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Abstract

We study allocations that maximize the power of tests of equality of two treatments having

binary outcomes. When a normal approximation applies, the asymptotic power is maximized by

minimizing the variance, leading to Neyman allocation that assigns observations in proportion to

the standard deviations. This allocation, which in general requires knowledge of the parameters

of the problem, is recommended in a large body of literature. Under contiguous alternatives

the normal approximation indeed applies, and in this case Neyman allocation reduces to a

balanced design. However, when studying the power under a non-contiguous alternative, a

large deviations approximation is needed, and Neyman allocation is no longer asymptotically

optimal. In the latter case, the optimal allocation depends on the parameters, but turns out

to be rather close to a balanced design. Thus, balanced design is a viable option for both

contiguous and non-contiguous alternatives. Finite sample studies show that balanced design

is indeed generally quite close to being optimal for power maximization. This is good news as

implementation of balanced design does not require knowledge of the parameters.

Keywords: Adaptive design, Asymptotic power, Bahadur efficiency, Neyman allocation, Pitman

efficiency.
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1 Introduction

Let A and B be two treatments with unknown probabilities of success, pA, pB ∈ (0, 1). A trial is

planned with nA > 0 and nB > 0 subjects assigned to treatment A and B, respectively, where

nA + nB = n. For each subject, a binary response, success or failure, is observed. Let νn = nA/n be

the proportion of subjects assigned to treatment A. We sometimes refer to νn as the allocation. Our

focus is on the first question appearing in Chapter 2 of Hu & Rosenberger (2006): “what allocation

maximizes power?” We study in detail the Wald test of the hypothesis pA = pB versus one or

two-sided alternatives; other tests will be discussed briefly.

For i = A,B let Yi(m) ∼ Bin(m, pi) be the number of successes if m patients are assigned

to treatment i and p̂i = p̂i(ni) = Yi(ni)/ni be the estimator of pi. The Neyman allocation rule,

ν = {pA(1 − pA)}1/2/[{pA(1 − pA)}1/2 + {pB(1 − pB)}1/2], minimizes the variance of the estima-

tor p̂B − p̂A, and is often used for power maximization; see, e.g., Brittain & Schlesselman (1982),

Rosenberger et al. (2001), Hu & Rosenberger (2003, 2006), Tymofyeyev et al. (2007), Zhu & Hu

(2010), Biswas et al. (2010) and Chambaz & van der Laan (2011).

Let W = n1/2(p̂B − p̂A)
/

V 1/2(p̂A, p̂B, νn) be the Wald statistic, where V (pA, pB, νn) = pA(1 −

pA)/νn + pB(1 − pB)/(1 − νn). The normal approximation argument for power calculation is:

PpA,pB
(W > z1−α) =

PpA,pB

[

n1/2{p̂B − p̂A − (pB − pA)}

V 1/2(pA, pB, νn)
>
z1−αV

1/2(p̂A, p̂B, νn) − n1/2(pB − pA)

V 1/2(pA, pB, νn)

]

≈ 1 − Φ

{

z1−αV
1/2(p̂A, p̂B, νn) − n1/2(pB − pA)

V 1/2(pA, pB, νn)

}

≈ 1 − Φ

{

z1−α −
n1/2(pB − pA)

V 1/2(pA, pB, νn)

}

, (1)

where Φ is the standard normal distribution function, and z1−α = Φ−1(1 − α). Expression (1) is

maximized when V (pA, pB, νn) is minimized, leading to Neyman allocation. This approximation is

valid under contiguity conditions such as n1/2(pB − pA)/V 1/2(pA, pB, νn) = O(1), i.e., when pB−pA ≈

n−1/2. However, for fixed pB − pA, the term n1/2(pB − pA)/V 1/2(pA, pB, νn) is of order n1/2, and the

expression Φ
{

z1−α − n1/2(pB − pA)/V 1/2(pA, pB, νn)
}

is of asymptotic order that is smaller than the

precision of the normal approximation. In this situation, a large deviations approximation is needed

for calculating the power and optimal allocation.
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For asymptotic power comparisons and evaluation of the relative asymptotic efficiency of certain

tests, two different criteria are often used, related to the notions of Pitman and Bahadur efficiency

(van der Vaart, 1998, Chapter 14). In our context, the Pitman approach looks at sequences of

alternative probabilities pk
B > pk

A that tend to a common limit at a suitable rate. The Bahadur

approach considers a fixed alternative pA and pB, and approximates the power using large deviations

theory.

We show in the next sections that the asymptotically optimal allocation ν∗ corresponding to

Pitman approach is always 1/2, while Bahadur optimal allocation depends on pA and pB and can be

calculated in a way described below. Interestingly, computation of the Bahadur criterion for different

values of pA and pB reveals that the optimal allocation is often close to 1/2, that is, a balanced design.

Finite sample calculations lead to similar conclusions, that a balanced design is generally adequate

with performance comparable to Neyman and Bahadur allocations. Balanced designs appear in a

large body of literature; see, for example, Kalish & Harrington (1988) and Begg & Kalish (1984),

where several estimation criteria and designs are considered, and balanced design is recommended

as being close to optimal under various criteria.

