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Abstract. Stein’s method for normal approximations is explained, with
some examples and applications. In the study of the asymptotic distribu-
tion of the sum of dependent random variables, Stein’s method may be a
very useful tool. We have attempted to write an elementary introduction. For
more advanced introductions to Stein’s method, see Stein (1986), Barbour
(1997) and Chen (1998).
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1. Introduction

Among the many well-known techniques for proving Central Limit The-
orems and for studying normal approximations under various conditions,
one might mention those that involve characteristic functions, the Linde-
berg method which proves the proximity of a sum of random variables to a
normal one by replacing the summands by normal variables one at a time, a
related operator method, and more. A relatively recent method due to Stein
(1972, 1986) is based on a simple differential equation which characterizes
the normal distribution, and coupling, i.e., the construction of auxiliary ran-
dom variables in the probability space of the variables under investigation.
The main advantage of this method is that it works well and establishes
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rates, that is, bounds on the distance from normality for certain dependent
variables as well.

In this article we present some of the main ideas and techniques of Stein’s
method for normal approximations; accordingly, proofs of technical lemmas
and other details will be omitted.We hope that it will serve as an introduction
to Stein’s method and its applications.

1.1. An outline of the main ideas

In this section we try to indicate how bounds on the distance from normal-
ity are computed by Stein’s method, deferring precise statements to later
sections. A reader unfamiliar with Stein’s method is advised to follow the
general theme without getting absorbed in verifying any details at first read-
ing.

We need the following simple lemmas from Stein (1986). The first is
essentially proved by straightforward integration by parts, and the second
is an elementary result on first order linear differential equations, while (4)
requires some standard calculations related to the normal distribution. The
proofs are omitted.

Lemma 1.1. The random variable W has the standard normal distribution
if and only if

Ef ′(W) = EWf (W) (1)

for all continuous and piecewise continuously differentiable functions f for
which the expectations in (1) exist.

Let� denote the standard normal cdf, and let�h = Eh(Z), whereZ is
standard normal andh is a function for which the expectation exists. Also,
for a real valuedh, let ||h|| denote the sup norm, that is,

||h|| = sup
x

|h(x)|.

Lemma 1.2. Let h be a bounded piecewise continuously differentiable real
valued function. The function

f (w) = ew
2/2

∫ w

−∞
[h(x)−�h]e−x2/2dx (2)

is a solution of the (first order linear) differential equation

f ′(w)− wf (w) = h(w)−�h, (3)

and

(a) ||f || ≤ √
2π ||h||, (b) ||f ′|| ≤ 2||h||, (c) ||f ′′|| ≤ 2||h′||. (4)
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With these preliminaries we start with an informal description of Stein’s
approach. Our goal is to study the proximity of the distribution of a random
variableW to the standard normal. For this purpose, assuming EW = 0 and
VarW = 1, we evaluate, or provide an upper bound on, expressions of the
form |Eh(W)−�h|, for functionsh from a suitable class. (In the classical
CLT formulation, one considersh in the class of indicators of half intervals.)

Starting with a givenh, and takingf as defined in (2), we have|Eh(W)−
�h| = |Ef ′(W) − EWf (W)|, so our goal now is to bound the latter ex-
pression. IfW were normal, it would vanish by Lemma 1.1. IfW is close
to normal, Lemma 1.1 suggests that we can hope for|Ef ′(W)− EWf (W)|
to be small for a wide class of functionsf , and not just for those that arise
as solutions of the particular equation (3).

The next step was called “auxiliary randomization” by Stein. The idea
appears under the name of “coupling” in other contexts (see, e.g., Lindvall
(1992) and references therein).

We start with the simplest (but not necessarily the most useful) type of
coupling; see Goldstein and Reinert (1997) who called it

Zero bias coupling. Suppose that, on the same probability space onwhich
W is defined, there exists another random variableW ∗, whose marginal
distribution is such that

EWf (W) = Ef ′(W ∗) (5)

for all continuously differentiablef for which the above is well defined. We
discuss this variableW ∗ and its existence shortly, but first observe that now

|Eh(W)−�h| = |Ef ′(W)− EWf (W)| = |Ef ′(W)− Ef ′(W ∗)|. (6)

By (4), if h is in a class of functions having a bounded derivative, thenf ′′ is
bounded. For such functionsh (which do not include indicators of intervals,
of course), (6) yields

|Eh(W)−�h| ≤ ||f ′′|| · E|W ∗ −W |. (7)

Thus, if we can constructW ∗ satisfying (5), which is a requirement
only on its marginal distribution, and such that E|W ∗ − W | is small, a
requirement on the joint distribution ofW andW ∗, we may obtain a bound on
|Eh(W)−�h| for certain functionsh, i.e., those with a bounded derivative.

