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Abstract 

Let X r, . . . ,X, be dependent random variables, and set 2, = E{Cy= 1 Xi}, and 0’ = Var{C;, 1 Xi}. In most of the 

applications of Stein’s method for normal approximations, the error rate 1 P(( IF= 1 Xi - 1)/a < w) - Q(w) 1 is of the 
order of g- ‘P This rate was improved by Stein (1986) and others in some special cases. In this paper it is shown that for . 
certain bounded random variables, a simple refinement of error-term calculations in Stein’s method leads to improved 
rates. 
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1. Introduction 

Let Xi, . . . , X, be dependent random variables, W = Cf= 1 Xi, E W = A, and assume Var W = g2 
is of the order n. When Stein’s method for normal approximation applies, it leads to 
IEh((W - A)/o) - Jhd@l d Cn- 1/2 for any h having a bounded derivative. However, in many , 

applications in statistics or combinatorics one would like to bound the expression 
lP((W - A)/(T < w) - @(w)I. This requires an approximation which in Stein’s formulations often 
leads to lP((W -2)/o < w) - G(w)1 d Cn-“4, and clearly, the rate n-li4 (or o-‘/~) does not 
appear optimal. In certain cases it is possible to refine the calculation of the convergence rate and 
obtain the rate of ,-ri2 (6 ‘), or the rate n- (1i2-s) for a small 6 > 0 in other cases. This paper 
demonstrates this refinement, which is achieved at the expense of assuming that the random 
variables are bounded. The present approach can also be attempted under assumptions on 
moments. We note that in many applications the Xi’s are indicators of certain events so they are 
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obviously bounded. See, for example, [l-3], and references therein, and the example below. We 
first quote the following result, which is among the most useful formulations of Stein’s Central 
Limit Theorems for dependent random variables. 

Theorem 1.1 (Stein [6, p. 1 lo]). Let X1, . . . ,X,, be random variables, and let Si be subsets of { 1, . . . , n> 
such that 

EXi = 0, EXf < 00, i = l,..., n, E i Xi 1 Xj = 1. 
i=l jest 

Let W = cl= 1 Xi. Then for any w E R, 

I’(W ~ W) - PI ~ 2JE{C1= 1 Cj,s,(XiXj - EXiXj)}* 

+ @E i IE[Xi(Xj:j$Si]I + 23’4~-1’4JECfz1 IXiI(Cj,s,Xj)*. 
i=l 

(1) 

In many applications we have Xi independent of {Xj:j$Si}, so that Si can be viewed as 
a “dependence neighborhood”. In this case the second term on the right-hand side of (1) vanishes. If 
in addition J&J < m where m is some constant, we say that the Xi’s exhibit m-dependence. Theorems 
of the above kind have been successfully applied to combinatorial constructions (e.g., various 
statistics related to graphs) where ISi1 are slowly growing with n, and where we do not have 
exchangeability or some other simple structure, and in cases where abstract mixing conditions are 
hard to study, and do not appear natural. 

In order to understand the convergence rate implied by Theorem 1.1, let us consider the case that 
Y i, . . . , Y,, are i.i.d. random variables, E Yi = 0, E Y f = 1, and Var Y” < co. Then Theorem 1.1 
applies with Xi = Yi/‘J’E, and Si = {i}. The first term on the right-hand side of (1) is now easily seen 
to be of order n- “* The second term vanishes by the independence of the Xi’s. However, the last . 

term on the right-hand side of (1) equals 23/4n:- 1’4Jmn-1i4. Thus (1) yields the rate n- ‘14. 
However, it is well known that in this i.i.d. case the rate should scale like n- ‘I*. It can be shown (see 
example below) that a similar problem may arise in the case of dependent variables. Stein [6] 
obtained the rate of n- ‘I2 using his method for i.i.d. random variables; however, the main interest in 
Stein’s method is in the case of dependent variables. The rate n- 1’2 was obtained in [S] for 
indicator random variables (which are obviously bounded) under very special dependence condi- 
tions. Complex abstract conditions for this rate are discussed in [4]. 

