables; the number of ℓ-point ESS of R(n) is now a random variable S
(n)
ℓ .

We use the following notations: E for expectation; L(Z) for the distrib-

ution function of the random variable Z; Poisson(λ) for the Poisson distri-

bution with parameter λ (i.e., L(Z) = Poisson(λ) if P(Z = k) = e−λλk/k!

for all integers k ≥ 0); and the convergence of distributions is with respect

to the variation norm (i.e., the l1-norm on measures: ‖L(Z1) − L(Z2)‖ =
∑

k |P(Z1 = k) − P(Z2 = k)|). The two classes of distributions, namely,

the “exponential and faster decreasing tails” class EF and the “slower than

exponential decreasing tails” class SE , will be formally defined in Sections

4.1 and 5.1, respectively.

We now state our main results on S
(n)
2 , the number of two-point ESS:

Theorem 1 If F ∈ EF , then, as n → ∞:

(i) µn := E(S
(n)
2 ) → ∞;

(ii)
∥

∥

∥
L(S

(n)
2 ) − Poisson(µn)

∥

∥

∥
→ 0; and
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(iii) P(there is a two-point ESS) → 1.

Theorem 2 If F ∈ SE, then, as n → ∞:

(i) µn := E(S
(n)
2 ) → 1/2;

(ii)
∥

∥

∥
L(S

(n)
2 ) − Poisson(1/2)

∥

∥

∥
→ 0; and

(iii) P(there is a two-point ESS) → 1 − e−1/2 ≃ 0.39.

For the convergence to Poisson distributions (ii) we will use a result of

the so-called “Chen–Stein method” that requires estimating only the first

two moments (see Section 2.5); surprisingly, our proofs in the two cases are

different. As for (iii), they are immediate from (ii). The two theorems are

proved in Sections 4 and 5, respectively. Note that, for distributions in EF ,

Theorem 1 (iii) implies that the probability that there is an ESS converges

to 1 (see Section 6 (c)).

Returning to the definition of ESS in Section 2.1, condition [ESS1] says

that p is a best reply to itself, i.e., (p, p) is a Nash equilibrium. By the

bilinearity of R, it is equivalent to: R(i, p) = R(p, p) for all i ∈ supp(p),

and R(j, p) ≤ R(p, p) for all j /∈ supp(p). Since F is a continuous distri-

bution, it follows that, with probability 1, the inequalities are strict, i.e.,

R(j, p) < R(p, p) for all j /∈ supp(p) (the jth row is independent of the rows

in supp(p)). Therefore, there are no best replies to p outside the support of6

p, i.e., R(q, p) = R(p, p) if and only if supp(q) ⊂ supp(p). Thus condition

[ESS2] applies only to such q, and we obtain (see Haigh 1988):

Lemma 3 For a random matrix R, the following holds a.s.:

(i) i is a pure ESS if and only if R(i, i) > R(j, i) for all j 6= i.

(ii) There is a 2-point ESS with support {i, j} if and only if there exist

pi, pj > 0 such that piR(i, i) + pjR(i, j) = piR(j, i) + pjR(j, j) > piR(k, i) +

pjR(k, j) for all k 6= i, j, and R(i, i) < R(j, i) and R(j, j) < R(i, j).

The following is immediate from (i) (see Haigh 1988):

6So (p, p) is a quasi-strict Nash equilibrium.
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Proposition 4 S
(n)
1 , the number of pure ESS, is a Binomial(n, 1/n) random

variable, and thus L(S
(n)
1 ) → Poisson(1) as n → ∞.

Proof. S
(n)
1 =

∑n
i=1 Ci where Ci is the indicator that i is a pure ESS, i.e.,

R(i, i) > R(j, i) for all j 6= i, and so P(Ci = 1) = 1/n. ¤

For two-point ESS, we can express their number S
(n)
2 as a sum of

n(n − 1)/2 identically distributed indicators,

S
(n)
2 =

∑

1≤i<j≤n

Dij,

where Dij ≡ D
(n)
ij is the indicator that columns i, j provide a two-point ESS.7

To study the asymptotic behavior of S
(n)
2 , we will need to evaluate the first

two moments (see Section 2.5), namely, P(Dij = 1) = P(D12 = 1) and

P(Dij = Dij′ = 1) = P(D12 = D13 = 1) (when {i, j} and {i′, j′} are disjoint,

Dij and Di′j′ are independent, since Dij is a function of the entries in columns

i and j only).

2.3 First Moment

The event that D12 = 1 depends only on the entries in the first two columns

of the matrix R, which we will denote Xi = R(i, 1) and Yi = R(i, 2). Thus

X1, ..., Xn, Y1, ..., Yn are 2n independent F -distributed random variables. For

each i, let Pi := (Xi, Yi) be the corresponding point in R
2. The two points P1

and P2 are almost surely distinct, and thus determine a line Ax + By = C

through them, where8

A := Y1 − Y2, B := X2 − X1, and C := X2Y1 − X1Y2. (1)

7Lemma 3 (ii) implies that, a.s., for each i 6= j there can be at most one ESS with
support {i, j} (in fact, condition [ESS2] implies that the supports of two distinct ESS p
and p′ can never be comparable, i.e., neither supp(p) ⊂ supp(p′) nor supp(p) ⊃ supp(p′)
can hold).

8A,B, and C are thus random variables that are functions of P1 and P2.
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Finally, we denote by Γ ≡ Γ(n) the event that there is a two-point ESS with

support {1, 2}, i.e., D12 = 1; recalling Lemma 3 (ii), we have

Γ ≡ Γ(n) := {X1 < X2, Y1 > Y2, AXk + BYk < C for all k = 3, ..., n}.

Let µn := E(S
(n)
2 ) denote the expected number of two-point ESS. Then

µn =

(

n

2

)

P(Γ(n)). (2)

We now define an auxiliary random variable U ≡ U (n), a function of P1

and P2, as follows:

U :=

{

P(AX3 + BY3 > C |P1, P2), if X1 < X2 and Y1 > Y2,

1, otherwise,
(3)

where A,B, and C are determined as above (1) by P1 and P2. Thus U is the

probability that an independent point lies above the line through P1 and P2

when X1 < X2 and Y1 > Y2. Let FU be the cumulative distribution function

of U (note that FU(1−) = P(X1 < X2, Y1 > Y2) = 1/4). We have

Lemma 5

P(Γ) =

∫ 1

0

(1 − u)n−2 dFU(u).