A balanced design has the advantage that it can be implemented without any knowledge of the

parameters of the problem. On the other hand, Neyman and Bahadur allocations require knowledge

of the parameters pA and pB, and this is one of the reasons for conducting adaptive designs, in which

information on these parameters is collected sequentially. There do exist other important reasons for

adaptive designs, not discussed in this paper, such as the quality of treatment during the experiment;

see, e.g., Rosenberger et al. (2001).

2 The Pitman approach

Pitman relative efficiency provides an asymptotic comparison of two families of tests applied to

contiguous alternatives, that is, any sequence of alternatives satisfying pA − pB → 0. Here we use

the same idea to compare different allocation fractions.

In order to be specific, we fix a sequence of statistical problems indexed by k, and test H0 :

pA = pB against the sequence of alternatives pk
A = p, pk

B = p + k−1/2, for some 0 < p < 1. The

general case, where k−1/2 is replaced by any positive sequence converging to zero, requires trivial
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modifications. Given an allocation sequence {νn}
∞
n=1, let nk = nk(p, α, β, {νn}) be the minimal

number of observations required for a one-sided Wald test at significance level α and power at least

β, for β > α, at the point pk
A, pk

B respectively, where the observations are allocated according to

{νn}. Set nk = ∞ if no finite number of observations satisfies these requirements. The next theorem

implies that balanced allocation is asymptotically optimal.

Theorem 1. Fix α < β and 0 < p < 1. Let {νn}
∞
n=1 be any sequence of allocations and let {ν̃n}

∞
n=1

be another sequence of allocations satisfying ν̃n → 1/2 as n→ ∞. Then

lim inf
k→∞

nk(p, α, β, {νn})

nk(p, α, β, {ν̃n})
≥ 1.

The theorem follows readily from the following lemma.

Lemma 1. I. If νn → ν as n→ ∞ for 0 < ν < 1 then

lim
k→∞

nk

k
= (z1−α − z1−β)2 p(1 − p)

ν(1 − ν)
.

II. If νn → 0 or νn → 1 as n → ∞ then limk→∞ nk/k = ∞, and for any sequence of allocations

{νn},

lim inf
k→∞

nk

k
≥ (z1−α − z1−β)2 p(1 − p)

1/4
.

Pitman optimality of balanced designs of Theorem 1 holds also for two-sided tests. In general,

a homoscedastic model leads to a balanced allocation if a normal approximation is suitable. The

binomial case is heteroscedastic since the variances of the estimators depend on pk
A and pk

B, but

when these parameters converge to the same p, the limiting model is homoscedastic, and the limiting

Neyman allocation is 1/2 regardless of p. In heteroscedastic models concerning the Normal distribu-

tion or similar cases where the variance is not a function of the mean, Neyman allocation is Pitman

optimal, and does not reduce to 1/2.

It can be argued that rather than considering sequences of statistical problems as above, one

should optimize for fixed pA and pB. The next section deals with this case.
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3 The Bahadur approach

3.1 Wald test

In this section, large deviations theory is used to approximate the power of the Wald test for fixed pA

and pB. This power increases exponentially to one with n at a rate that depends on the allocation

fraction ν. The aim is to find the optimal limiting allocation fraction ν∗ for which the rate is

maximized. The results apply also to selection problems: if treatment B is better than A when

pB > pA, and treatment B is selected if p̂B > p̂A, then the expression in (2) below with K = 0

represents the limit of the probability of incorrect selection.

We start with the following large deviations result. Recall that p̂A and p̂B depend on both n and

an allocation νn.

Theorem 2. Define

H(t, ν) = ν log(1 − pA + pAe
t/ν) + (1 − ν) log{1 − pB + pBe

−t/(1−ν)} and g(ν) = inf
t>0

H(t, ν).

I. If pB > pA and νn → ν as n→ ∞, where 0 < ν < 1, then for any K ≥ 0

lim
n→∞

1

n
log

[

1 − P

{

n1/2(p̂B − p̂A)

V 1/2(p̂A, p̂B, νn)
> K

}]

= g(ν). (2)

II. If pB 6= pA and νn → ν as n→ ∞, where 0 < ν < 1, then for any K > 0

lim
n→∞

1

n
log

[

1 − P

{

n1/2|p̂B − p̂A|

V 1/2(p̂A, p̂B, νn)
> K

}]

= g(ν). (3)

III. If νn → 0 or 1 as n→ ∞ then (2) and (3) hold with g(0) = g(1) = 0.

Since p̂B−p̂A is not an average of n independent identically distributed random variables, Theorem

2 does not follow directly from the Cramér–Chernoff theorem (van der Vaart, 1998, p. 205); proofs

are given in the Appendix.

By Theorem 2, ν∗ = ν∗(pA, pB) = arg minνg(ν) is the asymptotically optimal allocation. It is easy

to prove directly that g is strictly convex, and the minimum is attained uniquely. More generally,

it is readily shown by differentiation that if M(t) = E(etX) is a moment generating function, then

ν logM(t/ν) and therefore H are convex in ν.

5



Theorem 3 below shows that the finite-sample optimal allocations in the one and two-sample

tests converge to ν∗, and therefore it is reasonable to use ν∗ as an approximation to the finite-sample

optimal design for sufficiently large samples.