In order to understand the construction ofW ∗, we consider the case of
the classical CLT withW = 1√

n

∑n
i=1Xi, whereXi are iid, distributed

as a random variableX satisfying EX = 0 and VarX = 1. Given such
a r.v. X, let X∗ denote a random variable satisfying EXf (X) = Ef ′(X∗)
for any continuously differentiablef . Let X∗

n be independent of all other
variables and distributed likeX∗, and defineW ∗ = (Sn−1+X∗

n)/
√
n,where
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Sn = ∑n
i=1Xi. We claim that (5) holds. Indeed Ef ′(W ∗) = Ef ′((Sn−1 +

X∗
n)/

√
n) = E

√
nXnf ((Sn−1 + Xn)/

√
n) = EnXn√

n
f (W) = EWf (W),

where in the second equality we applied the relation definingX∗ with the
function

√
nf ((Sn−1 + · )/√n), fixing (or conditioning on)Sn−1, and in

the last equality we used the obvious symmetry. Informally stated: we can
change a normalized sumW toW ∗ by changing an individual summand.

Consider now, for example, the case ofX taking the values 1 and−1
each with probability 1/2. (We shall obtain the De Moivre–Laplace CLT.)
Note that for such anX, the variableX∗ satisfying EXf (X) = Ef ′(X∗) has
X∗

∼ U(−1,1), that is, the uniform distribution on the interval(−1,1). It
follows that|W −W ∗| = |Xn −X∗

n|/
√
n ≤ 2/

√
n, and so, applying (7) and

(4), we obtain|Eh(W)−�h| ≤ 4||h′||/√n.
Next, we discuss other examples of coupling variables. The next was

proposed by Baldi, Rinott and Stein (1989) and Rinott and Goldstein (1996).

Size bias coupling. In our next example we assumeW ≥ 0, and set
EW = λ, and VarW = σ 2. Forf andh satisfying the relations (2)–(3), it
is easy to see that Eh(W−λ

σ
)−�h = E{f ′(W−λ

σ
)− (W−λ

σ
)f (W−λ

σ
)}. Setting

g(w) = f (w−λ
σ
), we have Eh(W−λ

σ
)−�h = E{σg′(W)− (W−λ

σ
)g(W)}.

We are ready to introduce the coupling variableW ∗, as a variable whose
marginal distribution is defined by the relation

EWg(W) = λEg(W ∗) (8)

holding for anyg such that the expectations exist.W ∗ has the familiar
size-biased distribution, which is well-known, e.g., in statistics and renewal
theory. The construction of such a variable on a joint space with the original
W depends on the particular case at hand, and will be discussed briefly later.
We obtain

Eh

(
W − λ

σ

)
−�h = E{σg′(W)− λ

σ
[g(W ∗)− g(W)]}. (9)

We continue with a rough calculation (a formal statement of the bound
will be given later), replacingg(W ∗) − g(W) by g′(W)(W ∗ − W), and
now neglecting the remainder term in the Taylor expansion. Applying the
relation (8) to the functiong(w) = w−λ, we see that E(W ∗ −W) = σ 2/λ.
If (W ∗ − W) is small, and has a small variance, it should be close to its
expectation with high probability. Theng′(W)(W ∗ − W) ≈ g′(W)σ 2/λ,

and we see that the r.h.s. of (9) is small. More precisely, the first term in the
expansion of the r.h.s. of (9) equals

λ

σ
E{g′(W)[σ 2/λ− (W ∗ −W)]} ≤ 2λ||h||

σ 2

√
Var{E[(W ∗ −W)|W ]},
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where the latter bound is obtained by applying the Cauchy–Schwarz in-
equality and the relation||g′|| = 1

σ
||f ′|| ≤ 2||h||/σ.

Clearly, we need to constructW ∗ jointly with W so that Var(W ∗ −W)

(or rather the smaller quantity Var{E[(W ∗ −W)|W ]}) is small. In the above
two cases we provided the core of the argument, and the details involve only
simple technical calculations.