Proof. Immediate since U is determined by P1 and P2, and for all k ≥ 3 the

points Pk are independent of U and P(AXk + BYk > C |P1, P2) = U (the

atom at u = 1 does not matter since the integrand vanishes there). ¤

Corollary 6

P(D12 = 1) = P(Γ) = (n − 2)

∫ 1

0

(1 − u)n−3FU(u) du.
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Proof. Integrate by parts:

∫ 1

0

(1−u)n−2 dFU(u) =
[

(1 − u)n−2FU(u)
]1

0
+(n− 2)

∫ 1

0

(1−u)n−3FU(u) du,

and note that the first term vanishes. ¤

2.4 Second Moment

To evaluate P(D12 = D13 = 1), we need the entries in the third column

of the matrix R as well. Let Zi = R(i, 3) be n random variables that are

F -distributed, with all the Xi, Yi, Zi independent. Let Γ′ be the event that

D13 = 1 (we will use ′ for the XZ-problem), i.e.,

Γ′ := {X1 < X3, Z1 > Z3, A′Xk + B′Zk < C ′ for all k 6= 1, 3}

where A′, B′, and C ′ are determined by P ′
1 = (X1, Z1) and P ′

3 = (X3, Z3)

(cf. (1)). Let U ′ be the corresponding random variable: U ′ := P(A′X2 +

B′Y2 > C ′ |P ′
1, P

′
3) if X1 < X3 and Z1 > Z3, and U ′ := 1 otherwise; put

W := max{U,U ′}, with cumulative distribution function FW .

Proposition 7

P(D12 = D13 = 1) = P(Γ ∩ Γ′) ≤ (n − 3)

∫ 1

0

(1 − u)n−4FW (u) du.

Proof. For each k ≥ 4 we have

P(AXi + BYi < C, A′Xi + B′Z ′
i < C ′ |P1, P2, P

′
1, P

′
3)

≤ min{P(AXk + BYk < C |P1, P2),P(A′Xk + B′Z ′
k < C ′ |P ′

1, P
′
3)}

= min{1 − U, 1 − U ′} = 1 − max{U,U ′} = 1 − W.

Therefore

P(Γ ∩ Γ′) ≤
∫ 1

0

(1 − u)n−3 dFW (u).

As in Corollary 6, integrating by parts yields the result. ¤
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2.5 Poisson Approximation

The “Chen–Stein method” yields Poisson approximations for sums of Bernoulli

random variables whose dependence is not too large. We will use the follow-

ing formulation due to Arratia, Goldstein and Gordon (1989):

Theorem 8 Let I be an arbitrary index set. For each α ∈ I, let Zα be a

Bernoulli random variable with P(Zα = 1) = 1 − P(Zα = 0) = pα > 0, and

let Bα ⊂ I be the “neighborhood of dependence” for α; i.e., α ∈ Bα and Zα

is independent of Zβ for all β /∈ Bα. Put

Z :=
∑

α∈I

Zα,

λ :=
∑

α∈I

E(Zα) =
∑

α∈I

pα,

b1 :=
∑

α∈I

∑

β∈Bα

E(Zα)E(Zβ) =
∑

α∈I

∑

β∈Bα

pα pβ, and

b2 :=
∑

α∈I

∑

β∈Bα\{α}

E(ZαZβ).

Then

‖L(Z) − Poisson(λ) ‖ ≤ 2(b1 + b2)
1 − e−λ

λ
≤ 2(b1 + b2).

Proof. Theorem 1 in Arratia, Goldstein and Gordon (1989), with no “near-

independence” (i.e., b′3 = b3 = 0). ¤

2.6 Notations

We use the following standard notations, all as n → ∞: g(n) ∼ h(n) for

limn g(n)/h(n) = 1; g(n) . h(n) for lim supn g(n)/h(n) ≤ 1; g(n) ≈ h(n) for

0 < limn g(n)/h(n) < ∞; g(n) = O(h(n)) for lim supn g(n)/h(n) < ∞; and

g(n) = o(h(n)) for limn g(n)/h(n) = 0. Also, log is the natural logarithm loge

throughout.
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3 The Convex Hull of n Random Points in

the Plane

Interestingly, the expectation µn of S
(n)
2 is related to the number of ver-

tices, or edges, of the convex hull K of the n random points in the plane

P1, P2, ..., Pn (the connection does not, however, extend beyond the first mo-

ments). Denote that number by V ≡ V (n), and let V0 be the number of

edges of K whose outward normal is positive.9 The distribution F is called

symmetric if F (−x) = 1 − F (x) for all x (or, more generally, if there exists

x0 such that F (x0 − x) = 1 − F (x0 + x) for all x).

Proposition 9

2µn = E(V0) ≥ P(V0 > 0) = 1 − 1

n
.

Moreover, if F is symmetric, then

8µn = E(V ).

Proof. Let Eij be the indicator that the line segment PiPj is an edge of K

with positive outward normal; then V0 =
∑

i<j Eij. Clearly, P(Eij = 1) =

P(E12 = 1) = 2P(Γ) (if the additional condition X1 < X2, Y1 > Y2 in

Γ is not satisfied, interchange P1 and P2; this yields the factor 2), and so

E(V0) = (n(n − 1)/2) 2P(Γ) = 2µn.

Now V0 = 0 if and only if there is a point Pi that is maximal in both

the X- and the Y -direction, i.e., Xi = maxj Xj and also Yi = maxj Yj. The

probability of this event is 1/n (letting i be the index where Xi = maxj Xj,

the probability that Yi = maxj Yj is 1/n, since the Y -s are independent of

the X-s). Therefore,

E(V0) ≥ P(V0 ≥ 1) = 1 − 1

n
.

9The “outward normal” to an edge of K is perpendicular to the edge and points away
from the interior of K.
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If F is symmetric, the same holds for outward normals in each of the four

quadrants, and so E(V ) = 4E(V0). ¤

Our main result for the number of vertices V (n) is

Theorem 10 Let F be a symmetric distribution. Then, as n → ∞,

(i) if F ∈ EF then E(V (n)) → ∞; and

(ii) if F ∈ SE then E(V (n)) → 4 and P(V (n) = 4) → 1.

Proof. Combine Proposition 9 above with results that will be obtained in

the next two sections: Proposition 12 for (i), and Corollary 20 for (ii). ¤

Some intuition for the interesting result (ii) for “heavy-tailed” distribu-

tions is provided immediately after the proof of Theorem 19 in Section 5.2.10

Figures11 1 and 2 show, for each one of five different distributions, n = 10, 000

random points together with their convex hull and the resulting number of

vertices V (n). In the context of random points drawn from radially sym-

metric distributions (rather than independent coordinates), Carnal (1970)

has shown that E
(

V (n)
)

converges to a constant ≥ 4 for a certain class of

heavy-tailed distributions (with the constant depending on the distribution).

We conclude this section with a lemma that is useful when comparing

distributions (see its use in the next section).

Lemma 11 Let F ′ and F ′′ be two distributions, with supports12 (a′, b′) and

(a′′, b′′) and corresponding µ′
n and µ′′

n. If there exists a strictly increasing

convex function ϕ : (a′′, b′′) → (a′, b′) such that F ′′(x) = F ′(ϕ(x)) for all

x ∈ (a′′, b′′), then µ′
n ≤ µ′′

n.

