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Abstract. Stein’s method for normal approximations is explained, with
some examples and applications. In the study of the asymptotic distribu-
tion of the sum of dependent random variables, Stein’s method may be a
very useful tool. We have attempted to write an elementary introduction. For
more advanced introductions to Stein’s method, see Stein (1986), Barbour
(1997) and Chen (1998).
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1. Introduction

Among the many well-known techniques for proving Central Limit The-
orems and for studying normal approximations under various conditions,
one might mention those that involve characteristic functions, the Linde-
berg method which proves the proximity of a sum of random variables to a
normal one by replacing the summands by normal variables one at a time, a
related operator method, and more. A relatively recent method due to Stein
(1972, 1986) is based on a simple differential equation which characterizes
the normal distribution, and coupling, i.e., the construction of auxiliary ran-
dom variables in the probability space of the variables under investigation.
The main advantage of this method is that it works well and establishes
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rates, that is, bounds on the distance from normality for certain dependent
variables as well.

Inthis article we present some of the main ideas and techniques of Stein’s
method for normal approximations; accordingly, proofs of technical lemmas
and other details will be omitted. We hope that it will serve as an introduction
to Stein’s method and its applications.

1.1. An outline of the main ideas

In this section we try to indicate how bounds on the distance from normal-
ity are computed by Stein’s method, deferring precise statements to later
sections. A reader unfamiliar with Stein’s method is advised to follow the
general theme without getting absorbed in verifying any details at first read-
ing.

We need the following simple lemmas from Stein (1986). The first is
essentially proved by straightforward integration by parts, and the second
is an elementary result on first order linear differential equations, while (4)
requires some standard calculations related to the normal distribution. The
proofs are omitted.

Lemma 1.1. Therandom variable W has the standard normal distribution
if and only if

Ef'(W) = EWf(W) 1)

for all continuous and piecewise continuously differentiablefunctions f for
which the expectationsin (1) exist.

Let ® denote the standard normal cdf, anddét = Eh(Z), whereZ is
standard normal antdis a function for which the expectation exists. Also,
for a real valued, let ||i]|| denote the sup norm, that is,

[|7]] = suplh(x)|.

Lemma 1.2. Let 2 be a bounded piecewise continuously differentiable real
valued function. The function

Fw =2 [ (b - ohle 2y @)
isa solution of the (first order Iine:r) differential equation
f'(w) —wf(w) = h(w) — h, 3)
and
@ £l < ~V2r|hll, O L1 <20kl © IF1 < 21Kl (4)
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With these preliminaries we start with an informal description of Stein’s
approach. Our goal is to study the proximity of the distribution of a random
variableW to the standard normal. For this purpose, assumiig-E0 and
VarW = 1, we evaluate, or provide an upper bound on, expressions of the
form |ER(W) — ®h|, for functionsh from a suitable class. (In the classical
CLT formulation, one considefsin the class of indicators of half intervals.)

Starting with a giveri, and takingf as defined in (2), we hayBa (W) —
®h| = |Ef(W) — EWf(W)], so our goal now is to bound the latter ex-
pression. IfW were normal, it would vanish by Lemma 1.1.Wf is close
to normal, Lemma 1.1 suggests that we can hopgegf(W) — EW f (W)
to be small for a wide class of functiorfs and not just for those that arise
as solutions of the particular equation (3).

The next step was called “auxiliary randomization” by Stein. The idea
appears under the name of “coupling” in other contexts (see, e.g., Lindvall
(1992) and references therein).