In Section 2 we present and prove versions of Theorem 1.1, which for bounded random variables 
may lead to better approximation rates. A similar approach (under suitable conditions) serves to 
sharpen other results in [2,6], but this will be done elsewhere. 

2. Results and proofs 

In certain applications involving bounded dependent (as well as i.i.d.) random variables (see 
examples below) the following result will produce the desirable ne1j2 approximation rate. 
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Note that the constants B, D, and cr defined in the following two theorems are allowed to depend 
on n. 

Theorem 2.1. Let Y1, . . . , Y,, be random variables such that 

EYi=O, IYil<B a.s., i=l,..., n. 

Let Si be subsets of { 1,. . . , PZ} and set 

D = max ISil, g2 = E i Yi C Yj, Xi = Yi/~, i = 1, . . . ,n, and 
1 <i<n 

W = ,f Xi. 
i=l jE& i=l 

Then for any w E R, 

lP(W < w) - Q(w)/ 

G4JE{~~=lCj,s,(XiXj - EXiXj)j2 + $GE i IE[XilXj:j~Si]l 
i=l 

+ 2JECCr=l IXiI(Cj~S,Xj)212{J1 + EC~=lCj~s,XjE[XiIXj:j~~i] + 5fi/‘4} 
1DB 4n 

+ 
J- 

+ 
4- 27.C rJ3 

D2B3 
. 27c fJ 

(2) 

The bound in Theorem 2.1 is so written for comparison with that in Theorem 1.1. It is easy to 
verify that for bounded independent random variables the bound of Theorem 2.1 has the correct 
order of n- ‘I2 For applications involving dependent Xi’s, where we have Xi independent of 
{Xj: j$Si}, the following formulation is very convenient. We need the following definition. 

Definition. Let {Xi: i E V) be a collection of random variables. The graph 99 = (9’“, 6’) where 
v and 8 denote the vertex set and the edge set, respectively, is said to be a dependency graph for the 
collection if for any pair of disjoint subsets of v, A 1 and A2 such that no edge in & has one endpoint 
in Al and the other in A2, the sets of random variables {Xi: i E A,} and {Xi: i E A,} are independent. 

The degree d(v) of a vertex v in a graph 9 = (v, &) is the number of edges connected to this 
vertex. The maximal degree of a graph is max,,, d(v). 

Theorem2.2. Let Y1, . . . , Y, be random variables having a dependency graph whose maximal degree is 
strictly less than D, satisfying I Yi - EYil < B a.s., i = 1, . . . , n, EC: Yi = /z and VarCf Yi = cr2 > 0. 
Then 

..)_,,,;)~~~{&DB+16($*D3~*B2+10(~)D2B3}. (3) 

Note that when D and B are bounded or are negligible compared to 0, and G* is of the order of n, 
(3) yields a rate of l/o, or equivalently n- I” In particular we obtain this rate in the case of . 

uniformly bounded independent random variables. 
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Theorem 2.2 resembles Corollary 2 in [l]. Stein’s Theorem 1.1 was used directly to derive 
Corollary 2 in Cl], and yielded an approximation rate which is essentially the square root of the 
rate obtained now in Theorem 2.2. 

Example. The number of local maxima in a graph whose vertices are randomly ranked was studied 
in [1,2], where the approximation rate of o-li2 was obtained. As an illustration of the possible 
improvement consider the following simple application of Theorem 2.2. See [1,2] for further 
details. Assign a random ranking to the vertices of the hypercube (0, l}“, set yt = 2N, and let Yip 
i = l,... ,IZ, denote the indicator of the event that the ith vertex of the hypercube is a local 
maximum, that is, its ranking is higher than that of the neighboring vertices in the hypercube. Thus, 
cl=l Yi counts the number of local maxima on the graph. It can be shown that 
g2 = VarCl=, Yi = 2N-1 (N - l)/(N + 1)2. Also, it is not hard to see that Yi depends only on Yis 
belonging to vertices j in (0, l}” which differ from the vertex i by at most two coordinates. 
Therefore in Theorem 2.2 we have D = N + (t) + 1 < N2. Clearly B = 1, and from Theorem 2.2 
we obtain a normal approximation rate to the standardized number of local maxima which is the 
order of N5.52-N/2 or equivalently (log n)5.5n- li2. Th e square root of this order was obtained in 

Cl, 21. 