10Fisher (1969) shows that for certain distributions (including the Weibull distributions
with parameter 0 < α < 1) the limit shape of the normalized convex hull is {(x, y) ∈ R

2 :
|x| + |y| ≤ 1}—which is the convex hull of 4 points. However, this does not imply that
the number of vertices V (n) converges to 4, since there may be many vertices close to each
one of these 4 points (as is the case for the uniform distribution, where the limit shape is
the unit square, and V (n) → ∞).

11Generated by maple.
12−∞ ≤ a′ < b′ ≤ ∞ and −∞ ≤ a′′ < b′′ ≤ ∞.
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(a) Uniform distribution: n = 10000, V = 29

(b) Normal distribution:
n = 10000, V = 16

(c) Exponential distribution:
n = 10000, V = 9

Figure 1: The number of vertices V of the convex hull of n random points
drawn from three distributions in EF
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(a) Weibull distribution, α = 1/2:
n = 10000, V = 4

(b) Cauchy distribution:
n = 10000, V = 4

Figure 2: The number of vertices V of the convex hull of n random points
drawn from two distributions in SE

Proof. Let (X ′
i)1≤i≤n and (Y ′

i )1≤i≤n be independent and F ′-distributed ran-

dom variables, and define X ′′
i := ϕ−1(X ′

i) and Y ′′
i := ϕ−1(Y ′

i ). Put P ′
i =

(X ′
i, Y

′
i ) and P ′′

i = (X ′′
i , Y ′′

i ), and let K ′ and K ′′ be the convex hulls of

{P ′
i}i and {P ′′

i }i, respectively. Since P(X ′′
i ≤ x) = P(ϕ−1(X ′

i) ≤ x) =

P(X ′
i ≤ ϕ(x)) = F ′(ϕ(x)) = F ′′(x), the (X ′′

i )i and (Y ′′
i )i are F ′′-distributed.

If Ax+By is a supporting line to K ′ at P ′
i with A,B > 0, then (Ap)x+(Bq)y

is a supporting line to K ′′ at P ′′
i , where p, q > 0 are subgradients of ϕ at X ′

i

and Y ′
i , respectively. Therefore V ′

0 + 1 ≤ V ′′
0 + 1 (the number of vertices

supported by positive outward normals is larger by one than the number of

edges supported by such normals), and so µ′
n ≤ µ′′

n. ¤

14



4 Exponential and Faster Decreasing Tails

4.1 The Class EF
We define the class of distributions EF with “Exponential and Faster de-

creasing tails” as those continuous distributions F with support (a, b) (where

−∞ ≤ a < b ≤ ∞) whose “tail” G(x) = 1 − F (x) is a log-concave function;

i.e., G(x) = e−g(x) where g : (a, b) → (0,∞) is a strictly increasing convex

function. The functions G and g = − log G are usually called the survival

function and the cumulative hazard function, respectively; for a collection

of results on log-concave probabilities, see Bagnoli and Bergstrom (2005).13

A sufficient (but not necessary) condition for the log-concavity of G is that

the density function f = F ′ be continuously differentiable and log-concave.

Some distributions included in the class EF are the following (for simplicity,

we take standard normalizations; replacing x with λx + ν for any λ > 0 and

ν clearly preserves the log-concavity of G):

• Exponential : G(x) = e−x for x ∈ (0,∞).

• Normal : G(x) =
∫ ∞

x
(2π)−1/2e−y2/2 dy for x ∈ (−∞,∞).

• Weibull with parameter α ≥ 1: G(x) = e−xα

for x ∈ (0,∞), where

α ≥ 1 (these are the Fα of the Introduction).

• G(x) = e−ex

for x ∈ (−∞,∞).

• Logistic: G(x) = 1/(1 + ex) for x ∈ (−∞,∞).

• Uniform: G(x) = 1 − x for x ∈ (0, 1).

Each such distribution is by definition an increasing convex transfor-

mation of the exponential distribution: if F (x) = 1 − e−g(x) then F (x) =

F exp(g(x)) for every x in the support of F (where F exp(x) = 1 − e−x is the

exponential cumulative distribution function). By Lemma 11, it thus follows

that the exponential distribution yields the lower bound on µn over the class

EF . Now Haigh (1990) proved that µexp
n ≈ log log n, and so we have

13The class of positive random variables with a log-concave G is usually called IFR (for
“Increasing Failure Rate”).
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Proposition 12 If F ∈ EF then µn → ∞ as n → ∞.

Proof. If F ∈ EF then µF
n ≥ µexp

n ≈ log log n → ∞ by Lemma 11 and Haigh

(1990). ¤

Rényi and Sulanke (1963) provide more precise results: µnormal
n ≈

√
log n

and µuniform
n ≈ log n. Also, we note that the class EF can be taken to be

much larger; see Section 6 (b).

4.2 Poisson Approximation

Our Theorem 1 for the class EF is an immediate consequence of Proposition

12, together with the general result of Theorem 13 below (which holds for

any distribution F, not necessarily in EF). The analysis will also yield the

universal upper bound of Theorem 17.

Theorem 13 For every distribution F,

∥

∥

∥
L(S

(n)
2 ) − Poisson(µn)

∥

∥

∥
= O

(

1
√

µn

)

as n → ∞.

The remainder of this section is devoted to the proof of Theorem 13. For

every x ∈ R and u ∈ (0, 1), let ν(x; u) := P(U < u |X1 = x) (recall the

definition (3) of U), then

FU(u) =

∫ ∞

−∞

ν(x; u) dF (x) (4)

and

FW (u) =

∫ ∞

−∞

ν(x; u)2 dF (x), (5)

since, given X1 = x, the events U < u and U ′ < u are independent (the first

depends on Y1, X2, Y2, and the second on Z1, X3, Z3; see Section 2.4).

For every b ≥ 0 and u ∈ (0, 1), let κu(b) be determined by the equation

P(X + bY ≥ κu(b)) = u (it is unique since X + bY is a continuous random

variable). Let K ≡ Ku := {(x, y) ∈ R
2 : x + by < κu(b) for all b > 0} be

the set of all points that are not contained in any half-plane of probability u

16



Ku

P1 = (x1, y1)

x
+

b
0 y

=
κ
u (b

0 )

bcb

Figure 3: If U < u then P2 lies in the darkly shaded area; the probability of
the whole shaded area is u (Lemma 14)

with positive normal (see Figure 3). Clearly, if either P1 ∈ K or P2 ∈ K then

U ≥ u (since, for all b > 0, the line x+by = c through that point has c < κu(b)

and so P(X +bY > c) ≥ P(X +bY ≥ κu(b)) = u). The set K is convex (it is

an intersection of half-spaces) and comprehensive (i.e., (x′, y′) ≤ (x, y) ∈ K

implies that (x′, y′) ∈ K). Let y = η(x; u) be the equation of its boundary,

i.e., η(x; u) := sup{y : (x, y) ∈ K} (with η(x; u) := −∞ when there is no

such y). We have

Lemma 14 For every x and u ∈ (0, 1)

ν(x; u) ≤ uG(η(x; u)) ≤ u.