For each fixed n, let ν
∗(1)
n = ν

∗(1)
n (pA, pB, K) be the allocation that maximizes the power of the

one-sided test for a total sample size of n subjects, i.e,

ν∗(1)n = arg maxνn∈{1/n,...,(n−1)/n}P

{

n1/2(p̂B − p̂A)

V 1/2(p̂A, p̂B, νn)
> K

}

;

similarly, ν
∗(2)
n = ν

∗(2)
n (pA, pB, K) is the optimal allocation of the two-sided test.

Theorem 3. I. If pB > pA then for any K ≥ 0, ν
∗(1)
n → ν∗ as n→ ∞.

II. If pB 6= pA then for any K > 0, ν
∗(2)
n → ν∗ as n→ ∞.

Remark 1. Another formulation of these results, for the one-sided case, say, is the following: if

pB > pA then for any sequence νn and constant K ≥ 0,

lim inf
n→∞

1

n
log

[

1 − P

{

n1/2(p̂B − p̂A)

V 1/2(p̂A, p̂B, νn)
> K

}]

≥ g(ν∗),

with equality if and only if νn → ν∗ as n→ ∞.

3.2 Other tests

The power approximations of Section 3.1 apply to tests based on statistics of the form n1/2(p̂B −

p̂A)/Vn, where Vn is a bounded random variable that converges almost surely to a positive constant.

The chi-square test for equality of proportions and the score test are of this kind. Moreover, consider

a test statistic of the form n1/2s(p̂B, p̂A)/V
1/2
s (p̂A, p̂B, νn) that rejects pA = pB for large values,

where s(p̂B, p̂A) is a statistic that measures the discrepancy between the proportions and Vs/n is

an estimator of its variance under H0. Practical examples to which Theorem 4 below applies arise

when s(x, y) has the form f(x) − f(y) where f : (0, 1) 7→ R is an increasing function. The choices

f(x) = log(x) and f(x) = logit(x) yield tests based on the relative risk and odds ratio, and f(x) =

arcsin(x1/2) is sometimes used as a variance stabilizing transformation. Next we show that the results

of Theorems 2 and 3 hold for such statistics under certain conditions, with the same g(ν) and ν∗ as

above.
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Theorem 4. Assume that s(x, y) satisfies the following three conditions: (i) for all (x, y), s(x, y)

and x− y have the same sign; (ii) for all (x, y) there exists C0 > 0 such that

C0|x− y| ≤ |s(x, y)|; (4)

(iii) for any ε > 0 there exists C1(ε) > 0 such that for all (x, y) ∈ Gε

|x− y| ≥ C1(ε)|s(x, y)|, (5)

where Gε = {(x, y) : min(x, y) > ε and max(x, y) < 1 − ε}.

Assume that for any ε > 0 there exist C2(ε), C3(ε) > 0, such that for all n and all (x, y) ∈ Dε,

C2(ε) ≤ Vs
1/2(x, y, νn) ≤ C3(ε), (6)

where Dε = {(x, y) : max(x, y) > ε and min(x, y) < 1 − ε}.

Let νn → ν as n→ ∞, where 0 < ν < 1 and K > 0. Then for pB > pA,

lim
n→∞

1

n
log

[

1 − P

{

n1/2s(p̂B, p̂A)

V
1/2
s (p̂A, p̂B, νn)

> K

}]

= g(ν), (7)

and for pB 6= pA,

lim
n→∞

1

n
log

[

1 − P

{

n1/2|s(p̂A, p̂B)|

V
1/2
s (p̂A, p̂B, νn)

> K

}]

= g(ν). (8)

Conditions (i)-(iii) on s(x, y) hold in the examples preceding Theorem 4. For the case where

s(x, y) = log(x)− log(y), Conditions (4) and (5) are satisfied with C0 = 1 and C1(ε) = ε. Condition

(6) is more involved. It holds, for this case when Vs(p̂A, p̂B, νn) = (1 − p̂)/{νn(1 − νn)p̂}, where

p̂ = νnp̂A + (1 − νn)p̂B is the pooled estimator. However, Condition (6) can fail when using an

unpooled-type estimator, and then g(ν) is not the correct rate for certain values of pA, pB, ν. The

logit case can be verified in the same way; the arcsin case is easier since the variance estimator is

constant.

4 Numerical illustration

Somewhat tedious calculations show that the optimal allocation is

ν∗ = log

{

pB log(pB

pA
)

(1 − pB) log( 1−pA

1−pB
)

}

/

log

{

pB(1 − pA)

pA(1 − pB)

}

. (9)
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Table 1: Comparison of Bahadur and Neyman allocations for a hypothesis testing problem.

pA pB Bahadur Neyman

0·5 0·65 0·504 0·512

0·5 0·8 0·518 0·556

0·5 0·9 0·542 0·625

0·7 0·75 0·505 0·514

0·7 0·85 0·521 0·562

0·7 0·9 0·535 0·604

0·85 0·95 0·541 0·621

Table 1 compares the asymptotic Bahadur optimal allocation, ν∗, and Neyman allocation for several

pairs (pA, pB). These and further systematic numerical calculations indicate that Bahadur allocation

is closer to 1/2 than Neyman allocation and that it is quite close to 1/2 unless pA or pB are extreme,

e.g., pA = 0·85, pB = 0·95.

Figure 1 compares the exact power under Bahadur, balanced, and Neyman allocations for the

two-sided Wald test with critical value K = 2 corresponding to α ≈ 0·05. For large power Bahadur

allocation is better for almost all parameters, and balanced allocation is usually better than Neyman.

