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Abstract: For decades, national statistical agencies and other data cus-
todians have been publishing frequency tables based on census, survey and
administrative data. In order to protect the confidentiality of individuals
represented in the data, tables based on original data are modified be-
fore release. Recently, in response to user demand for more flexible and
responsive table publication services, frequency table publication schemes
have been augmented with on-line table generating servers such as the US
Census Bureau FactFinder and the Australian Bureau of Statistics (ABS)
TableBuilder. These systems allow users to build their own custom tables,
and make use of automated perturbation routines to protect confidential-
ity. Motivated by the growing popularity of table generating servers, in this
paper we study confidentiality protection for perturbed frequency tables,
including the trade-off with analytical utility, focusing on a version of the
ABS TableBuilder as a concrete example of a data release mechanism, and
examining its properties. Confidentiality protection is assessed in terms of
the differential privacy standard, and this paper can be used as a practical
introduction to differential privacy, to calculations related to its applica-
tion, to the relationship between confidentiality protection and utility, and
to confidentiality in general.
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1. Introduction

Sharing data for statistical purposes is increasingly important. National statis-
tical agencies and other public and private institutions collect data from indi-
viduals on economic, health, social and other variables. This paper focuses on
frequency tables, which are the most common form of releasing data for use
by researchers and the public. The data custodians are obliged to keep such
information strictly confidential, not sharing or releasing any data in an identi-
fiable form. The potential for breaches of confidentiality is real. See, for example,
Sweeney (1997); Narayanan and Shmatikov (2008); Homer et al. (2008); Gym-
rek et al. (2013). Therefore, a key constraint on data sharing is the need to
protect the confidentiality of the individuals or other entities to which the data
refer. A canonical confidentiality protection problem can be formulated as fol-
lows. For given data, denoted D, how can we determine a (possibly stochastic)
transformation M(+), called a perturbation mechanism (or simply mechanism),
such that if M(D) is disseminated then confidentiality will be protected and
also the value of D for statistical analysis, called wtility, will be preserved in
M(D)?

A key issue in the development of solutions to this problem is how to de-
fine confidentiality and utility. The basic idea of utility should be more familiar
territory to statisticians. If the data are being disseminated for statistical pur-
poses, for example for estimation of various parameters, then the reduction in
utility arising from releasing M(D) rather than D might be measured in terms
of increases in the bias and variance of the resulting estimators. For further
discussion and a general framework for evaluating utility see Karr et al. (2006).
The question of how to measure confidentiality has historically been a more
specialised topic in statistics and has been considered mainly within the field
of statistical disclosure control (SDC), which has developed in association with
a long tradition of data dissemination practice by government statistical of-
fices (see Duncan, Elliot and Salazar-Gonzalez, 2011; Hundepool et al., 2012;
Willenborg and de Waal, 2001).

To protect the confidentiality of individuals in a data set D, de-identification,
that is, removing identifiers such as names, addresses, and identification num-
bers from D before its release, is standard. However, this may not prevent
a knowledgeable intruder from obtaining information about individuals in D
(O’Keefe and Chipperfield, 2013). Here is a simple example: let D represent a
t-way frequency table with counts of individuals having certain combinations of
t attributes in a certain population, or a sample from the population. Suppose
an intruder knows that there is an individual in the population with a given
combination of r of the attributes for some r < ¢, and that this individual is the
only one with this combination. If this individual is in D, and D is released, the
intruder can locate the individual on the basis of the r known attributes, and
then learn all other ¢t — r attributes.

Although there are measures of disclosure risk that have been used in prac-
tice and studied in the SDC literature cited above and references therein, all of
them are based on contestable assumptions about an intruder’s prior knowledge
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of the data and type of confidentiality attacks which they might employ. With
the evolution of approaches to data dissemination and the recognition that pro-
tecting confidentiality of respondents is becoming increasingly more difficult in
the era of data deluge, data custodians need to look for stricter definitions of
disclosure risk and a more systematic and quantifiable approach to protecting
confidentiality.