Proof. Let P1 = (x1, y1). If P1 ∈ K then, as we saw above, P(U < u |X1 =

x1, Y1 = y1) = 0.

17



If P1 /∈ K then y1 ≥ η(x1; u) (again, see Figure 3); let b0 ≡ b0(x1, y1) :=

inf{b > 0 : x1 + by1 ≥ κu(b)}. The function κu is continuous since the

distribution F is continuous, and so x1 + b0y1 ≥ κu(b0) (note that we may

well have b0 = 0, for which κu(0) = G−1(u)). Assume that U < u; then there

exists b > 0 such that X2+bY2 = x1+by1 ≥ κu(b), and so b ≥ b0. Now Y2 < y1

(since U < u ≤ 1); therefore X2+b0Y2 ≥ x1+b0y1, which, as we saw above, is

≥ κu(b0). Thus U < u implies that P2 lies above the line x+b0y = κu(b0), and

so P(U < u |X1 = x1, Y1 = y1) ≤ P(X2 + b0Y2 ≥ κu(b0)) ≤ u by definition

of κu.

Taking expectation over Y1 = y1 therefore yields

P(U < u |X1 = x1) ≤ 0P(P1 ∈ K |X1 = x1) + uP(P1 /∈ K |X1 = x1)

≤ uP( Y1 ≥ η(x1; u)) = uG(η(x1; u)) ≤ u.

¤

Lemma 15 For every x and u ∈ (0, 1)

G(x) G(η(x; u)) ≤ u.

Proof. If P1 = (x1, y1) /∈ K then (see Figure 4) there exists b > 0 such

that c := x1 + by1 ≥ κu(b), and so P(X + bY ≥ c) ≤ u. Therefore, P(X ≥
x1, Y ≥ y1) ≤ P(X + bY ≥ c) ≤ u, and so G(x1) G(y1) ≤ u. This holds for

all y1 > η(x1; u), and G is a continuous function. ¤

Combining the inequalities in the last two lemmata yields

Corollary 16 For every x and u ∈ (0, 1)

ν(x; u) ≤ min

{

u,
u2

G(x)

}

.

From this we can immediately obtain an upper bound on µn which applies

to any distribution F. This bound is known; see Devroye (1980).

18



Ku

P1 = (x1, y1)

x + by = κu(b)

x + by = c

bcb

Figure 4: The probability of the whole shaded area is u, and that of the
darkly shaded area is G(x1)G(y1) (Lemma 15)

Corollary 17 For every distribution F,

P(Γ) = O

(

log n

n2

)

and µn = O(log n) as n → ∞.

Proof. Let t be such that G(t) = u. Applying Corollary 16 in the formula

(4) yields

FU(u) =

∫ ∞

−∞

ν(x; u) dF (x) ≤
∫ t

−∞

u2

G(x)
dF (x) +

∫ ∞

t

u dF (x)

= u2

∫ 1

u

1

z
dz + u2 = u2(log

1

u
+ 1)

(we have used the substitution z = G(x)). Therefore,

P(Γ) = (n − 2)

∫ 1

0

(1 − u)n−3FU(u) du

19



≤ (n − 2)

∫ 1

0

(1 − u)n−3u2(log
1

u
+ 1) du

≤ 2 log n

n2
+ O

(

1

n2

)

.

¤

We can now prove Theorem 13.

Proof of Theorem 13. Let ξ(u) be determined by G(ξ(u)) =
√

FU(u). For

x ≤ ξ(u), we will use the inequality ν(x; u) ≤ u2/G(x) to get

∫ ξ(u)

−∞

ν(x; u)2 dF (x) ≤
∫ ξ(u)

−∞

ν(x; u)
u2

G(x)
dF (x)

≤ u2

√

FU(u)

∫ ξ(u)

−∞

ν(x; u) dF (x)

≤ u2

√

FU(u)

∫ ∞

−∞

ν(x; u) dF (x)

=
u2

√

FU(u)
FU(u) = u2

√

FU(u).

For x ≥ ξ(u), we use ν(x; u) ≤ u to get

∫ ∞

ξ(u)

ν(x; u)2 dF (x) ≤
∫ ∞

ξ(u)

u2 dF (x) = u2G(ξ(u)) = u2
√

FU(u).

Altogether,

FW (u) ≤ 2u2
√

FU(u).

Therefore,

∫ 1

0

(1 − u)n−4FW (u) du ≤ 2

∫ 1

0

(1 − u)n−4u2
√

FU(u) du

≤2
(

∫ 1

0

(1 − u)n−3FU(u) du

)

1

2
(

∫ 1

0

(1 − u)n−5u4 du

)

1

2

,
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by the Cauchy–Schwarz inequality. The first integral is P(Γ)/(n − 2) =

O(µn n−3) (by Corollary 6 and (2)), the second integral is O(n−5), and so

∫ 1

0

(1 − u)n−4FW (u) du = O
(

µ1/2
n n−4

)

.

Therefore, by Proposition 7,

P(Γ ∩ Γ′) = O
(

µ1/2
n n−3

)

.

We now apply Theorem 8 to S
(n)
2 =

∑

i<j Dij. There are n(n − 1)/2 =

O(n2) terms Dij; the neighborhood of dependence of each Dij consists of Dik

and Djk for all k, and so it is of size 2n − 3 = O(n). Therefore,

b1 = O(n2) O(n)P(Γ)2 = O(n3(µn n−2)2) = O
(

µ2
n n−1

)

and

b2 = O(n2) O(n)P(Γ ∩ Γ′) = O
(

µ1/2
n

)

.

This yields
∥

∥

∥
L(S

(n)
2 ) − Poisson(µn)

∥

∥

∥
≤ 2(b1 + b2)/µn = O(µn n−1 + µ

−1/2
n ).

Now E(V (n)) = O(log n), and so µn = O(log n), for any distribution F ; this

follows from Theorem 1 (for dimension d = 2) in Devroye (1980). Therefore
∥

∥

∥
L(S

(n)
2 ) − Poisson(µn)

∥

∥

∥
= O(µ

−1/2
n ). ¤

Proof of Theorem 1. Combine Proposition 12 and Theorem 13. ¤

5 Slower than Exponential Decreasing Tails

5.1 The Class SE
We define the class of distributions SE with “Slower than Exponential de-

creasing tails” as those distributions F with support (a,∞) (where a ≥ −∞)

whose tail G = 1 − F satisfies the following two conditions:
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[SE1] “Subexponentiality”:

P(X+ + Y+ > t) ∼ 2G(t) as t → ∞,

where X,Y are independent F -distributed random variables and Z+ :=

max{Z, 0}; and

[SE2] “Uniformity”: For all c > 1,

G(ct) & G(t)c as t → ∞, uniformly as c → 1+; (6)

that is, for every ε > 0 there exist t0 ≡ t0(ε) and c0 ≡ c0(ε) > 1 such

that G(ct)/G(t)c > 1 − ε for all t > t0 and all c ∈ (1, c0).