For power ≈ 0·75 the picture is more ambiguous; it seems that in most cases Neyman allocation

outperforms a balanced design but the differences are usually minor unless pA is large. In the

latter case, Bahadur allocation is comparable to Neyman allocation for moderate power and better

for large power. Overall, the differences in power among the three allocations are relatively small.

These findings justify the use of balanced allocation rather than more complex designs unless the

probabilities are expected to be extreme, and then Bahadur allocation should be considered. Recall

that implementation of Bahadur, as well as Neyman allocation, requires some prior knowledge of the

parameters, or adaptive allocation.
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5 A dose finding problem

Dose finding studies are conducted as part of phase I clinical trials in order to find the maximal

tolerated dose among a finite, usually very small, number of potential doses. The maximal tolerated

dose is defined as the dose with the probability of toxic reaction closest to a pre-specified probability

p0. Recently, we showed that under certain natural assumptions, in order to estimate the desired dose

consistently, one can consider experiments that eventually concentrate on two doses (Azriel et al.,

2011). Thus, asymptotically, the allocation problem in these studies reduces to the problem of finding

which of two probabilities of toxic reaction pB > pA, corresponding to the doses dB > dA, is closer

to p0.

Let p̂A and p̂B denote the proportions of subjects that experienced toxic reactions in doses dA and

dB based on a sample of size n and an allocation νn. For large n, p̂B > p̂A, and a natural estimator

for the maximal tolerated dose is D̂ = dA if (p̂A + p̂B)/2 > p0 and D̂ = dB otherwise. Similar

to the problems discussed in previous sections, an optimal design is an allocation rule of n νn and

n(1− νn) individuals to doses dA and dB, respectively, such that P(D̂ = dA) = P{(p̂A + p̂B)/2 > p0}

is maximized if dA is indeed the maximal tolerated dose.

For the current problem, the Pitman approach is translated to a comparison of designs under

sequences of parameters pk
A, pk

B and pk
0 such that |(pk

A + pk
B)/2− pk

0| → 0 and pk
A → pA, pk

B → pB; for

convenience we specify |(pk
A + pk

B)/2− pk
0| = k−1/2. Let 0 < ν < 1 and let nk = nk(p

k
A, p

k
B, p

k
0, β, {νn})

be the minimal number of observations required such that the probability of correct estimation of

the maximal tolerated dose is larger than β for the given parameters when the allocation for dose dA

is n νn. As in Lemma 1, it can be shown that if νn → ν as n→ ∞ then

lim
k→∞

nk

k
=
z2

β

4

{

pA(1 − pA)

ν
+
pB(1 − pB)

1 − ν

}

.

Thus, the asymptotically optimal design uses Neyman allocation, as it minimizes the limit of nk/k.

Unlike the previous problem, now pk
A and pk

B do not converge to the same value under the Pitman

approach as defined here, and Neyman allocation does not reduce to a balanced design.

For the case of fixed pA, pB, and p0, assume that pB is nearer than pA to p0, and consider the

problem of minimizing the probability of selecting dA. The following theorem, analogous to Theorems

2 and 3, gives the asymptotic optimal allocation rule in the current setting.

9



Table 2: Comparison of Bahadur and Neyman allocations for a dose finding problem.

pA pB p0 Bahadur Neyman

0·10 0·30 0·28 0·420 0·396

0·10 0·40 0·26 0·384 0·380

0·10 0·40 0·30 0·400 0·380

0·10 0·40 0·35 0·417 0·380

0·20 0·35 0·30 0·460 0·456

0·20 0·40 0·33 0·455 0·449

0·22 0·33 0·30 0·471 0·468

0·25 0·35 0·33 0·479 0·476

Theorem 5. If νn → ν as n→ ∞, and 0 < ν < 1, then,

lim
n→∞

1

n
log P{(p̂A + p̂B)/2 ≥ p0} = ψ(ν),

where ψ(ν) = inft{ν log(1 − pA + pAe
t/ν) + (1 − ν) log(1 − pB + pBe

t/(1−ν)) − 2p0t}.

Moreover, let ν∗ = arg minψ(ν), and let ν∗n be the value of the allocation minimizing P{(p̂A +

p̂B)/2 ≥ p0} for a given n. Then, ν∗n → ν∗ as n→ ∞.

We calculated ν∗ for several values of pA, pB, and p0. We found that ν∗ is often close to Neyman

allocation, see Table 2. Both Bahadur and Pitman criteria yield quite similar results in this problem.

Allocating subjects according to either improves the probability of correct estimation compared

to balanced allocation for very large samples, as the optimal allocations according to Bahadur or

Pitman are far from 1/2. Calculations not presented here show that for practical sample sizes for

this problem, all three methods differ negligibly.

6 A general response

In previous sections, we dealt with the very important, though specific, case of a binary response.

In this section, we consider the more general case where the response of an individual treated in

group i = A,B follows a distribution Fi having moment generating function Mi(t), and find the
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optimal allocation according to the Bahadur approach. Let Ȳi(m) denote the average of m responses

of subjects having treatment i. Treatment B is considered better if
∫

xFB(dx) >
∫

xFA(dx), and

assume that the treatment with the largest average response is declared better. The following

theorem, which can be proved in a similar way as Theorems 2 and 3, provides the Bahadur optimal

allocation rule for correct selection.