Before deriving Theorem 2.1 we show that it implies Theorem 2.2. 

Proof of Theorem 2.2. Let v = { 1,. . . , n} and let 9 = ($‘“, 8) be a dependency graph for the Yi)s, 
having a maximal degree which is strictly less than D. Let Si = {i} u {j E -Y: {i, j} E G), that is, 
Si consists of i and all the vertices connected to i in 9. The assumption on the maximal degree of 
Y implies lSil < D for all i. We can assume, without loss of generality, that EYi = 0, i = 1, . . . , n. 

Note also that for each i, Yi is independent of { Yj: j~Si} implying g2 = EC:= I YiCjEs, Yj. Setting 
Xi=Yi/O,i=l,..., n, we can now apply Theorem 2.1. 

Note that in (2) the two terms involving E[Xi 1 Xj: j$Si] will now vanish. 
TO simplify the first term in (2) set Ui,j = XiXj - EXiXj. Then 

E t 1 (XiXj - EXiXj) 
( I 

2 = E i C ui,j 2 1 utc.1. (4) 
i=l jeS, i=l jeSi k= 1 IE& 

Since EUi, j = 0, we have EUi, jUk, l = 0 provided k, I$Si u Sj, by independence. The number of 
nonzero terms in (4) can be bounded by 4nD3 (choose i in n ways, then choose j E Si in (at most) 
D ways, now choose k (or I) in Si u Sj in 20 ways and finally 1 (or k) in Sk (or S,) in D ways) and each 

term by [~(B/o)~]~. Thus the first term in (2) is bounded by 4d16(n/a4)D3B4. 

Next note that E[c~=, IXil(CjEsiXj)2]2 < [n(l?/~)(DB/o)~]~ = (n/03)D2B3. These bounds 
and some numerical simplifications lead to (3). 0 

Proof of Theorem 2.1. Most of the calculation follows [6, pp. 105-l lo]; the point of departure from 
Stein’s calculation will be highlighted by a remark following (11) below. The first step, coupling, 
involves the introduction of new random variables. Let the random index I be uniformly distrib- 
uted over { 1, . . , , n}, independent of the Xi’s, and set W = cl= 1 Xi, W* = W - xjES,Xj9 and 
G = nX,. 
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The relation 

EWf(W) = EGf(W) (5) 

for any function f for which the expectations exist, is easy to verify. Let h be piecewise continuously 
differentiable, and define 

1 lzJ 

,Is 
’ Nh=p 2n: ~ h(x)e-(“2)“zdx, f(t) = (U,h)(t) = e(112)t” [h(x) - Nh]e-(‘12)“2dx. 

Lx2 s -co 

The fact that fsolves the differential equation f’(w) - wf(w) = h(w) - Nh and (5) imply 

Eh(W) - Nh = E{ f’(W) - G[f(W’) -f(W*)] - Gf(W*)}. 

A Taylor series expansion of f(w) -f(F+‘*) (with integral remainder) yields 

s 

W 

Eh(W) - Nh = E{ j-‘(kV)[l - G(W - W*)]) + E G(t - kV*)df’(t) - EGf(W*). (6) 
w* 

Let 93 denote the o-field generated by the Xcs. Note that E[G(W - W*) 1331 = cl= r Cj,s,XiXj 
and observe that the assumptions imply cl= 1 cjEs EXiXj = 1. We shall now assume that h is 
nonnegative and sup h < 1. With the bound sup I(tkNh)‘l < 2 sup 1 h - Nhl [6, p. 251, applied to 
such an h, we obtain 