Distributions satisfying [SE1] are called subexponential distributions (orig-

inally introduced by Chistyakov 1964). Some examples are (see Table 3.7 in

Goldie and Klüppelberg 1997; again, we use standard normalizations for

simplicity):

• Regularly varying tails : G(x) = x−αℓ(x) where α ≥ 0 and ℓ is a slowly

varying function, i.e., limx→∞ ℓ(cx)/ℓ(x) = 1 for every c > 0. This

includes

– Pareto: G(x) = x−α for x ∈ (1,∞), where α > 0.

– Cauchy : G(x) =
∫ ∞

x
(π(1 + y2))−1 dy = arctan(x)/π + 1/2 for

x ∈ (0,∞).

– α-stable, where 0 < α < 2.

• Lognormal : G(x) =
∫ ∞

x
(
√

2πy)−1e− log2 y/2 dy for x ∈ (0,∞).

• Weibull with parameter 0 < α < 1: G(x) = e−xα

for x ∈ (0,∞).

• “Almost” exponential : G(x) = e−x(ln x)−α

for x ∈ (1,∞), where α > 0.

(However, the exponential distribution does not satisfy [SE1].)
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As for condition [SE2], in terms of the cumulative hazard function g(t) :=

− log G(t), it says that for every ε > 0 there exist t0 ≡ t0(ε) and c0 ≡ c0(ε) >

1 such that g(ct) ≤ cg(t) + ε for all t > t0 and all c ∈ (1, c0). Therefore, a

sufficient condition for [SE2] is that g(t)/t be a nonincreasing function for

large enough14 t; this is the case when g is concave (and so G is log-convex ;

contrast with EF), or even star-concave15 (we will see in Lemma 18 (ii) below

that [SE1] implies that g(t)/t → 0 as t → ∞). It is now easy to verify that all

the distributions listed above also satisfy [SE2]. Finally, SE is closed under

“tail equivalence”: if 1 − F (t) ∼ 1 − F ′(t) as t → ∞, then F ∈ SE if and

only if F ′ ∈ SE (for [SE1], see Theorem 3 in Teugels 1975).

The next lemma collects a number of properties that will be used in the

proof below.

Lemma 18 Let F satisfy [SE1]. Then

(i)

P(X + Y > t) . 2G(t) as t → ∞. (7)

(ii) g(t) := − log G(t) = o(t) as t → ∞.

(iii) There exist γt > 0 such that

lim
t→∞

γt = 0, (8)

lim
t→∞

γtt = ∞, and (9)

lim
t→∞

G(t)γ
t = 1. (10)

Moreover, if F also satisfies [SE2], then

lim
t→∞

G((1 + γt)t)

G(t)
= 1. (11)

Proof. (i) is immediate from [SE1] since X + Y ≤ X+ + Y+. As for (ii),

it is a well-known property of subexponential distributions (e.g., it follows

from (1.4) in Goldie and Klüppelberg 1997). To get (iii), take, for example,

14The class of positive random variables where g(t)/t is a nonincreasing function for all

t is usually called DFRA (for “Decreasing Failure Rate Average”).
15I.e., g(λx) ≥ λg(x) + (1 − λ)g(0) for all x ≥ 0 and all 0 ≤ λ ≤ 1.
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γt = 1/
√

tg(t), and then (8), (9), and (10) immediately follow from (ii);

finally, (10) together with (6) imply (11). ¤

5.2 First Moment

In this section we will prove that, for distributions in SE , the expected num-

ber of 2-point ESS converges to 1/2, and the number of vertices of the convex

hull converges in probability to 4. Some intuition is provided after the proof

of Theorem 19. The main result is

Theorem 19 Let F ∈ SE . Then

P(Γ) ∼ 1

n2
and µn → 1

2
as n → ∞.

As a result, the number of vertices V (n) of the convex hull of n random

points satisfies

Corollary 20 Let F be a symmetric SE distribution. Then

P(V (n) = 4) → 1 as n → ∞.

Proof. We have P(V0 = 0) = 1/n → 0 by Proposition 9, and E(V0) → 1 by

Theorem 19; this implies that P(V0 6= 1) → 0, and so P(V 6= 4) → 0 (again,

recall Proposition 9). ¤

Thus, for symmetric SE distributions, the probability that the convex

hull is a quadrilateral converges to 1.

For the remainder of this section we assume that F ∈ SE.

The proof of Theorem 19 uses the following result:

Proposition 21 As u → 0

FU(u) .
1

2
u2.

Before proving Proposition 21 (to which most of this section is devoted),

we use it to prove Theorem 19.
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Proof of Theorem 19. Given ε > 0, let δ > 0 be such that FU(u) ≤
(1 + ε)u2/2 for all u < δ. We will use Corollary 6, and separate the integral

into two parts. For the first part, we have

∫ δ

0

(1 − u)n−3FU(u) du ≤ (1 + ε)
1

2

∫ δ

0

(1 − u)n−3u2 du

≤ (1 + ε)
1

2

∫ 1

0

(1 − u)n−3u2 du

= (1 + ε)
1

2

2

n(n − 1)(n − 2)
.

As for the second part, we get

∫ 1

δ

(1 − u)n−3FU(u) du ≤ (1 − δ)n−3,

which is less than, say, ε/n3 for all n large enough. Adding the two bounds,

multiplying by n− 2, and recalling Corollary 6 yields P(Γ) ≤ (1+2ε)/n2 for

all n large enough. The opposite inequality is in Proposition 9 (recall (2)).¤

The proof of Proposition 21 requires careful analysis. To get some in-

tuition, consider the convex hull of n random points P1, P2, ..., Pn. Let

Pi = (Xi, Yi) be the (a.s. unique) point with maximal X-coordinate, i.e.,

Xi = maxk Xk. An essential property of subexponential distributions is that

Xi is much larger than all the other Xk for k 6= i. In addition, the corre-

sponding Y -coordinate, namely Yi, is also much smaller than Xi. The same

holds for the point Pj = (Xj, Yj) with maximal Y -coordinate, which implies

that, with high probability, all the points Pk with k 6= i, j will lie well below

the line connecting Pi and Pj, so that Pi and Pj will be the only vertices

with positive outward normals. This basic picture can be seen in Figure 5

(recall also Figure 2). The points in the region L2 have large X (bigger than

an appropriate t), whereas the width of L2 (in the Y -coordinate) is small

relative to t. The same holds for the region L1, with X and Y interchanged.

These two regions will thus “catch,” with high probability, the points Pi and

Pj with maximal X and maximal Y, respectively.