We start with the simplest (but not necessarily the most useful) type of
coupling; see Goldstein and Reinert (1997) who called it

Zerobiascoupling. Suppose that, on the same probability space onwhich
W is defined, there exists another random varidlbte whose marginal
distribution is such that

EWf (W) =Ef'(W") (5)

for all continuously differentiablg for which the above is well defined. We
discuss this variabl®* and its existence shortly, but first observe that now

|ER(W) — @h| = |[Ef'(W) — EWf(W)| = |Ef'(W) — Ef (W5). (6)

By (4), if h is in a class of functions having a bounded derivative, tfiérs
bounded. For such functiongwhich do not include indicators of intervals,
of course), (6) yields

|ER(W) — ®h| < || f"]| - EIW™ — W|. (7)

Thus, if we can construc* satisfying (5), which is a requirement
only on its marginal distribution, and such thate — W| is small, a
requirement on the joint distribution & andW*, we may obtain abound on
|ER(W) — ®h| for certain functiong, i.e., those with a bounded derivative.

In order to understand the constructionf, we consider the case of
the classical CLT withW = \/iﬁ > i_1 Xi, whereX; are iid, distributed
as a random variabl& satisfying EX = 0 and VaX = 1. Given such
arv. X, let X* denote a random variable satisfyin& F(X) = Ef'(X*)
for any continuously differentiablg’. Let X be independent of all other
variables and distributed lik€*, and definéV* = (S,_1+ X*)/+/n, where
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S, = >_i_, X;. We claim that (5) holds. Indeed/EW*) = Ef'((S,-1 +
X/ = BE/nXy (S + Xa)//n) = Ent f(W) = EWF(W),
where in the second equality we applied the relation defidifigvith the
function /n f ((S,—1 + - )/+/n), fixing (or conditioning on)S,_1, and in
the last equality we used the obvious symmetry. Informally stated: we can
change a normalized sui to W* by changing an individual summand.
Consider now, for example, the caseXftaking the values 1 and1
each with probability 12. (We shall obtain the De Moivre—Laplace CLT.)
Note that for such a, the variableX* satisfying EXf (X) = Ef'(X*) has
X* ~ U(-1,1), that is, the uniform distribution on the interval 1, 1). It
follows that|W — W*| = | X,, — X*|//n < 2/4/n, and so, applying (7) and
(4), we obtainER(W) — ®h| < 4||W'||/+/n.
Next, we discuss other examples of coupling variables. The next was
proposed by Baldi, Rinott and Stein (1989) and Rinott and Goldstein (1996).

Size bias coupling. In our next example we assun#®& > 0, and set
EW = A, and VaW = o2. For f andh satisfying the relations (2)—(3), it
is easy to see thatff'=*) — dh = E{ f'(¥=2) — (¥=2) f(*=2)). Setting
gw) = f(¥2),we have B(¥=2) — ®h = E{og' (W) — (X=2)g(W)).

We are ready to introduce the coupling variaé, as a variable whose
marginal distribution is defined by the relation

EWg(W) = AEg(W™) (8)

holding for anyg such that the expectations exigt.* has the familiar
size-biased distribution, which is well-known, e.g., in statistics and renewal
theory. The construction of such a variable on a joint space with the original
W depends on the particular case at hand, and will be discussed briefly later.
We obtain

o

W —-A A
Eh( ) — ®h = Elog' W) — Z[gW) — gl (9)

We continue with a rough calculation (a formal statement of the bound
will be given later), replacing(W*) — g(W) by ¢'(W)(W* — W), and

now neglecting the remainder term in the Taylor expansion. Applying the
relation (8) to the functiog(w) = w — A, we see that BV* — W) = o'?/A.

If (W* — W) is small, and has a small variance, it should be close to its
expectation with high probability. Theg{(W)(W* — W) ~ g (W)o?/A,

and we see that the r.h.s. of (9) is small. More precisely, the first term in the
expansion of the r.h.s. of (9) equals

22 |1h]] -
oV VarEL(W = W)W},

A
;E{g’(wnaz/x — (W= W)]} <
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where the latter bound is obtained by applying the Cauchy—Schwarz in-
equality and the relatiofig’|| = §||f’|| < 2||h]|/o.

Clearly, we need to constru@* jointly with W so that Vatw* — W)

(or rather the smaller quantity V[ (W* — W)|W1}) is small. In the above
two cases we provided the core of the argument, and the details involve only
simple technical calculations.