In this paper we focus on differential privacy (Dwork et al., 2006) as a way
of defining confidentiality, measuring confidentiality protection, and comparing
perturbation mechanisms. Differential privacy has recently been attracting much
attention in the computer science literature, see for example the recent mono-
graph by Dwork and Roth (2014) and its references. The idea was introduced in
a mathematically rigorous framework designed to give a well-defined quantifi-
cation of the confidentiality protection guarantee. By employing a ‘worst-case’
approach and avoiding strong assumptions about which variables are sensitive
to disclosure, intruders’ prior knowledge, and attack scenarios, differential pri-
vacy has the potential for wide application. This worst-case approach may be
deemed overprotective of confidentiality; for example, even sufficient statistics
which are usually preserved in SDC approaches need to be perturbed. However,
under differential privacy the worst-case approach is intentional as it is designed
to protect against a potentially sophisticated adversary who may take advan-
tage of a rare weakness of the release mechanism. Only time will tell whether
differential privacy as a risk measure, or some of its relaxations, will be gener-
ally adopted by official agencies. In any case, we find it very illuminating as a
framework of thinking about SDC.

Our goal in this paper is to explore and describe the application of differ-
ential privacy under a realistic and popular dissemination scenario and, on the
way, to provide a practical introduction to differential privacy for statisticians.
We shall focus on the dissemination of frequency tables in a government sta-
tistical setting, where the underlying data D are cross-classified tables of fre-
quencies. Further, in order to keep our discussion realistic, where possible we
shall model our system requirements and objectives (but not our perturbation
mechanism) on the existing Australian Bureau of Statistics (ABS) TableBuilder
system (Chipperfield, Gow and Loong, 2016).

We shall derive the results from the theory of differential privacy that are
useful to us in the most direct ways in order to keep this paper almost self-
contained and therefore will not present the theory in full generality. We shall
also present numerical work to assess the trade-off between confidentiality pro-
tection, measured via differential privacy parameters and utility, measured in
different ways, but taking account of the kinds of analyses undertaken.

In order to help to put our work in its historical context, we now give a
brief review of disclosure risk assessment and confidentiality protection meth-
ods for frequency tables, see Duncan et al. (2001); Hundepool et al. (2012);
Shlomo (2007). Disclosure risk assessment typically focuses on small cell counts
where individuals may be identified (identity disclosure) and on the possibility
that information on one classifying variable can be learnt about an individual
for whom values of other classifying variables are known (attribute disclosure)
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(Shlomo, 2007). The occurrence of counts of one in the table may be treated
as a potential problem of identity disclosure in itself but can also magnify the
threat of attribute disclosure if a second table is available cross-classifying these
variables with a further variable, leading to what may be called residual dis-
closure (Fellegi, 1972) or inferential disclosure. Traditionally, this latter type of
disclosure risk was dealt with by manual control of tables that were released.

There are two main classes of confidentiality protection methods for frequency
tables, namely, pre-tabular methods that modify microdata before aggregation
into a table, and post-tabular methods that modify a table directly. Any method
for protecting confidentiality in microdata can be used as a pre-tabular confi-
dentiality protection method, including: rounding, suppression of variables or
variable values, variable recoding, sampling, data swapping, perturbation, and
post-randomisation methods. Synthetic data (Little, 1993; Rubin, 1993) meth-
ods could also be used (Drechsler, 2012; Drechsler and Reiter, 2011). In this
approach, the original process that generated the microdata is modelled, and
synthetic microdata are generated from this model with a view to preserving
the statistical properties of the implied table.

Post-tabular methods include table redesign, cell suppression, rounding, or
addition of noise directly on the cell counts of the frequency table. Table redesign
typically refers to the combining of categories of classifying variables but it also
includes releasing only marginal and conditional tables corresponding to subsets
of the cross-classifying variables (Fienberg and Slavkovi¢, 2008). Shlomo and
Young (2008) developed a method of post-randomisation directly on cell counts
based on a probability transition matrix which is related to the differential
privacy approach presented in this paper. Perturbing the entire original data
is often called input perturbation in the differential privacy literature, whereas
perturbing responses to queries is called output perturbation.