25



L0

L2

L1

bcb

bcb

(t, 0)

(0, t)

Figure 5: L3 is the whole shaded area, and L4 (see Lemma 29) is the darkly
shaded area

Fix 0 < ε < 1, and let t ≡ tu,ε be such that

G(t) = (1 + ε)u; (12)

then u → 0 is equivalent to t → ∞ (since ε > 0 is fixed). We will say that t

and u correspond to one another if they are related by (12). Next, we define

the following sets in R
2 (see Figure 5):

L0 ≡ L0
u,ε := {(x, y) : x ≤ t, y ≤ t, x + y ≤ t},

L ≡ Lu,ε := R
2 \L0,

L1 ≡ L1
u,ε := {(x, y) : |x| ≤ γtt, y > t},

L2 ≡ L2
u,ε := {(x, y) : x > t, |y| ≤ γtt}, and

L3 ≡ L3
u,ε := L \ (L1 ∪ L2).
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The reader should keep in mind that t as well as all the sets L,L0, ...

depend on u (and ε).

For simplicity, we will write P(L) instead of P(Pi ∈ L).

Lemma 22 As u → 0,

P(Lu,ε) = O(u).

Proof.

P(L) ≤ P(x + y > t) + P(x > t) + P(y > t) . 4G(t) = 4(1 + ε)u.

¤

Lemma 23 There exists u0 ≡ u0(ε) ∈ (0, 1) such that, for all u < u0, if

a, b, c satisfy a, b > 0 and P(aX + bY > c) < u (where X,Y are independent

and F -distributed), then c/a > tu,ε and c/b > tu,ε.

Proof. Assume without loss of generality that a ≥ b. If c/a ≤ t ≡ tu,ε then

P(aX + bY > c) ≥ P(aX + bY > at)

≥ P(|Y | ≤ γtt, X > (1 + γt)t)

= H(γtt) G((1 + γt)t),

where H(z) := 1 − F (−z) − G(z) for z ≥ 0 (we used a ≥ b in the second

inequality). Now H(γtt) G((1 + γt)t)/G(t) → 1 as t → ∞ by (9) and (11),

and so H(γtt) G((1 + γt)t) > G(t)/(1 + ε) = u for all t large enough, or all u

small enough. This contradiction shows that indeed c > at ≥ bt. ¤

Corollary 24 For all u < u0,

P(P1 ∈ L0
u,ε or P2 ∈ L0

u,ε, U < u) = 0.

Proof. If U < u < u0 then the entire set L0 lies below the line Ax+By = C

through P1 and P2 (this holds for its two extreme points, (t, 0) and (0, t),

by Lemma 23, and A,B > 0); therefore U < u implies that P1 /∈ L0 and

P2 /∈ L0. ¤
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At this point we immediately get the following bounds:

Proposition 25

P(U < u) = O(u2) as u → 0, and

µn = O(1) as n → ∞.

Proof. Corollary 24 and Lemma 22 imply that P(U < u) ≤ P(P1, P2 ∈
L) = P(L)2 = O(u2) as u → 0. Using this in the computation of the proof

of Theorem 19 yields P(Γ) = O(1/n2), and so µn = O(1). ¤

To get µn . 1/2 will require a more refined analysis (the best constant

we can get up to this point is µn . 4). We start with a useful inequality:

Lemma 26 Let X and Y be independent and F -distributed. Then, for every

a, b, c, θ > 0,

P(aX + bY > c) ≥ H
(

θ
c

b

)

G
(

(1 + θ)
c

a

)

+ H
(

θ
c

a

)

G
(

(1 + θ)
c

b

)

. (13)

Proof. We have

P(aX + bY > c) ≥ P(aX > (1 + θ)c, |bY | ≤ θc)

+P(|aX| ≤ θc, bY > (1 + θ)c).

¤

The next three lemmata will deal, respectively, with the three cases:

(i) P1 ∈ L1 and P2 ∈ L2; (ii) P1, P2 ∈ L1 or P1, P2 ∈ L2; and (iii) P1, P2 ∈ L3

(recall Corollary 24). The corresponding probabilities turn out to be of the

order of u2/2 in the first case, and o(u2) in the other two cases.

Lemma 27 As16 u → 0,

P(P1 ∈ L1
u,ε, P2 ∈ L2

u,ε, U < u) ≤ 1

2
u2 + εO(u2).

16“f(u, ε) = εO(u2) as u → 0” means that there exists a constant M < ∞ such that
limu→0f(u, ε)/u2 < εM for every ε ∈ (0, 1) (or, equivalently, for every ε ∈ (0, 1) there
exists u ≡ u(ε) > 0 such that f(u, ε)/u2 < εM for all u < u).
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Proof. Let P1 ∈ L1 and P2 ∈ L2 be such that U < u < u0, where u0 is given

by Lemma 23, and let t0 correspond to u0. The line P1P2 is Ax + By = C

with A = Y1 −Y2, B = X2 −X1 and C = X2Y1 −X1Y2. Since U < u < u0 we

have C/A > t and C/B > t by Lemma 23 and so, taking θ = γt in Lemma

26,

U = P(AX+BY > C |P1, P2) ≥ H(γtt)

[

G

(

(1 + γt)
C

A

)

+ G

(

(1 + γt)
C

B

)]

.

Now X2, Y1 > t and |X1|, |Y2| < γtt, and so |X1| < γtX2 and |Y2| < γtY1,

which implies that A ≥ Y1(1 − γt), B ≥ X2(1 − γt), and C ≤ X2Y1(1 + γ2
t ).

Therefore,
C

A
≤ X2

1 + γ2
t

1 − γt

and
C

B
≤ Y1

1 + γ2
t

1 − γt

.

Put ρt := (1+γt)(1+γ2
t )/(1−γt) > 1; (8) implies that ρt → 1, and so from (6)

it follows that there is t1 > t0 large enough so that G(ρtz)/G(z)ρ
t > (1+ε)−1/2

for all17 z > t > t1. Therefore, for all t > t1, we have

U ≥ H(γtt) [G (ρtX2) + G (ρtY1)]

≥ H(γtt)(1 + ε)−1/2 [G (X2)
ρ

t + G (Y1)
ρ

t ]

≥ H(γtt)(1 + ε)−1/221−ρ
t [G (X2) + G (Y1)]

ρ
t .

Now H(γtt)2
1−ρ

t → 1 by (9); therefore, there exists t2 ≥ t1 such that

H(γtt)2
1−ρ

t ≥ (1 + ε)−1/2 for all t > t2, and so

U ≥ (1 + ε)−1 [G (X2) + G (Y1)]
ρ

t .

Let u2 correspond to t2; then U < u < u2 implies that

G(X2) ≤ ((1 + ε)u)1/ρ
t − G(Y1) = G(t)1/ρ

t − G(Y1). (14)

17Indeed, given ε > 0, let z0(ε) and c0(ε) be such that G(cz)/G(z)c > (1 + ε)−1/2 for
all z > z0 and c ∈ (1, c0); take t1 > z0 such that ρt < c0 for all t > t1.
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Equation (14) provides a lower bound on X2, and so

P(P2 ∈ L2, U < u |P1) ≤ P(X2 satisfies (14) |Y1) ≤ G(t)1/ρ
t − G(Y1).