The construction ofW ∗ in this case is somewhat similar to the previ-
ous case in the sense that for iid variables it suffices to change one of the
summands. An example for dependent variables will be discussed in Sub-
section 3.1. For further details see Rinott and Goldstein (1996).

We briefly describe two more coupling possibilities.

The exchangeable pair. This approach is highlighted in Stein (1986). For
applications and refinements, see also Rinott and Rotar (1997). Again let
W be a random variable satisfying EW = 0, VarW = 1. We immediately
introduce the coupling variable: suppose there exists, on the same probability
space asW , another variableW ′ such that the pair(W,W ′) is exchangeable
(i.e., the pairs(W,W ′) and(W ′,W) have the same distribution) and

E(W ′|W) = (1 − λ)W (10)

for some positiveλ < 1.We shall discuss these conditions and provide exam-
ples and modifications later. A direct calculation shows that

E{Wf (W)} = E{(W ′−W)[f (W ′)−f (W)]}
2λ . Together with (3) this implies that

Eh(W)−�h = Ef ′(W)− E{(W ′ −W)[f (W ′)− f (W)]}
2λ

. (11)

Again, we hope to constructW ′ to be close toW , and expandf (W ′)−
f (W). Replacingf (W ′)− f (W) by (W ′ −W)f ′(W), (the first term in the
Taylor expansion), we see that the r.h.s. of (11) is bounded by1

2λE{f ′(W)
[2λ − (W ′ −W)2]} plus a remainder term which we now ignore. By (10),
E(W ′ −W)2 = 2λ, and the Cauchy–Schwarz inequality readily yields

E{f ′(W)[2λ− (W ′ −W)2]} ≤ ||h||
λ

√
Var{E[(W ′ −W)2|W ]}.

It follows that the r.h.s. of (11) is small providedW ′ andW are close. With
a straightforward calculation of the remainder, one indeed obtains a bound
for |Eh(W)−�h| (see Theorem 2.4 below).

Here, and in the previous cases, the coupled variable appears in the
bound, and in applications one has to construct this variable and use the
construction to compute the bound. Some ideas for such constructions will
be provided later.

Dependency neighborhoods structure. The final example in this overview
is more specific, and deals with the case in whichW is a sum of variables
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which exhibit some local dependence. Here we describe a simple version.
In this example, the coupling is shown explicitly, and the final bound does
not contain a coupling variable.

Let X1, . . . , Xn be random variables, andW = ∑n
i=1Xi , with EXi =

EW = 0 and VarW = 1. Let Mi ⊂ {1, . . . , n} be such thatj ∈ Mi

if and only if i ∈ Mj and (Xi,Xj ) is independent of{Xk}k /∈Mi∪Mj
for

i, j = 1, . . . , n. In particular,Xi is independent of{Xk}k /∈Mi
(takei = j in

the previous condition), so thatMi should be interpreted as “a neighborhood
of dependence”.We remark that the size of these neighborhoods may depend
onn, and also that they may be random in some cases. Let|Mi | denote the
cardinality ofMi.

We now indicate how to construct a bound for|Eh(W)−�h|.The bound
itself will depend on|Mi |, and some parameters of theXi ’s. The details will
be given in Theorem 2.1 . In order to define the coupling variable, letI

denote a random index uniformly distributed over{1, . . . , n} independent
of theXi ’s. Now set

W ∗ = W −
∑
j∈MI

Xj . (12)

Note that here, for the first time,W ∗ is constructed explicitly, and not
just in terms of conditions as, e.g., in (8) or (10).

With f andh related as in (3), we have

Eh(W)−�h = E{f ′(W)− nXIf (W)}
= E{f ′(W)− nXI [f (W)− f (W ∗)]}, (13)

where the latter equality follows from the fact that the dependence structure
and the assumption EXi = 0 imply that E{nXIf (W

∗)} = 0. Observe that,
under the present dependence structure, E{nXI [W −W ∗]} = VarW = 1,
and moreover, if the setsMi are small, E(nXI [W − W ∗] |X1, . . . , Xn) is
close to its expectation, that is, to one, by the strong law of large numbers
(for simplicity, think about the caseMi = {i} first). A Taylor expansion of
f (W)− f (W ∗) in (13), neglecting the remainder for the time being, yields
E{nXI [f (W) − f (W ∗)]} ≈ E{f ′(W)nXI [W −W ∗]} ≈ Ef ′(W), and we
can hope for the r.h.s. of (13) to be small. A more detailed calculation will
be pursued immediately in the next section.