Recently, there has been a growing demand for flexible on-line table gen-
erating servers (Thompson, Broadfoot and Elazar; Shlomo, Antal and Elliot,
2015). Typically such systems provide a menu-driven interface for producing
confidentiality-protected user-defined frequency tables of counts. These on-line
solutions of table generation increase the risk of inferential disclosure since tables
can be manipulated and differenced and hence only a few statistical agencies
have developed such systems. The server first assesses whether a table can be
released based on a set of ad-hoc rules, such as thresholds on the population
size and number of small cells, and then implements a confidentiality protection
routine to each non-zero cell of the table prior to its release. With the increased
disclosure risks, such confidentiality protection typically involves a perturbative
method, such as rounding or additive noise to the cell count which leads us to
consider the differential privacy framework.

In the differential privacy framework, a mechanism M(-) operating on datasets
is required to be stochastic, and it is this stochasticity that provides the confiden-
tiality protection, as we shall explain. From the utility perspective, a common
assumption is that statistical analysis will generally be conducted on M(D) as if
it were D itself, (however, see Section 6 and references therein, showing the risk
involved in doing this) and so utility is often measured in terms of some kind of

imsart-generic ver. 2014/10/16 file: "TB DP Revision2YR".tex date: January 3, 2018



Y. Rinott et al./Confidentiality Protection for Frequency Tables 5

discrepancy measure between D and M (D) (Wasserman and Zhou, 2010). Such
measures include the information-theoretic Hellinger’s distance, and simply av-
erage absolute difference per cell (Gomatam and Karr, 2003; Shlomo, 2007).

It is a property of differential privacy that the confidentiality protection guar-
antee does not rely on hiding the parameters of the perturbation. This fact is
reminiscent of Kerckhoffs’ principle in cryptography, that a cryptosystem should
be secure even if everything about the system, except the key, is public knowledge
(Auguste, 1883) and Shannon’s maxim in information theory, that one ought to
design systems under the assumption that the enemy will immediately gain full
familiarity with them (Shannon, 1949). As a consequence, in contrast to com-
mon practice in some official agencies, in the differential privacy framework the
full description of the mechanism M can be made available along with M (D).
The advantage of this practice is that knowledge of the mechanism allows the
user to take the perturbation distribution into account in their analysis for data
independent algorithms like those examined here, thereby avoiding potentially
misleading conclusions that might arise from ignoring the perturbations.

Methods for correcting for perturbation have been considered for microdata
on both continuous and categorical variables (Fuller, 1993; van den Hout and
van der Heijden, 2002) but do not appear to have been considered for the dis-
semination of frequency tables. A basic general idea is that the likelihood for
a parametric model for D may be naturally extended, in principle, to the like-
lihood for M(D) and so valid likelihood-based inference could be conducted
(Karwa, Kifer and Slavkovi¢, 2015). This idea will be illustrated in Section 6.

The differential privacy literature distinguishes between what are called inter-
active and non-interactive data dissemination settings. In the interactive setting,
the data custodian agency provides a system interface, typically on-line, through
which users may pose a series of queries say f1, fa, ... about a dataset D and re-
ceive a series of confidentiality-protected responses M (f1 (D)), Ma(f2(D)),. ...
The system monitors the queries, and decides based on the outputs already re-
leased, whether to stop dissemination altogether, whether to answer the par-
ticular query, and if so then the amount of perturbation to be applied. The
interactive setting is flexible and may require smaller perturbations, making
the released data more useful. On the other hand it requires monitoring of all
queries from all users for the whole time the data in question is in use, a task
that may be too burdensome for most official agencies. In the non-interactive
setting, for a dataset D, the whole data set is perturbed off-line to produce a
confidentiality-protected dataset M(D). The protected dataset can be released
as a whole, or in parts as responses to queries that can be answered as functions
of M(D). If only parts of the data are requested then it may be possible and
efficient for the agency to perturb only relevant parts of the data.

In this paper we consider only the non-interactive setting, which is closer
to the model table generating systems of interest to us. Therefore, we assume
that the whole data set is perturbed, and then the whole or requested parts are
released.