Integrating over Y1 in (t,∞), we have

P(P1 ∈ L1, P2 ∈ L2, U < u) ≤
∫ ∞

t

(

G(t)1/ρ
t − G(y1)

)

dF (y1)

= G(t)1+1/ρ
t − 1

2
G(t)2,

since
∫ ∞

t
G(y1) dF (y1) = −

∫ ∞

t
G(y1) dG(y1) = −[G(y1)

2/2]∞t = G(t)2/2.

Now 1/ρt = (1 − γt)/((1 + γt)(1 + γ2
t )) ≥ 1 − 2γt, and so G(t)1+1/ρ

t ≤
G(t)2−2γ

t ∼ G(t)2 by (10), which implies that there is t3 ≥ t2 such that

G(t)1+1/ρ
t < (1 + ε/2)G(t)2 for all t > t3. This yields

P(P1 ∈ L1, P2 ∈ L2, U < u) ≤ (1 +
ε

2
) G(t)2 − 1

2
G(t)2

=
1

2
(1 + ε)G(t)2 =

1

2
(1 + ε)3u2 ≤ 1

2
(1 + 7ε)u2

for all t > t3. Now let u3 correspond to t3. ¤

Lemma 28 As u → 0,

P(P1, P2 ∈ L1
u,ε, U < u) = P(P1, P2 ∈ L2

u,ε, U < u) = εO(u2).

Proof. Let P1, P2 ∈ L1 be such that U < u < u0, where u0 is given by

Lemma 23, and let t0 correspond to u0. Then Y1 > Y2 > t and −γtt < X1 <

X2 < γtt, and also C/B > t (by Lemma 23); therefore,

C

A
=

X2Y1 − X1Y2

Y1 − Y2

≤ γttY1 − (−γtt)Y2

Y1 − Y2

= γtt
Y1 + Y2

Y1 − Y2

,

from which it follows by Lemma 26 with θ = γt that

U ≥ H(γt

C

B
) G

(

(1 + γt)
C

A

)

≥ H(γtt) G

(

(1 + γt)γtt
Y1 + Y2

Y1 − Y2

)

.
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Let t1 > t0 be large enough so that H(γtt) > 1/(1 + ε) for all t > t1, and let

u1 correspond to t1; then U < u < u1 implies that

G

(

(1 + γt)γtt
Y1 + Y2

Y1 − Y2

)

< (1 + ε)u = G(t);

thus

(1 + γt)γtt
Y1 + Y2

Y1 − Y2

> t,

or

Y1 < ρtY2,

where now ρt := (1 + γt(1 + γt))/(1− γt(1 + γt)) > 1 and ρt → 1. Therefore,

for P2 ∈ L1,

P(P1 ∈ L1, U < u |P2) ≤ P(Y2 < Y1 < ρtY2 |Y2) = G(Y2) − G(ρtY2)

≤ G(Y2) − (1 − ε)G(Y2)
ρ

t ,

the last inequality holding for all t large enough, say t > t2 ≥ t1, again by

(6). Integrating over Y2 in (t,∞) yields

P(P1 ∈ L1, P2 ∈ L1, U < u) ≤
∫ ∞

t

(G(y2) − (1 − ε)G(y2)
ρ

t) dF (y2)

=
1

2
G(t)2 − (1 − ε)

1

1 + ρt

G(t)1+ρ
t .

Now 1 + ρt ∼ 2 + 2γt → 2, and so G(t)1+ρ
t/(1 + ρt) ∼ G(t)2/2 (recall (10)).

Therefore, there is t3 ≥ t2 such that, for all t > t3,

P(P1 ∈ L1, P2 ∈ L1, U < u) ≤ 1

2
G(t)2 − (1 − 2ε)

1

2
G(t)2

= εG(t)2 = ε(1 + ε)2u2 ≤ 4εu2.

The case where P1, P2 ∈ L2 is the same (interchange X and Y ). ¤

Lemma 29 As u → 0,

P(L3
u,ε) = εO(u).
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Proof. Define L4 := {(x, y) : x + y > t} \ (L1 ∪ L2) (see Figure 5); then

P(L4) ≤ P(x + y > t) − P(|x| < γtt, y > (1 + γt)t)

−P(|y| < γtt, x > (1 + γt)t).

Let t1 be large enough so that P(x + y > t) ≤ (2 + ε)G(t) and also

H(γtt)G((1+ γt)t) ≥ (1− ε)G(t) for all t > t1 (recall (7), (9), and (11)), and

thus

P(L4) ≤ (2 + ε)G(t) − 2(1 − ε)G(t) = 3εG(t);

therefore,

P(L3) ≤ P(L4) + P(x ≤ −γtt, y > t) + P(x > t, y < −γtt)

≤ 3εG(t) + 2F (−γtt)G(t) ≤ 4εG(t) = 4ε(1 + ε)u

(note that F (−γtt) ≤ 1 − H(γtt) ≤ ε for t > t1). ¤

Corollary 30 As u → 0,

P(P1 /∈ L1
u,ε or P2 /∈ L2

u,ε, U < u) = εO(u2).

Proof. For u small enough:

P(P1 /∈ L1 or P2 /∈ L2, U < u)

= P(P1 /∈ L or P2 /∈ L, U < u)

+P(P1 ∈ L3, P2 ∈ L, U < u) + P(P1 ∈ L, P2 ∈ L3, U < u)

+P(P1, P2 ∈ L1, U < u) + P(P1, P2 ∈ L2, U < u)

≤ 0 + 2P(L3)P(L) + 2εO(u2) = 2ε O(u) O(u) + 2εO(u2)

by Corollary 24 and Lemmata 29, 22, and 28. ¤

Proof of Proposition 21. Adding up the estimates of Lemma 27 and

Corollary 30 yields P(U < u) ≤ (1/2)u2 + εO(u2) as u → 0. This holds
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for every ε ∈ (0, 1) and the left-hand side is independent of ε, and so18

P(U < u) ≤ (1/2)u2 + o(u2). ¤

5.3 Second Moment and Poisson Approximation

Recall Section 2.4 and Proposition 7 there.

Proposition 31 As n → ∞,

P(Γ ∩ Γ′) = o(n−3).

Proof. Proposition 32 below will show that P(W < u) = o(u3). Thus, given

ε > 0, there is δ > 0 such that P(W < u) ≤ εu3 for all u < δ; then, as in the

proof of Theorem 19,

∫ 1

0

(1 − u)n−4FW (u) du ≤ (1 − δ)n−4 + ε

∫ 1

0

(1 − u)n−4u3 du = εO(n−4).