2. Some theorems

In this section we state some theorems and provide further discussion of the
proofs, relying on the calculations already shown. References are given to
articles in which complete proofs can be found.
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2.1. Local dependence

Consider a sumW = ∑n
i=1 Yi of random variables whose dependence

can roughly be described as follows: for eachi, there is a “dependency
neighborhood” of indicesMi such thatYi is allowed to depend on{Yj :
j ∈ Mi}, butYi is independent of{Yj : j /∈ Mi}. The precise dependence
structure is specified in Theorem 2.2 below. Note that this structure does not
depend on a linear ordering of the variables, unlike many well-known models
such as markov chains, martingales, etc. We start with a relatively simple
version of Corollary 2 of Stein (1986), which leads to a useful result and
demonstrates some of the calculations. In this first version, we do not deal
with approximating the distribution function, but rather with expectations
of smooth functions. This issue will be discussed later.

Theorem 2.1. LetY1, . . . , Yn be random variables, and letMi ⊂ {1, . . . , n}
be such that j ∈ Mi if and only if i ∈ Mj and (Yi, Yj ) is independent of
{Yk}k /∈Mi∪Mj

. Assume EYi = 0, and Var
∑n

i=1 Yi = σ 2 > 0. Then, for any
function h, continuous, and piecewise continuously differentiable,

|Eh
(∑n

i=1 Yi

σ

)
−�h| ≤ 2

σ 2
||h||

√√√√√E




n∑
i=1

∑
j∈Mi

(YiYj − EYiYj )




2

+ 1

σ 3
||h′||E

{ n∑
i=1

|Yi |(
∑
j∈Mi

Yj )
2

}
. (14)

Proof of Theorem 2.1. Givenh, let f denote the function defined by (2).

SetXi = Yi/σ , W =
n∑
i=1
Xi , andX = {Xi : i = 1, . . . , n}, and let

W ∗ be defined by (12). Note that E[nXIf (W
∗)] = 0 by the assumptions

on the dependence structure, and E[nXIf (W)] = E{E[nXIf (W) |X]} =
EWf (W). Simple manipulations and a Taylor series expansion off (W)−
f (W ∗) (with integral remainder) yield

Eh(W)−�h = E{f ′(W)[1 − nXI (W −W ∗)]}
+ E

∫ W

W ∗
nXI (t −W ∗)df ′(t) . (15)
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With the bound (4b) and the observation that
∑n

i=1

∑
j∈Mi

EXiXj =
VarW = 1, we obtain by the Cauchy–Schwarz inequality

|E{f ′(W)[1 − nXI (W −W ∗)]}|

≤ 2||h||

√√√√√E




n∑
i=1

∑
j∈Mi

(XiXj − EXiXj)




2

. (16)

Note that another possible bound is

2||h||E
∣∣∣∣

n∑
i=1

∑
j∈Mi

(XiXj − EXiXj)

∣∣∣∣.

The latter bound does not require the existence of fourth order moments,
but, as it is harder to compute, we shall not pursue it here.

Returning to the second term in (15), we use (4c) and integrate to obtain

E
∫ W

W ∗
nXI (t −W ∗)df ′(t) ≤ ||h′||E

{ n∑
i=1

|Xi |(
∑
j∈Mi

Xj )
2

}
.

This completes the proof.

A discussion of non-smooth h. Note that in the last bound the term||h′||
may be large or even infinite for a non-smoothh such as an indicator of an
interval. However, we used the relation||f ′′|| ≤ 2||h′|| only in the interval
(W ∗,W). In the next theorem we applyTheorem 2.1, whereh is the indicator
function of a half interval, having a derivative which vanishes everywhere
except for one point, and we can approximate it by a smooth function whose
derivative vanishes in the random (but small) interval(W ∗,W) with high
probability. Thus we can refine the last bound. This requires further condi-
tions. The following version from Dembo and Rinott (1996) is rather useful.
We sketch its proof without going into technicalities. For further, more ad-
vanced treatment of the latter issue, see Rinott and Rotar (1996).