Theorem 6. Assume
∫

xFB(dx) >
∫

xFA(dx), and νn → ν as n→ ∞ for 0 < ν < 1. Then,

lim
n→∞

1

n
log P

[

ȲA(n νn) ≥ ȲB{n(1 − νn)}
]

= h(ν),

where

h(ν) = inf
t>0

(

ν log{MA(t/ν)} + (1 − ν) log[MB{−t/(1 − ν)}]
)

. (10)

Moreover, let ν∗n be the value of the allocation minimizing P
[

ȲA(n νn) ≥ ȲB{n(1 − νn)}
]

, and ν∗ =

arg minν h(ν). Then ν∗n → ν∗ as n→ ∞.

When the responses in the two treatments are normally distributed, the Bahadur allocation agrees

with Neyman allocation. This can be easily verified by using the moment generating functions of

Normal variables in (10). However, for other distributions, the allocations may differ considerably.

Table 3 compares the Bahadur and Neyman allocations for different Poisson and Gamma distribu-

tions. As in the Binomial case, the Bahadur allocation is closer to 1/2 than to Neyman allocation.

Further study is required to determine if the improvement over balanced allocation, in terms of

power or probability of correct selection, is significant. Anyway, optimality of Neyman allocation for

non-normal distributions should be questioned, and may hold only under restrictive conditions.
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Table 3: Comparison of Bahadur and Neyman allocations for maximizing the probability of correct

selection for different distributions.

FA FB Bahadur Neyman

Poisson(1) Poisson(2) 0·471 0·414

Poisson(2) Poisson(3) 0·483 0·449

Poisson(3) Poisson(4) 0·488 0·464

Poisson(4) Poisson(5) 0·491 0·472

Gamma(0·5,0·5) Gamma(0·5,0·6) 0·515 0·590

Gamma(0·5,0·5) Gamma(0·5,0·7) 0·528 0·662

Gamma(0·5,0·5) Gamma(0·5,0·8) 0·539 0·719

Gamma(0·5,0·5) Gamma(0·5,0·9) 0·549 0·764

Appendix

Proofs

Proof of Lemma 1 part I. The proof uses arguments as in Theorem 14.19 in van der Vaart (1998),

which is stated in terms of relative efficiency rather than allocation.

First note that limk→∞ nk = ∞; otherwise, there exists a bounded subsequence of nk on which

the power converges to a value ≤ α, since as k → ∞ we have pk
A − pk

B → 0. This contradicts the

definition of nk and the assumption that α < β.

By the Berry–Esseen theorem

n
1/2
k (p̂k

A − p)

{p(1−p)
νnk

}1/2
→N(0, 1) and

n
1/2
k {p̂k

B − (p+ k−1/2)}
[

(p+k−1/2){1−(p+k−1/2)}
1−νnk

]1/2
→N(0, 1)

in distribution as k → ∞, since the third moment is bounded. Here p̂k
A = p̂A(νnk

nk) = Y k
A (νnk

nk)/(νnk
nk),

where Y k
A (m) ∼ Bin(m, pk

A) is the sum of m independent binary responses with probability pk
A, and

p̂k
B is defined analogously.
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Now, if lim νnk
= ν as k → ∞ we have

Uk =
nk

1/2(p̂k
B − p̂k

A) − (nk

k
)1/2

{

p(1−p)
ν(1−ν)

}1/2
→N(0, 1) (11)

in distribution as k → ∞. Since limk→∞ nk = ∞, the critical value for the level α one-sided Wald

test is z1−α + o(1); then

Ppk
A,pk

B
{W > z1−α + o(1)} = P

{

n
1/2
k (p̂k

B − p̂k
A)

V 1/2(p̂k
A, p̂

k
B, νnk

)
> z1−α + o(1)

}

= P



Uk > {z1−α + o(1)}

{

V (p̂k
A, p̂

k
B, νnk

)
p(1−p)
ν(1−ν)

}1/2

−

{

nk/k
p(1−p)
ν(1−ν)

}1/2


 .

Because,
V (p̂k

A, p̂
k
B, νnk

)
p(1−p)
ν(1−ν)

→1

in probability as k → ∞, and since the limiting power is exactly β we have due to (11)

z1−α −

{

limk→∞ nk/k
p(1−p)
ν(1−ν)

}1/2

= z1−β;

hence part I holds.

Proof of part II. We only prove the case νn → 0, as νn → 1 is similar. If nνn is bounded, then the

power converges to α and nk = ∞ for large k.

Assume now that n νn → ∞ as n → ∞; by the Berry–Esseen theorem and Slutsky’s Lemma we

have

(nk νnk
)1/2(p̂k

A − p)→N{0, p(1 − p)} and (nk νnk
)1/2{p̂k

B − (p+ k−1/2)}→0

in distribution as k → ∞. This implies that

(nk νnk
)1/2(p̂k

B − p̂k
A) −

(nk νnk

k

)1/2

→N{0, p(1 − p)}

in distribution as k → ∞, and by arguments as in the first part we have

lim
k→∞

nk νnk

k
= (z1−α − z1−β)2 p(1 − p).

Because νnk
→ 0, limk→∞

nk

k
= ∞.