The construction oW * in this case is somewhat similar to the previ-
ous case in the sense that for iid variables it suffices to change one of the
summands. An example for dependent variables will be discussed in Sub-
section 3.1. For further details see Rinott and Goldstein (1996).

We briefly describe two more coupling possibilities.

The exchangeable pair. This approach is highlighted in Stein (1986). For
applications and refinements, see also Rinott and Rotar (1997). Again let
W be a random variable satisfyingle= 0, VarW = 1. We immediately
introduce the coupling variable: suppose there exists, on the same probability
space a3V, another variabl&/’ such that the paiftW, W') is exchangeable

(i.e., the pairgW, W) and(W’, W) have the same distribution) and

E(W/|W) = (1— )W (10)

forsome positive. < 1. We shall discuss these conditions and provide exam-
ples and modifications later. A direct calculation shows that

E(W (W)} = EW=WUWI=f) Together with (3) this implies that

E((W —W[f (W) — f(WN]}
2\ '

Again, we hope to construdt’ to be close td¥, and expand(W’) —
f(W). Replacingf (W) — f(W) by (W — W) f/(W), (the first term in the
Taylor expansion), we see that the r.h.s. of (11) is boundeﬁﬁyf/(W)
[2An — (W' — W)?]} plus a remainder term which we now ignore. By (10),
E(W' — W)? = 24, and the Cauchy—Schwarz inequality readily yields

E(f' (W)[2. — (W' = W)} < ”i—”War{E[(W/ — W)W},
It follows that the r.h.s. of (11) is small providéd’ andW are close. With
a straightforward calculation of the remainder, one indeed obtains a bound
for |ER(W) — ®h| (see Theorem 2.4 below).

Here, and in the previous cases, the coupled variable appears in the
bound, and in applications one has to construct this variable and use the
construction to compute the bound. Some ideas for such constructions will
be provided later.

Er(W) — ®h = Ef'(W) —

(11)

Dependency neighbor hoodsstructure. The final example in this overview
is more specific, and deals with the case in whi€¢hs a sum of variables
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which exhibit some local dependence. Here we describe a simple version.
In this example, the coupling is shown explicitly, and the final bound does
not contain a coupling variable.

Let X1, ..., X, be random variables, aidl = Y " , X;, with EX; =
EW = O0and Vaw = 1. LetM; C {1,...,n} be such that € M;
if and only if i € M; and (X;, X;) is independent of X; }xgsm,um, for
i,j =1 ..., n.Inparticular,X; is independent ofX;}.¢u, (takei = j in
the previous condition), so tha4; should be interpreted as “a neighborhood
of dependence”. We remark that the size of these neighborhoods may depend
onn, and also that they may be random in some casegMgtdenote the
cardinality of M;.

We now indicate how to construct a bound flah (W) — ®k|. The bound
itself will depend onM; |, and some parameters of thgs. The details will
be given in Theorem 2.1 . In order to define the coupling variable] let
denote a random index uniformly distributed oyér. .. , n} independent
of the X;'s. Now set

Wr=Ww- Y X (12)

Note that here, for the first tim@y* is constructed explicitly, and not
just in terms of conditions as, e.g., in (8) or (10).
With f andh related as in (3), we have

Er(W) — @h = E{f'(W) —nX, f (W)}
=E{f'W) —nX;[f(W) — fF(WH]}, 13)

where the latter equality follows from the fact that the dependence structure
and the assumptionXs = 0 imply that EnX,; f (W*)} = 0. Observe that,
under the present dependence structufe Xg[W — W*]} = Varw = 1,

and moreover, if the set; are small, EnX;[W — W*]| Xq,...,X,) IS
close to its expectation, that is, to one, by the strong law of large numbers
(for simplicity, think about the cas#f; = {i} first). A Taylor expansion of
F(W) — f(W*)in (13), neglecting the remainder for the time being, yields
EnX;[f(W) — f(WH]} = E{f' (W)nX;[W — W*]} ~ Ef'(W), and we

can hope for the r.h.s. of (13) to be small. A more detailed calculation will
be pursued immediately in the next section.