Theorem 2.2. Let Y1, . . . , Yn be random variables satisfying |Yi−E(Yi)| ≤
B a.s., i = 1, . . . , n, E

∑n
i=1 Yi = λ, Var

∑n
i=1 Yi = σ 2 > 0 and

1
n
E

∑n
i=1 |Yi − E(Yi)| = µ. Let Mi ⊂ {1, . . . , n} be such that j ∈ Mi

if and only if i ∈ Mj and (Yi, Yj ) is independent of {Yk}k /∈Mi∪Mj
for i, j =

1, . . . , n, and set D = max1≤i≤n |Mi |. Then
∣∣∣∣P

(∑n
i=1 Yi − λ

σ
≤ w

)
−�(w)

∣∣∣∣ ≤ 7
nµ

σ 3
(DB)2. (17)
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Proof of Theorem 2.2. Without loss of generality assume that E(Yi) = 0.
Hence|Yi | ≤ B a.s.,i = 1, . . . , n andµ = E(|YI |), where the random
indexI is uniformly distributed over{1, . . . , n} independently of theY ’s.

SetXi = Yi/σ, i = 1, . . . , n, andW =
n∑
i=1
Xi .

LetUi,j = XiXj − EXiXj , so that

E




n∑
i=1

∑
j∈Mi

(XiXj − EXiXj)




2

=
n∑
i=1

∑
j∈Mi

n∑
k=1

∑
$∈Mk

EUi,jUk,$ . (18)

Observe that, for fixedi, there are at most 4D3 non-zero terms in the r.h.s. of
(18), each of which is bounded by 2(B/σ)3E|Xi |. Consequently, the r.h.s.
of (18) is bounded by 8nµ(DB/σ)3 1

σ
. As

σ 2 =
n∑
i=1

∑
j∈Mi

E(YiYj ) ≤
n∑
i=1

∑
j∈Mi

BE|Yi | ≤ BDnµ,

we conclude that the r.h.s. of (18) is bounded by 8(nµ)2(DB)4/σ 6. Taking
the square root of the latter term we obtain a bound on the r.h.s. of (16) of
the required order,nµ

σ3 (DB)
2.

The second term in (15) was shown to be bounded by

||h′||E
{ n∑
i=1

|Xi |(
∑
j∈Mi

Xj )
2

}
.

An easy calculation shows that it is bounded by||h′||nµ
σ3 (DB)

2.We need to
apply Theorem 2.1 whereh is the indicator of half an interval. Ifh′ were
bounded the proof would be complete (apart from constants). However, as
indicated aboveh′ is not bounded. Technical arguments (to which we alluded
above) are required now to show thath can be appropriately approximated
to complete the proof.

In order to understand the above theorems in the simplest case, consider
the classical CLT for iid variables. Let the summandsYi be iid, with a
finite fourth moment. Theorem 2.1 applies withMi = {i}. The first term in

(14) reduces to2
σ2 ||h||

√
nVarY 2

1 . Sinceσ 2 = nVarY1, it follows that for a

boundedh, this term has the order of 1/
√
n. The second term in (14) reduces

in the case of iidYi to 1
σ3 ||h′||E{ ∑n

i=1 |Yi |3
}
. If h′ is bounded this term is

also of the order of 1/
√
n. For bounded iid variablesYi , Theorem 2.2 yields

the correct rate of convergence: 1/
√
n. This follows immediately from (17)

withD = 1. While the above discussion provides a rather elementary proof
of some CLT’s for iid variables, we emphasize that the main interest in
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Stein’s method lies in its applicability to a large variety of non-independent
cases. ��

2.2. Size bias coupling

We provide here one result from Goldstein and Rinott (1996). An indication
of the proof was given in the introduction.

Theorem 2.3. Let W ≥ 0 be a random variable with distribution dF(w)
and let W ∗ be defined on the same probability space as W and having the
marginal distribution wdF(w)/λ, where λ = EW , and σ 2 = VarW . Then,
for any piecewise continuously differentiable h : R → R,

|Eh
(
W − λ

σ

)
−�h| ≤ 2‖h‖ λ

σ 2

√
VarE(W ∗ −W |W)

+ ‖h′‖ λ
σ 3

E(W ∗ −W)2.

2.3. The exchangeable pair coupling

We first quote a slightly modified but equivalent version of a theorem of
Stein (1986, p. 35), and then some extensions. The proof was sketched in
the introduction.