13



For the second part of II notice that there exists a subsequence {k′} such that limk′→∞ νnk′
= ν ′

for some ν ′ and

lim inf
k→∞

nk

k
= lim

k′→∞

nk′

k′
= (z1−α − z1−β)2 p(1 − p)

ν ′(1 − ν ′)
,

where the second equality follows by part I. If ν ′(1 − ν ′) = 0 we interpret the limit as ∞; since

ν ′(1 − ν ′) ≤ 1
4
, the second part of II follows.

Proof of Theorem 2 parts I and II. The proof follows known large deviations ideas, but certain

variations are needed for the present non-standard case. Notice that the probability in (2) is larger

than the probability of and (3). Therefore, it is enough to show that for any K ≥ 0

lim sup
n→∞

1

n
log

[

1 − P

{

n1/2(p̂B − p̂A)

V 1/2(p̂A, p̂B, νn)
> K

}]

≤ g(ν), (12)

and for any K > 0

lim inf
n→∞

1

n
log

[

1 − P

{

n1/2|p̂B − p̂A|

V 1/2(p̂A, p̂B, νn)
> K

}]

≥ g(ν).

Instead of the latter inequality we prove a stronger result, namely

lim inf
n→∞

1

n
log P

{

0 ≤
n1/2(p̂A − p̂B)

V 1/2(p̂A, p̂B, νn)
≤ K ′

}

≥ g(ν), (13)

for all K ′ > 0, which is also used to show that g(ν) is a lower bound for the case of K = 0 in (2),

when K ′ = ∞.

Starting with (12), since V 1/2(p̂A, p̂B, νn) is bounded, for any ε > 0 and large enough n,

1 − P

{

n1/2(p̂B − p̂A)

V 1/2(p̂A, p̂B, νn)
> K

}

= P
{

p̂A − p̂B ≥ −n−1/2KV 1/2(p̂A, p̂B, νn)
}

≤ P (p̂A − p̂B ≥ −ε) .

Standard large deviations arguments for the upper bound (van der Vaart, 1998, p. 205) yield

lim sup
n→∞

1

n
log P

{

p̂A − p̂B ≥ −n−1/2KV 1/2(p̂A, p̂B, νn)
}

≤ gε(ν),

where gε(ν) = inft>0{εt+H(t, ν)}. As this is true for any ε > 0, and by the continuity of gε(ν) in ε

(12) is verified.

To prove (13), assume without loss of generality that pB > pA; define

Tn = p̂A(n νn) − p̂B{n(1 − νn)} =
YA(n νn)

n νn

−
YB{n(1 − νn)}

n(1 − νn)
.

14



The cumulant generating function of Tn is

logE(etTn) = n νn log{1−pA+pAe
t/(n νn)}+n(1−νn) log[1−pB +pBe

−t/{n(1−νn)}] = nH(
t

n
, νn). (14)

We have ∂/∂tH(0, νn) = E(Tn) = pA − pB < 0, by (14). Also, H(0, νn) = 0 and H(·, νn) is strictly

convex being the log of a moment generating function, up to a constant. Since P(Tn > 0) > 0 it

follows that H(t, νn) → ∞ as t → ∞ and therefore, arg mint>0H(t, νn) = t
(n)
0 is a unique interior

point and ∂H(t
(n)
0 , νn)/∂t = 0. Let t0 be the minimizer of H(·, ν); we show that t

(n)
0 → t0. If

there is a subsequence {t
(nk)
0 } that converges to t1 ≤ ∞ then H{t

(nk)
0 , νnk

} ≤ H(t0, νnk
) as t

(nk)
0 is

the minimizer, and continuity of H implies H(t1, ν) ≤ H(t0, ν). Now t1 = t0 by uniqueness of the

minimizer.

Let Zn be the Cramér transform of Tn, that is, P(Zn = z) = e−ng(νn)ezt
(n)
0 nP(Tn = z). Now,

P

{

0 ≤
n1/2(p̂A − p̂B)

V 1/2(p̂A, p̂B, νn)
≤ K

}

= P
{

0 ≤ Tn ≤ n−1/2KV 1/2(p̂A, p̂B, νn)
}

= E
[

I{0 ≤ Zn ≤ n−1/2KV 1/2(p̂A, p̂B, νn)}e−Znt
(n)
0 n
]

eng(νn)

≥ P
{

0 ≤ Zn ≤ n−1/2KV 1/2(p̂A, p̂B, νn)
}

e−n1/2K1/2{1/νn+1/(1−νn)}1/2t
(n)
0 eng(νn),

where the last inequality uses the upper bound on Zn in the indicator function, and the upper bound

on the variance obtained by replacing p̂i(1 − p̂i) by 1/4 for i = A,B. It follows that

g(νn) −
1

n
log P

{

0 ≤
n1/2(p̂A − p̂B)

V 1/2(p̂A, p̂B, νn)
≤ K

}

≤
− log P

{

0 ≤ Zn ≤ n−1/2KV 1/2(p̂A, p̂B, νn)
}

n
+
K 1

2
( 1

νn
+ 1

1−νn
)1/2t

(n)
0

n1/2
.