2. Sometheorems

In this section we state some theorems and provide further discussion of the
proofs, relying on the calculations already shown. References are given to
articles in which complete proofs can be found.
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2.1. Local dependence

Consider a sunW = }!_,Y; of random variables whose dependence
can roughly be described as follows: for eaglthere is a “dependency
neighborhood” of indiced/; such thaty; is allowed to depend ofY; :

J € M;}, butY; is independent ofY; : j ¢ M;}. The precise dependence
structure is specified in Theorem 2.2 below. Note that this structure does not
depend on alinear ordering of the variables, unlike many well-known models
such as markov chains, martingales, etc. We start with a relatively simple
version of Corollary 2 of Stein (1986), which leads to a useful result and
demonstrates some of the calculations. In this first version, we do not deal
with approximating the distribution function, but rather with expectations
of smooth functions. This issue will be discussed later.

Theorem 2.1. LetYy, ..., Y, berandomvariables, andlet M; C {1, ..., n}
besuchthat j € M; ifandonlyifi € M; and (Y;, Y;) is independent of
{Yilkgmum, - Assume EY; = 0,and Var)";, ¥; = o2 > 0. Then, for any
function &, continuous, and piecewise continuously differentiable,

2

'Y 2 -
|Eh(21?1>—d>h|§;||h|| E{Y ) (Y, —EYY)

i=1 jeM;
1 -
+ ik ||E{ N0 Y,»)Z}. (14)
i=1 jeM;

Proof of Theorem 2.1. Given i, let f denote the function defined by (2).
SetX; = Y;/o, W = Y X;,andX = {X; : i = 1,...,n}, and let

i=1
W* be defined by (12). Note thafff&X, f (W*)] = 0 by the assumptions
on the dependence structure, arfd ¥, f (W)] = E{E[nX,; f(W) | X]} =
EW f(W). Simple manipulations and a Taylor series expansiofi(®¥) —
f(W*) (with integral remainder) yield

Er(W) — @h = E{f'(W)[1 —nX;(W — WH]}

w
+E / nX;(t — WHAF'(t). (15)
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With the bound (4b) and the observation thaf_, > .., EX;X; =
VarW = 1, we obtain by the Cauchy—Schwarz inequality

[E{f' WL —nX; (W —WH}

2

< 2l |[E 1) D (XiX; —EX; X))t . (16)

i=1 jEM[

Note that another possible bound is

> (XX, - EX;X))

i=1 jeM;

2||n||E

The latter bound does not require the existence of fourth order moments,
but, as it is harder to compute, we shall not pursue it here.
Returning to the second term in (15), we use (4c) and integrate to obtain

w n
Ef nX;(t — WHAf'(t) < ||h’||E{ A Xj>2}.

* i=1 jeM;

This completes the proof.

A discussion of non-smooth 4. Note that in the last bound the teri®’||

may be large or even infinite for a non-smoatkuch as an indicator of an
interval. However, we used the relatignf”|| < 2||4’|| only in the interval
(W*, W). Inthe nexttheorem we apply Theorem 2.1, wheisthe indicator
function of a half interval, having a derivative which vanishes everywhere
except for one point, and we can approximate it by a smooth function whose
derivative vanishes in the random (but small) interé&r*, W) with high
probability. Thus we can refine the last bound. This requires further condi-
tions. The following version from Dembo and Rinott (1996) is rather useful.
We sketch its proof without going into technicalities. For further, more ad-
vanced treatment of the latter issue, see Rinott and Rotar (1996).