Multiplying by n−3 and recalling that ε > 0 was arbitrary shows that indeed

P(Γ ∩ Γ′) = o(n−3). ¤

It remains to show that

Proposition 32 As u → 0,

P(W < u) = o(u3).

Proof. Fix ε ∈ (0, 1). First, we have

P(P1 ∈ L1, P2 ∈ L2, U < u, P
′

1 ∈ L1, P ′
3 ∈ L2, U ′ < u)

≤ P(Y1 > t, X2 > t, Z1 > t, X3 > t) = G(t)4 = O(u4).

Next, for all u small enough (i.e., u < u(ε)),

P(P1 /∈ L1 or P2 /∈ L2, U < u, U ′ < u)

18Formally, there exists M < ∞ such that lim supu→0 P(U < u)/u2 ≤ 1/2 + Mε for all
ε, and so lim supu→0 P(U < u)/u2 ≤ 1/2.
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≤ P(P1 /∈ L1 or P2 /∈ L2, U < u, P ′
3 ∈ L) = εO

(

u2
)

O(u) = εO(u3)

by Corollary 30 and Lemma 22, and the fact that P ′
3 = (X3, Z3) is indepen-

dent of P1 = (X1, Y1) and P2 = (X2, Y2)). Similarly, we have

P(P ′
1 /∈ L1 or P ′

3 /∈ L2, U ′ < u, U < u) = εO(u3).

Adding up the two terms yields P(W < u) ≤ εO(u3) for every ε ∈ (0, 1), or

P(W < u) ≤ o(u3). ¤

We can now prove Theorem 2.

Proof of Theorem 2. Again, we apply Theorem 8 to
∑

i<j Dij. We have

b1 = O(n2) O(n)P(Γ)2 = O(1/n) and

b2 = O(n2) O(n)P(Γ ∩ Γ′) = o(1),

by Theorem 19 and Proposition 31, and so
∥

∥

∥
L(S

(n)
2 ) − Poisson(µn)

∥

∥

∥
≤ 2(b1+

b2) = o(1). Now Poisson(µn) converges to Poisson(1/2) since µn → 1/2 by

Theorem 19. ¤

Recall (Proposition 4) that S
(n)
1 , the number of one-point (pure) ESS,

converges in distribution to Poisson(1) as n → ∞. While S
(n)
1 and S

(n)
2 are

not independent, we will now show that, nevertheless, their sum converges

to Poisson(3/2).

Theorem 33 Put S
(n)
≤2 := S

(n)
1 + S

(n)
2 . If F ∈ SE then

L(S
(n)
≤2 ) → Poisson(3/2) as n → ∞.

Proof. We apply again Theorem 8, this time to
∑

i Ci +
∑

i<j Dij. Let b′1

and b′2 correspond to S
(n)
2 =

∑

i<j Dij; in the proof of Theorem 2 above we

showed that b′1 = O(1/n) and b′2 = o(1). The additional dependencies now are

between a term Ci and a term Dij, with the same i and j 6= i. However, we

have E(CiDij) = P(Ci = Dij = 1) = 0, since Ci = 1 implies that Rii > Rij,
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whereas Dij = 1 implies that Rii < Rij (see Lemma 3). Thus b2 = b′2 = o(1),

and

b1 = b′1 +
∑

i

P(Ci = 1)2 + 2
∑

i

∑

j 6=i

P(Ci = 1)P(Dij = 1)

= O(1/n + n(1/n)2 + n2(1/n)(1/n2)) = O(1/n).

Theorem 8 yields
∥

∥

∥
L(S

(n)
≤2 ) − Poisson(1 + µn)

∥

∥

∥
≤ 2(b1 + b2) = o(1); and we

have 1 + µn → 3/2 by Theorem 19. ¤

Corollary 34 If F ∈ SE then the probability that there is an ESS with

support of size ≤ 2 converges to 1 − e−3/2 ≃ 0.78 as n → ∞.

6 Discussion

We conclude with a discussion of some of the related literature, together with

a number of comments, conjectures, and open problems.

(a) Vertices and Equilibria. The connection between Nash equilibria

and vertices of random polytopes was used by Bárány, Vempala and Vetta

(2005) to find Nash equilibria in random games. Concerning ESS, we empha-

size again that the number of vertices of a random polygon and the number

of 2-point ESS of a random game have different distributions; only their

expectations are related (by a factor of 8; see Proposition 9).

(b) The Class EF . The class of distributions with “Exponential and

Faster decreasing tails” for which Theorem 1 holds can clearly be taken to

be larger than that of Section 4. Indeed, since Theorem 13 holds for any

distribution, we can include in EF any F such that µn → ∞. Take, for

example, those distributions in Fisher (1969) for which the limit shape of

the convex hull is a strictly convex set; this implies that the number of

vertices, and thus µn, must go to infinity. By Theorem 1 there, this includes

distributions where, for some α > 1, the tail probability G = 1 − F satisfies

G−1(1/tc) ∼ c1/αG−1(1/t) as t → ∞ for each c ∈ (0, 1).
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(c) The Probability of Having an ESS. For distributions in EF ,

Theorem 1 (iii) implies that the probability that there is an ESS converges

to 1 as n increases. For distributions in SE , however, it is still unknown what

the limit of this probability is. Some preliminary informal analysis suggests

to us the following conjectures: if F ∈ SE then, as n → ∞,

• S
(n)
3 → Poisson(1/3);

• S
(n)
≤3 := S

(n)
1 + S

(n)
2 + S

(n)
3 → Poisson(1 + 1/2 + 1/3) = Poisson(11/6);

• S
(n)
ℓ → 0 for all ℓ ≥ 4;

• ∑n
ℓ=1 S

(n)
ℓ → Poisson(11/6);

• P(there is an ESS) → 1 − e−11/6 ≃ 0.84 < 1.

(The geometric objects corresponding to S
(n)
ℓ are now the (ℓ−1)-dimensional

faces of the convex hull of n random points in R
ℓ.)

(d) Threshold Phenomenon. Our distributions exhibit a “threshold”

phenomenon: either µn → ∞ or µn → 1/2. However, we believe that one

may construct distributions for which the sequence µn has other limit points,

or even oscillates wildly as n increases. Indeed, for each n, the number of

vertices, and thus µn, depends on the distribution F only through a certain

interval of its tail (in a neighborhood of G−1(1/n)). Therefore, one should

be able to “glue” various tails (of the EF or SE types) and get different

limit points. See Devroye (1991) for such oscillations in the case of radially

symmetric distributions.

(e) Other Distributions. It would be interesting to study additional

classes of distributions. For example, bounded-support distributions whose

tail G is not log-concave are not included in EF ; we conjecture that µn → ∞
in this case, though perhaps the convergence is at a slower rate than the log n

of the uniform distribution. Another question arises when the distributions

of the X-coordinates and of the Y -coordinates differ (but, say, they are both

in EF or both in SE); this concerns also the number of vertices when the

distribution is not symmetric (consider the different orthants).
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