As t
(n)
0 → t0 <∞, and νn → ν ∈ (0, 1), the second term on the right-hand side vanishes as n→ ∞; for

the first, we claim that n1/2Zn is asymptotically N(0, σ2), where σ2 = ∂2H(t0, ν)/∂t
2. Consequently

P
{

0 ≤ Zn ≤ n−1/2KV 1/2(p̂A, p̂B, νn)
}

→ C for some constant C > 0, and (13) follows.

It remains to prove the asymptotic normality of n1/2Zn, which we do by considering its moment

generating function. We have

logE(esn1/2Zn) = −ng(νn) + logE
{

eTn(sn1/2+t
(n)
0 n)

}

= n
{

−H(t
(n)
0 , νn) +H(t

(n)
0 + sn−1/2, νn)

}

,

15



where the last equality follows from (14) and the identity g(νn) = H(t
(n)
0 , νn). By Taylor expansion

of H(·, νn) around t
(n)
0 we obtain

H(t
(n)
0 + sn−1/2, νn) −H(t

(n)
0 , νn) =

1

2

s2

n

∂2

∂t2
H(t

(n)
0 , νn) +O(n−3/2)

since the first derivative is 0, and therefore, as n→ ∞,

logE
(

esn1/2Zn

)

→
s2

2

∂2

∂t2
H(t0, ν) =

s2σ2

2
;

thus n1/2Zn is asymptotically N(0, σ2), and (13) is established.

Proof of part III. First note that (12) clearly holds with g(ν) = 0 as log{1 − P(·)} ≤ 0, so it

remains to prove (13) for g(ν) = 0, that is, for any K > 0

lim inf
n→∞

1

n
log P

{

0 ≤
n1/2(p̂A − p̂B)

V 1/2(p̂A, p̂B, νn)
≤ K

}

≥ 0.

We only prove the case νn → 0, as νn → 1 is similar. If n νn 6→ ∞ then p̂A is inconsistent and the

limit is easily seen to be zero. Assume now that n νn → ∞; since V (p̂A, p̂B, νn) ≥ p̂A(1 − p̂A)/νn we

have

P

[

0 ≤
n1/2(p̂A − p̂B)

V 1/2(p̂A, p̂B, νn)
≤ K

]

≥ P

[

0 ≤ p̂A − p̂B ≤
K{p̂A(1 − p̂A)}1/2

(n νn)1/2

]

.

Now, for ε = K{pA(1 − pA)}1/2/2,

P

[

0 ≤ p̂A − p̂B ≤
K{p̂A(1 − p̂A)}1/2

(n νn)1/2

]

≥ P

[

{0 ≤ p̂A − p̂B ≤
K{p̂A(1 − p̂A)}1/2

(n νn)1/2
} ∩ {p̂B ∈ (pB −

ε

(n νn)1/2
, pB)}

]

≥ P

[

pB ≤ p̂A ≤ pB +
K{p̂A(1 − p̂A)}1/2 − ε

(n νn)1/2

]

P

[

p̂B ∈ (pB −
ε

(n νn)1/2
, pB)

]

.

Taking logs and limits as n→ ∞ in the above product, we have to consider two parts. For the first,

we have by Lemma 2 below

lim
n→∞

1

n νn

log P

[

pB ≤ p̂A ≤ pB +
K{p̂A(1 − p̂A)}1/2 − ε

(n νn)1/2

]

= C,

for some constant C, and since νn → 0,

lim
n→∞

1

n
log P

[

pB ≤ p̂A ≤ pB +
K{p̂A(1 − p̂A)}1/2 − ε

(n νn)1/2

]

= 0.
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The limit of the log of the second part divided by n is 0, since by the Central Limit Theorem

P

{

p̂B ∈ (pB −
ε

(n νn)1/2
, pB)

}

≥ P
[

−ε ≤ {n(1 − νn)}1/2(p̂B − pB) ≤ 0
]

→ C ′ > 0.

Lemma 2. Let V1, V2, . . . be independent identically distributed with E(V1) < 0 and moment gener-

ation function M(t), and let Xn be uniformly bounded random variables that satisfy Xn→K almost

surely for a constant K > 0; then for V̄n =
∑n

i=1 Vi/n,

lim
n→∞

1

n
log P

(

0 ≤ V̄n ≤
Xn

n1/2

)

= inf
t>0

{logM(t)} .

Proof of Lemma 2. The lemma follows by the same argument as in van der Vaart (1998), p. 206,

replacing ε in that proof by K̃n−1/2, where K̃ is the upper bound of Xn; see also the proof of parts

I and II of Theorem 2, where a similar argument is used.

Proof of Theorem 3. We will prove part I; the proof of Part II is similar. Set ν ′n = ⌊n ν∗⌋/n,

where ⌊·⌋ is the floor function; we have ν ′n → ν∗ as n→ ∞. Theorem 2 implies that

lim
n→∞

1

n
log

{

1 − P

(

n1/2[p̂B{n(1 − ν ′n)} − p̂A(n ν ′n)]

V 1/2(p̂A, p̂B, ν ′n)
> K

)}

= g(ν∗). (15)

If there exists a subsequence {nk} such that limk→∞ν
∗(1)
nk = ν̃ 6= ν∗ then

lim
k→∞

1

nk

log

{

1 − P

(

n
1/2
k [p̂B{nk(1 − ν

∗(1)
nk )} − p̂A(nk ν

∗(1)
nk )]

V 1/2(p̂A, p̂B, ν
∗(1)
nk )

> K

)}

= g(ν̃) > g(ν∗). (16)

It follows that for large enough nk the probability appearing in (16) is smaller than that of (15), in

contradiction to the definition of ν
∗(1)
nk as the maximizer of this probability for n = nk.