Theorem 2.2. Let Y, ..., Y, berandomvariablessatisfying |Y; — E(Y;)| <
Bas,i =1,...,n, EYl Vi = A, Var) ! Vi = 0?2 > 0 and
IEYY 1Y — E(Y)| = u. Let M; C {1,....,n} besuchthat j € M,
ifand onlyifi € M; and (Y;, Y;) isindependent of {Y; }igs,um, for i, j =
1,...,n,andset D = max,<, |M;|. Then "

‘P<M5w)_q><w)
o

<72 (DBY. (17)
o
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Proof of Theorem 2.2. Without loss of generality assume thatYp) = 0.
Hence|Y;| < B as.,i = 1,...,n andu = E(]Y;]), where the random
index I is uniformly distributed ovefl, ... , n} independently of th&’s.
SetX; =Y;/o, i=1,...,n,andW = )_ X;.

i=1
Let Ui,j = X[Xj — EX,'X]', so that

2
EqY Y (XX, —EX;iXpp => > > > EU;Ue. (18)

i=1 jeM; i=1 jeM; k=1 teMy

Observe that, for fixed} there are at most/4® non-zero termsin ther.h.s. of
(18), each of which is bounded byR/c)3E| X;|. Consequently, the r.h.s.
of (18) is bounded by#8u(DB/o)32. As

0% = Z D EMY) < Z D BEIYi| < BDnp.,

i=1 jeM; i=1 jeM;

we conclude that the r.h.s. of (18) is bounded ly.82(D B)*/o®. Taking
the square root of the latter term we obtain a bound on the r.h.s. of (16) of
the required orde#s (D B)?.

The second term in (15) was shown to be bounded by

n

llh’llE{leiKZ x,-)z}.

i=1 jeM;

An easy calculation shows that it is bounded| WHZ—‘;(DB)Z. We need to
apply Theorem 2.1 wherk is the indicator of half an interval. B’ were
bounded the proof would be complete (apart from constants). However, as
indicated abové’ is not bounded. Technical arguments (to which we alluded
above) are required now to show tltatan be appropriately approximated
to complete the proof.

In order to understand the above theorems in the simplest case, consider
the classical CLT for iid variables. Let the summarisbe iid, with a
finite fourth moment. Theorem 2.1 applies with = {i}. The first term in

(14) reduces ta%||||,/nVarY2. Sinceo? = nVarYy, it follows that for a
bounded:, this term has the order of 1/n. The second term in (14) reduces
in the case of iidy; to 0—13||h/||E{ i1 1Y:1*}. If &’ is bounded this term is
also of the order of A,/n. For bounded iid variableg, Theorem 2.2 yields
the correct rate of convergence In. This follows immediately from (17)

with D = 1. While the above discussion provides a rather elementary proof
of some CLT's for iid variables, we emphasize that the main interest in



24 Y. Rinott, V. Rotar

Stein’s method lies in its applicability to a large variety of non-independent
cases. O

2.2. Szebias coupling

We provide here one result from Goldstein and Rinott (1996). An indication
of the proof was given in the introduction.

Theorem 2.3. Let W > 0 be a random variable with distribution d F (w)
and let W* be defined on the same probability space as W and having the
marginal distribution wd F (w) /A, where A, = EW, and 0% = VarW. Then,
for any piecewise continuously differentiablez : R — R,

W —a A
|Eh(—) — ®h| < 2||h|| =5/ VarE(W* — W|W)
o o

A
+ IIh/||;E(W* —W)2.

2.3. The exchangeable pair coupling

We first quote a slightly modified but equivalent version of a theorem of
Stein (1986, p. 35), and then some extensions. The proof was sketched in
the introduction.