IE{f’(W)CL - G(W - W*)l)l 

~ 2 E{l -E[G(W - W*)l~])2 =2 E{C1=,Cj,s,(XiXj-EXiXj))2. (7) 

In order to bound the last term in (6), recall the inequality sup ( U,h I < m sup I h - Nh 1 [6, p. 
251, which implies 

IEGf(W*)I = IECr=,f(Cj4S,Xj)ECXiIXj:j4SilI 

d &ZE i IE[XiJXj:j$S’i]l. (8) 
i=l 

We now apply (6)-Q) with the function 

I 
1 if x<w, 

h(x)= 1-(1/&)(x-w) if w<x,<w+e, 

0 otherwise. 

Since Nh d Q(w) + c/24? 7t, and P (W < w) < Eh(W), we obtain 

P(W < w) - Q(w) G--L 
2&r 

+ 2JE{xf= 1 Cj,s,(XiXj - EXiXj))2 

+ J;;7zE i IE[XiIXj:j$Si]l + E 
s 

W 

G(t - FV*)df'(t) . (9) 
i=l w* 
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We now deviate from Stein’s calculations of the term ES;, G(t - IV*)df’(t). First observe that 
the relation f’(w) - wf(w) = h(w) - Nh implies 

f”(t) = - &t) + (U&)(t) + HUhJi)‘(t), 

where I/ denotes the indicator function of the interval [w, w + E], and therefore 

(10) 

W W 

E 
s 

G(t - IV*)df’(t) = E nXr(t - W*) 
W’ s w* i 

- ; I,+@) + (UN/z)(t) + t(U,h)‘(t) dt. 
1 

(11) 

Remark. It is essentially the l/s in the first term which caused the loss in the rate in Stein’s 
calculations. In the calculation of this term below, the refinement consists of taking account of the 
fact that jF* nXr(t - IV*)(l/s)$(t) vanishes unless {(IV A I+‘*, W V W*) n(w, w -t E) # @} and the 
latter event has a small probability. 

We first treat the second and third terms in (11). We bound the second term in (11) by using again 
suplU&l < msuplh - Nhl < m [6, p. 251 to obtain 

I s 

W 

E nXl(t - I+‘*)(UNh)(t)dt < Jk/TttEIX~l~(W - I+‘*)2 =imE i [Xii 1 Xj 2e 
W* i=l ( > jsSi 

(12) 

Next, we discuss the third term in (11). We shall attempt only a simple, crude bound here. Simple 
manipulations and integration by parts of the term jF,(t - IV*)(t - W)(UJz)‘(t)dt below yield 

s 

W 

(t - IV*)t(U,h)‘(t)dt 
w* 

c 
W 

= (t - VV*)(t - W + IV)(U,h)‘(t)dt 
Jw* 

=s 

W 

(t 
w* 

= 

s 

W 

(t 
w* 

s 

W 

= (t 
w* 

s W 

IV*)IV(U,h)‘(t)dt + (t - w*)(t - w)(U,h)‘(t)dt 
w* 

W 

IV*)IV(U,h)‘(t)dt - 
s 

(t - W*)(U,h)(t)dt - 
W* s 

W 

(t - IV(UiMr)dt 
w* 

IV*)?V(U,h)‘(t)dt - 2 
s 

W W 

(t - IV*)(U&)(t)dt + 
s 

(W - W*)(U,h)(t)dt. 
w* W’ 

(13) 
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Replacing I U,hl and I U,h)‘J by their respective bounds fi and 2, integrating, and combining the 
last two terms, we have 

Is 

W 

E nXr(t - W*)t(U,h)‘(t)dt 
w* 

d nEIX#V - W*)‘WI + 2&7%rEIX,I(W - W*)2 

G JEWE[E~X,(W - w*)2 I 5812 + JL~lx~pv - iv*)2 

n 

ZZ JEW2ECC1=, lXil(Cj~~iXj)212 + fiE C IXiI(jz.&)2- (14) 
i=l 

In (14) the second inequality follows from the Cauchy-Schwarz inequality. (A tighter but more 
cumbersome bound, involving only fourth-order moments could be calculated here.) Note that 