Theorem 2.4. Let (W,W ′) be a pair of exchangeable random variables (i.e.,
their joint distribution is symmetric), and suppose EW = 0, VarW = 1 and

E(W ′|W) = (1 − λ)W (19)

for some positive λ < 1. Then for any continuously differentiable bounded
function h,

|Eh(W)−�h| ≤ 1

λ
||h||

√
Var{E[(W ′ −W)2|W ]}

+ 1

4λ
(||h′||)E{|W ′ −W |3}.

Whenh′ is not bounded, the above bound blows up, and as before a
more careful (and rather technical) analysis is needed. For indicators of
half intervals (for further details and other classes of functions, see Rinott
and Rotar (1997)) we have Theorem 2.5 below. It also extends the range
of applications of this approach by replacing (19) by a weaker condition,
allowing (19) to hold only approximately, with a remainder denoted by
R. The discussion of weighted nondegenerate U-statistics demonstrates the
utility of this extension.
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Theorem 2.5. Let (W,W ′) be exchangeable, EW = 0, VarW = 1. Define
the r.v. R = R(W) by

E(W ′|W) = (1 − λ)W + R, (20)

where λ is a number satisfying 0< λ < 1. Then, for all real w,

|P(W ≤ w)−�(w)| ≤ 6

λ

√
Var{E[(W ′ −W)2|W ]}

+ 19

√
ER2

λ
+ 6

√
1

λ
E{|W ′ −W |3}. (21)

Also, if

|W ′ −W | ≤ A

for some constant A, then

|P(W ≤ w)−�(w)| ≤ 12

λ

√
Var{E[(W ′ −W)2|W ]}

+ 37

√
ER2

λ
+ 48

A3

λ
+ 8

A2

√
λ
. (22)

3. Some examples and applications

We describe some examples without proofs and details.

3.1. Local maxima and Nash equilibria

Consider the vectorsa = (a1, . . . , ap), where each of thep coordinatesai
takes values in{1,2, ..., s}. Let a|bi denote a vector which differs froma in
a single coordinate, more precisely,a|bi = (a1, . . . , ai−1, bi, ai+1, . . . , ap),

for i = 1, ..., p andbi ∈ {1, ..., s}. Let Va, defined for alla, be iid random
variables. We say that there is a “local maximum” ata if Va ≥ Va|bi for all
possiblei andbi. LetM denote the number of local maxima. We are inter-
ested in the asymptotic distribution ofM for larges andp.More generally,
for eacha define a vectorVa = (V (1)

a , . . . , V
(p)

a ), where again the vectors
defined are iid. We shall discuss a variety of dependency conditions on the
coordinatesV (1)

a , . . . , V
(p)

a within each vector.
If we consider a game withp players whereV (i)

a represents the payoff
to playeri when thep players choose the pure strategiesa1, . . . , ap respec-
tively, thena = (a1, . . . , ap) is a Nash equilibrium point (in pure strategies)
if the conditionV (i)

a ≥ V
(i)

a|bi holds for alli andbi ∈ {1, ..., s}.We shall study



26 Y. Rinott, V. Rotar

the numberN of Nash equilibria. In the case thatV (1)
a = ... = V

(p)
a (with

probability 1), the notions of Nash equilibria and of local maxima described
above coincide. In this case all players share the same payoff.

Baldi, Rinott and Stein (1989) computed EM = sp/[(s − 1)p + 1]
(easy), and VarM = sp(p − 1)(s − 1)/2[(s − 1)p + 1]2, and proved that
M is asymptotically normal when eitherp → ∞ or s → ∞ (or both).
They used a version of Theorem 2.3 withW = M, andW ∗ is constructed as
follows: choose a vertexa at random. IfVa is a local maximum, setW ∗ = W.

Otherwise, interchange the values ofV at a and the largest of its values at
neighboring verticesa|bi , that is, the largest among allVa|bi , leaving all
otherV ’s unchanged. It is easy to see that after this interchange there will
be a local maximum ata. It can be shown that the resulting number of local
maxima has the right distribution forW ∗.Also, from the above one sees that
W andW ∗ are close, as required.

Another possible approach to this problem is to use local dependence.
Define a distance between vectors (of strategies),d(a,b)= the number of
coordinates in whicha andb differ, and letYa take the value 1 if there is a lo-
cal maximum ata, and 0 otherwise. ThenM = ∑

a Ya. It is not hard to show
that ifd(a,b) >2, thenYa andYb are independent. Moreover the conditions
of Theorem 2.2 can be easily verified, with the appropriate constants, and
with the dependency neighborhoods defined byMa = {b : d(a,b) ≤ 2},
leading to results on asymptotic normality of the number of local maximaM.