Theorem 2.4. Let (W, W’) beapair of exchangeablerandomvariables(i.e.,
their joint distribution is symmetric), and suppose EW = 0, VarW = 1 and

E(W/|W) = (1— )W (19)

for some positive A < 1. Then for any continuously differentiable bounded
function #,

1
IER(W) — ®h| < X||h||¢Var{E[(W/ — W)2|W}
1 / / 3
+ o (W IDEGW — W

When#’ is not bounded, the above bound blows up, and as before a
more careful (and rather technical) analysis is needed. For indicators of
half intervals (for further details and other classes of functions, see Rinott
and Rotar (1997)) we have Theorem 2.5 below. It also extends the range
of applications of this approach by replacing (19) by a weaker condition,
allowing (19) to hold only approximately, with a remainder denoted by
R. The discussion of weighted nondegenerate U-statistics demonstrates the
utility of this extension.
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Theorem 2.5. Let (W, W) be exchangeable, EW = 0O, VarW = 1. Define
therv. R = R(W) by

E(W/|W) = (1 — AW + R, (20)

where A isa number satisfying 0 < A < 1. Then, for all real w,

IP(W < w) — d(w)| < ‘;war{ew — W)2W1)
VER?
A

+19

1
+6\/XE{|W’— W3l (21)
Also, if
W —W| < A

for some constant A, then

IP(W < w) — d(w)| < 172\/Var{E[(W’ — W)2|W])

VER? A3 A?
; +487+8—. (22)

+ 37
v

3. Some examples and applications

We describe some examples without proofs and details.

3.1. Local maxima and Nash equilibria

Consider the vectora = (ay, ..., a,), where each of the coordinates;
takes valuesifl, 2, ..., s}. Letalb; denote a vector which differs fromin
asingle coordinate, more precisely; = (as, ..., ai—1, b;, ait1, ..., ap),
fori =1, ..., pandb; € {1, ..., s}. Let V,, defined for alla, be iid random
variables. We say that there is a “local maximumaat V; > V), for all
possiblei andb;. Let M denote the number of local maxima. We are inter-
ested in the asymptotic distribution &f for larges andp. More generally,
for eacha define a vectoW 4 = (Vgl), el Vé”)), where again the vectors
defined are iid. We shall discuss a variety of dependency conditions on the
coordinates/®, . .., VA” within each vector.

If we consider a game witp players where/(" represents the payoff
to playeri when thep players choose the pure strategies. . ., a, respec-
tively, thena = (ay, . .., a,) is a Nash equilibrium point (in pure strategies)

if the conditionV®) > i) holds for alli an ; € {1, ..., s}. We shall study
if th ditionv,’ > v, holds for alli andb; € {1 }. We shall stud
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the numbenV of Nash equilibria. In the case th&? = ... = V4" (with
probability 1), the notions of Nash equilibria and of local maxima described
above coincide. In this case all players share the same payoff.

Baldi, Rinott and Stein (1989) computedvE= s”/[(s — D)p + 1]
(easy), and Va¥ = s”(p — 1)(s — 1)/2[(s — 1) p + 1]?, and proved that
M is asymptotically normal when either — oo or s — oo (or both).
They used a version of Theorem 2.3 with= M, andW* is constructed as
follows: choose a vertexat random. IV, is alocal maximum, seé¥* = W.
Otherwise, interchange the valuesiofat a and the largest of its values at
neighboring verticesi|b;, that is, the largest among dl;,, leaving all
otherV’s unchanged. It is easy to see that after this interchange there will
be a local maximum &. It can be shown that the resulting number of local
maxima has the right distribution fév*. Also, from the above one sees that
W andW* are close, as required.

Another possible approach to this problem is to use local dependence.
Define a distance between vectors (of strategi&@, b)= the number of
coordinates in which andb differ, and letY, take the value 1 if there is a lo-
cal maximum af, and O otherwise. TheW = ), Y,. Itis not hard to show
thatifd(a, b) >2, thenY, andY, are independent. Moreover the conditions
of Theorem 2.2 can be easily verified, with the appropriate constants, and
with the dependency neighborhoods definedWy = {b :d(a, b) < 2},
leading to results on asymptotic normality of the number of local magima

With some technical complications, the same holds for the number of
Nash equilibriav, leading to the following result from Rinott and Scarsini
(1999).