EW’=Ei CXiXj+Ei CXiXj=l+E$ CXjE[XiIXj:j$Si]. 
i= 1 jsS, i=l j&S, i=l j$S, 

(15) 

Returning to (11) we now study the term (1 /.s)EJW”, nXI(t - W*)$(t)dt. It can be written as 
(l/c)E~~*~X1(t - W*)$(t)dtYQ, where Q = {(W A W*, W V W*)n(w,w + E) # @} and 9Q de- 
notes the indicator of the event Q. Observe that Q = {W* A W < w + E) n (W* V W > w}. Also, 
setting U = W - W* we have W - I UI < W* A W, W -I- I UI 2 W* V W. It is now clear that 
Q G (I W - w) d I U I + E} = R, say, and integration yields 

I s LE 
W 

1 
nXl(t - W*)$(t)dt d ; E IX,l(W - W*)29,. (16) 

w* 

At this point we invoke the bounds Xi < B/c and lSil d D, and deduce that the right-hand side of 
(16) is bounded by (n/2&03)D2B3P(R). Set 

d = sup,lP(W < w) - @(w)I. 

Since I UI < DB/o and the standard normal density is bounded by l/a, it is easy to see that 

P(R) G G(W + DB/C + E) - Q(W - DB/~ - E) + 24 d JQGDB/G + &GE + 24. 
Combining the results from (9) on, and for simplicity using the bound EC:= 1 IXiI(Cj,siXj)’ d 

JE[Cy=, IXiI(Cj,siXj)2]2 we obtain 

P(W dw) - @(w) 

<2fi 
E + 2JE{Cy=,Cjt,(xixj- Exixj)}2 + $QE i IE[Xi)Xj: j$Si]l 

i=l 

+ JE[cI=, IXiI(Cj,s,Xj)2]2 {Jl + EC~=1Cj+s,XjECXiIXj: j$sil + sfi/‘J 

+ +$ D2B3(fiDB/rr + fit + 24). (17) 
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The above calculation applied also to the function 

I 1 if xdw-E, 

h(x) = 1 - (l/&)(x - w + E) if w - E < x < w, 

otherwise, 

to obtain a lower bound analogous to (17), shows that d is bounded by the right-hand side of (17) 
and we obtain 

E 

<2& - + ZJE{~~=l~j,s,(XiXj- EXiXj)}” + mE i IE[XiJXj:j$5’i]l 
i=l 

+ JE[C;=,IXij(Cj,s,Xj)']{Jl + ECy=,Cjes,XjECXiIXj: j#&] +'fi/"I 

(18) 

Choosing E = 2(n/a3)D2B3 (which is not optimal, but close enough and simple), we obtain (2) by 
straightforward calculations. q 

Remark. Suppose cr 2 is of the order of n. Note that in the derivation of (17) we used the 
boundedness of the random variables to obtain P(R) < fi DB/a + @F + 24. If one simply 
uses P(R) d 1 (not taking advantage of the smallness of P(R)) and chooses E = a-1/2, one 
immediately obtains the rate c- ‘12, or equivalently n- Ii4 As explained in the previous remark this . 

is essentially the way this rate was obtained in [6]. For independent random variables P(R) can be 
appropriately bounded without assuming boundedness. Since the independent case is well known 
we shall comment on this very briefly. In the bounded case, the event R can essentially be thought 
of as being R = { ) WI < ) U I} where for the some constant C we have 1 U 1 < C, and the density of 
( W( is bounded (by 1, say). Then P(R) < P(I W( ,< C) ,< C provides the needed bound. In the case 
of independent unbounded random variables easy manipulations reduce the calculations of P(R) to 
the case that W and (a modified) U are independent, I W) has a bounded density as before, and ) U I 

is unbounded now, but El U ( < cc . In this case the desired result will follow from 
P(R)=EP(lWI <lUlIU)<EJUl. 
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