With some technical complications, the same holds for the number of
Nash equilibriaN, leading to the following result from Rinott and Scarsini
(1999).

Theorem 3.1. If the components of Va = (V (1)
a , . . . , V

(p)
a ) are positively

quadrant dependent, then there exists a constant c, depending on the distri-
bution of Va, such that, for all t ,

∣∣∣∣P
(
N − λ

σ
≤ t

)
−�(t)

∣∣∣∣ ≤ c
s4p4

sp/2Q1/2
, (23)

where Q = the probability of a Nash point at a given a, λ = EN = spQ,
and σ 2 = VarN.

This theorem is stated in Rinott and Scarsini (1999) for the special case
in which the components ofVa are normal with positive correlations, along
with further results such as bounds onσ 2 and onQ, and conditions under
which the r.h.s. of (23) converges to 0, with some discussion comparing the
applicability of Theorems 2.2 and 2.3. The condition of positive quadrant
dependence is, of course, a general condition of positive dependence, for
which positively correlated normals provide an example. It can be shown
that, in the case in which the players’ payoffs are independent,N converges
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to a Poisson (λ = 1) variable whereas, in the case of suitably defined negative
dependence (e.g., in a zero-sum game),N converges to 0.

3.2. Functions of stationary processes and the exchangeable pair coupling

The exchangeable pair coupling will now be briefly explained. The reader
might wonder why and when, for a random variableW , it may be a natural
to construct the requiredW ′ with the conditions of Theorems 2.4 or 2.5.

Following Diaconis (1989), Diaconis and Sturmfels (1998), Barbour
(1990, 1997) and Rinott and Rotar (1997), consider a stationary process
{X(t)}, where t = 1,2, ... is a time parameter, and suppose we want to
study the proximity to normality of some function of the process0(X(t)).

It is then natural to choose(W,W ′) = (0(X(t)), 0(X(t+1))). As of {X(t)} is
stationary,W andW ′ have the same marginal distributions. Exchangeability
of this pair clearly holds if the process{X(t)} is reversible. A typical case is
that ofX(t) = (X

(t)
1 , ..., X

(t)
n ), wheren denotes the size, or dimension, of the

process, and0(X(t)) = X
(t)
1 + ...+X(t)

n .

If W is close to normal, one may hope that the pair(W,W ′) is close to
bivariate normal, and then the linearity of the conditional expectation ofW ′
as a function ofW should hold approximately; this indicates that (20) is a
natural condition in the present setup, and one may expect the remainder
termR to be small. In fact,R can be viewed as a remainder term in the
expansion of the conditional expectation ofW ′ −W , centered atW .

The reader may now try to prove the classical CLT for the sum of iid
variablesX1, ..., Xn having a common cdfF,by settingX(1) = (X1, ..., Xn),
and then obtainingX(t+1) from X(t) by choosing an indexi at random and
replacingX(t)

i by an independent copy with the distributionF, leaving the
other coordinates unchanged. This defines a stationary, reversible Markov
chain and, since only one coordinate changes at a time, one can hope thatW

andW ′ will be close. Making use of (21) leads to a rate of 1/n1/4, whereas
for bounded variables, (22) yields the rate of 1/

√
n. While the independent

case provides a simple test case, the value of the method lies in its ability to
yield results under interesting dependence structures.

Asymptotic normality of more complex functions, such asU -statistics
of the form

U = 0(X) =
∑

γ (Xi1, ...Xik ),

where the functionγ may depend onn, can be studied by the same method,
using the same process. Clearly the summands are no longer independent.
For degenerateU -statistics, that is, whenP(E{γ (X1, ..., Xk) |X1} = 0 ) =
1, one obtainsR = 0 in (20), otherwiseR �= 0.General results giving con-
ditions for normality for the different cases, and for more general types of
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U -statistics by this method, are given in Rinott and Rotar (1997). Finally
we mention that the latter paper provides a detailed study of a case where
X
(t)
1 , ..., X

(t)
n are dependent, denoting the states of a certain stationary parti-

cle system (the anti-voter model) atn different sites at timet.Although the
anti-voter chain is not reversible, further arguments lead to conditions for
asymptotic normality ofX(t)

1 + ...+X(t)
n for largen.

Remark 3.2. The reference list below is very incomplete and contains only
papers to which we referred above and a few others with further applications.
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