Theorem 3.1. If the components of V, = (V1, ..., Vi")) are positively
gquadrant dependent, then there exists a constant ¢, depending on the distri-
bution of V4, such that, for all z,

‘P(N_k §t>—CI>(t)

S4p4

spI2Q1/2’

<c

(23)

o

where Q = the probability of a Nash point at agivena, A = EN = s?Q,
and o2 = VarN.

This theorem is stated in Rinott and Scarsini (1999) for the special case
in which the components &f, are normal with positive correlations, along
with further results such as bounds @fand onQ, and conditions under
which the r.h.s. of (23) converges to 0, with some discussion comparing the
applicability of Theorems 2.2 and 2.3. The condition of positive quadrant
dependence is, of course, a general condition of positive dependence, for
which positively correlated normals provide an example. It can be shown
that, in the case in which the players’ payoffs are independéngnverges
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toaPoisson( = 1) variable whereas, in the case of suitably defined negative
dependence (e.g., in a zero-sum gamégonverges to 0

3.2. Functions of stationary processes and the exchangeabl e pair coupling

The exchangeable pair coupling will now be briefly explained. The reader
might wonder why and when, for a random variabife it may be a natural
to construct the require@”’ with the conditions of Theorems 2.4 or 2.5.

Following Diaconis (1989), Diaconis and Sturmfels (1998), Barbour
(1990, 1997) and Rinott and Rotar (1997), consider a stationary process
{(X®}, wherer = 1,2, ... is a time parameter, and suppose we want to
study the proximity to normality of some function of the proc&sX®).
It is then natural to choos@V, W) = (I'(X®), T(X“*+D)). As of {X?} is
stationaryW andW’ have the same marginal distributions. Exchangeability
of this pair clearly holds if the proce$X '} is reversible. A typical case is
that ofX® = (x{", ..., XV), wheren denotes the size, or dimension, of the
process, and’ (X)) = x{" + ... + X,

If W is close to normal, one may hope that the g&it, W’) is close to
bivariate normal, and then the linearity of the conditional expectatid#’of
as a function oW should hold approximately; this indicates that (20) is a
natural condition in the present setup, and one may expect the remainder
term R to be small. In factR can be viewed as a remainder term in the
expansion of the conditional expectationWsf — W, centered aW'.

The reader may now try to prove the classical CLT for the sum of iid
variablesXy, ..., X,, havingacommon cdf, by settingK® = (X1, ..., X,,),
and then obtaining “+Y from X by choosing an indek at random and
repIacingXi(’) by an independent copy with the distributiéh leaving the
other coordinates unchanged. This defines a stationary, reversible Markov
chain and, since only one coordinate changes at atime, one can hope that
andW’ will be close. Making use of (21) leads to a rate ph¥*, whereas
for bounded variables, (22) yields the rate ¢f /. While the independent
case provides a simple test case, the value of the method lies in its ability to
yield results under interesting dependence structures.

Asymptotic normality of more complex functions, suchlasstatistics
of the form

U = F(X) =Zy(X,-1, "'Xik)’

where the functiory may depend on, can be studied by the same method,
using the same process. Clearly the summands are no longer independent.
For degeneratl -statistics, thatis, wheR(E{y (X4, ..., Xy) | X1} =0 ) =

1, one obtaink® = 0in (20), otherwiseR # 0. General results giving con-
ditions for normality for the different cases, and for more general types of
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U -statistics by this method, are given in Rinott and Rotar (1997). Finally
we mention that the latter paper provides a detailed study of a case where
XY), ..., X" are dependent, denoting the states of a certain stationary parti-
cle system (the anti-voter model)ratlifferent sites at time. Although the
anti-voter chain is not reversible, further arguments lead to conditions for
asymptotic normality oiXY) + ...+ X for largen.

Remark 3.2. The reference list below is very incomplete and contains only
papers to which we referred above and a few others with further applications.
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