Proof of Theorem 4. Assume without loss of generality pB > pA. Using P(p̂A − p̂B ≥ 0) ≥

P(p̂B = 0) = (1 − pB)(1−νn)n we obtain by (2) with K = 0, g(ν) = limn→∞ n−1 log P(p̂A − p̂B ≥ 0) ≥

(1 − ν) log(1 − pB). Similarly P(p̂A − p̂B ≥ 0) ≥ P(p̂A = 1) yields g(ν) ≥ ν log(pA). A standard

calculation shows that as ε decreases to 0, the rates of the probabilities P(p̂B ≤ ε) and P(p̂A ≥ 1− ε)

are (1− ν) log(1− pB) and ν log(pA), respectively, and as just noted both are bounded by g(ν). For

ε < 1/2,

P{(p̂A, p̂B) /∈ Dε} = P(p̂A ≤ ε)P(p̂B ≤ ε) + P(p̂A ≥ 1 − ε)P(p̂B ≥ 1 − ε)

≤ 2 max{P(p̂B ≤ ε),P(p̂A ≥ 1 − ε)}max{P(p̂A ≤ ε),P(p̂B ≥ 1 − ε)}.
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Therefore, by the above discussion of the rates of expressions of this type,

lim
ε→0

lim
n→∞

1

n
log P{(p̂A, p̂B) /∈ Dε} ≤ g(ν) + max{ν log(1 − pA), (1 − ν) log(pB)} < g(ν).

Hence, there exists small enough ε such that for D = Dε,

lim
n→∞

1

n
log P{(p̂A, p̂B) /∈ D} < g(ν). (17)

As in the proof of Theorem 2, it suffices to prove that g(ν) is an upper bound for the limit in (7)

and a lower bound for the limit in (8). For the upper bound we have

1 − P

{

n1/2s(p̂B, p̂A)

V
1/2
s (p̂A, p̂B, νn)

> K

}

= P
{

s(p̂B, p̂A) ≤ n−1/2KV 1/2
s (p̂A, p̂B, νn)

}

= P
[

{s(p̂B, p̂A) ≤ n−1/2KV 1/2
s (p̂A, p̂B, νn)} ∩ {(p̂A, p̂B) ∈ D}

]

+ P
[

{s(p̂B, p̂A) ≤ n−1/2KV 1/2
s (p̂A, p̂B, νn)} ∩ {(p̂A, p̂B) /∈ D}

]

≤ P{s(p̂B, p̂A) ≤ n−1/2KC3(ε)} + P{(p̂A, p̂B) /∈ D}

≤ P
{

p̂B − p̂A ≤ n−1/2KC3(ε)/C0

}

+ P{(p̂A, p̂B) /∈ D};

the first inequality follows from (6) and the second from (4). By (17), the second summand decreases

exponentially faster than the first, which in turn has the rate g(ν) by (2), and the upper bound is

established.

For the lower bound, we have for large enough n

1 − P

{

n1/2|s(p̂A, p̂B)|

V
1/2
s (p̂A, p̂B, νn)

> K

}

≥ P
[

{|s(p̂A, p̂B)| ≤ n−1/2KV 1/2
s (p̂A, p̂B, νn)} ∩ {(p̂A, p̂B) ∈ D}

]

≥ P
[

{|s(p̂A, p̂B)| ≤ n−1/2KC2(ε)} ∩ {(p̂A, p̂B) ∈ D} ∩ {(p̂A, p̂B) ∈ Gε/2}
]

≥ P
[

{|p̂A − p̂B| ≤ n−1/2KC2(ε)C1(ε/2)} ∩ {(p̂A, p̂B) ∈ D} ∩ {(p̂A, p̂B) ∈ Gε/2}
]

= P
[

{|p̂A − p̂B| ≤ n−1/2KC2(ε)C1(ε/2)} ∩ {(p̂A, p̂B) ∈ D}
]

≥ P
{

|p̂A − p̂B| ≤ n−1/2KC2(ε)C1(ε/2)
}

− P {(p̂A, p̂B) /∈ D} ,

where the first inequality is trivial: we just intersected with an additional set. The second inequality

follows from (6) which hold on D and another intersection. The third inequality is due to (5) on

Gε/2. Next, the equality is true since for large enough n, p̂A and p̂B are arbitrarily close and being

in D implies that they are in Gε/2. The last inequality is obvious. The rate of the first summand in

18



the latter expression is g(ν) by (3) while the second summand decreases exponentially faster due to

(17), and therefore can be ignored.

Being very similar to the proofs of Theorems 2 and 3, the proofs of Theorems 5 and 6 are omitted.
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Figure 1: Comparison of the power of the two-sided Wald test with critical value K = 2 for Neyman

(dotted), balanced (solid) and Bahadur allocation (dashed), where pB = pA+0·15. For each pair

(pA, pB) the sample size is determined so that the power under balanced design is closest to the target

power. The sample sizes range from 103 (power=0·75, pA =0·82) to 563 (power=0·99, pA =0·7).
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