If the frequency table data D is treated simply as a set of frequency counts
of disjoint cells then this is analogous to a histogram with disjoint bins and
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is a core field of application of differential privacy methodology (Dwork et al.,
2006; Dwork and Roth, 2014; Wasserman and Zhou, 2010). The extension of this
methodology to handle the case where D also includes table margins, consisting
of sums of cell counts, and more generally, cells that pertain to overlapping
groups, will be considered in Section 7, along with relevant literature, such as
Barak et al. (2007).

The rest of the paper is structured as follows. Section 2 presents some fea-
tures of perturbations for a table generating server, which bear resemblance to
those recommended by the ABS TableBuilder system, with an example table
presented in Section 3. Section 4 introduces some aspects of differential privacy
theory for the dissemination of frequency tables. In Section 5 we define and
compare different perturbation mechanisms and present some results illustrat-
ing the trade-off between disclosure risk and data utility on the example table
from Section 3 and other simulated tables. In Section 6 we demonstrate how
to carry out correct statistical inference when the perturbation mechanism is
known to the analyst. In Section 7 we address the issue of overlapping cells
(where two cells overlap if there is at least one individual appearing in both)
and marginal counts in frequency tables and conclude with Section 8.

2. Perturbation of Frequency Tables

Frequency tables are important data products in government statistical settings,
and recently various dissemination schemes in addition to the publication of
pre-specified collections of confidentiality-protected tables have appeared. One
flexible on-line table generating system is the ABS TableBuilder (Chipperfield,
Gow and Loong, 2016; Fraser and Wooton, 2005; Thompson, Broadfoot and
Elazar). This system has attracted interest from other agencies in the context of
the protection of census outputs (Andersson, Jansson and Kraft, 2015; Jansson,
2012; Longhurst et al., 2007). While we refer to the requirements and objectives
of the TableBuilder system to motivate our assumptions, we do not attempt
to replicate its properties exactly nor do we seek to replicate its confidentiality
protection methods.

We suppose in this paper that the frequency tables contain population counts,
from a census, survey, or administrative sources. Differential privacy treats the
dissemination of census data and data arising from samples in the same way.
However, in the latter case other considerations may arise, in particular due to
the fact that when government agencies produce tables of estimated population
counts based on sample survey data, an estimated cell count is typically the
sum of survey weights across the sample units in the cell. There are somewhat
different considerations in the potential application of differential privacy ideas
to such survey-based tables and we shall only return to comment on this possible
extension in the final section of the paper.
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2.1. Some Terminology and Notation

In this section we introduce some terminology and notation. First, we remark on
our use of the terms confidentiality and privacy. This paper deals with the con-
fidentiality of data held by a national statistical agency or other data custodian,
as described in the SDC literature, and we use the term confidentiality in that
context. In the computer science literature, the term differential privacy is used
to mean a particular way of defining a standard of confidentiality protection,
and the term privacy is used in association with that. To be consistent with the
differential privacy literature, we will use the term privacy in the context of the
differential privacy theory.

Consider a data set in the form of a frequency table or a set of tables, where
each cell is defined by values of a given fixed set of attributes. The collection
of all frequencies that could be released is arranged in a list a = (ay,...,ax)
consisting of K cells in some order, where aj, denote the frequency in cell k, that
is, the number of individuals taking the attribute values corresponding to the
cell, for k =1,..., K. The list a will be released after undergoing a perturbation
in order to preserve confidentiality. If, for example, the data consists of a 10-
way table, the list may include all interior cells, and also some marginal tables,
or only some marginal tables. Marginal tables are computed by aggregating
interior cells, and we shall see later why both marginal and interior cells may be
included in the list. It is thus possible that different cells in a list might refer to
overlapping subsets of individuals, that is, some individuals may appear in more
than one cell. A typical example is a situation where an agency holds a 10-way
table, say, but will release only 3-way marginals, and the cells of these marginals
(unperturbed) will comprise the list to be perturbed and released. In this case
the list a will consist of all K = (130) = 120 three-way tables formed as marginals
of the 10-way table. The set A of possible or potential lists a = (a1,...,ax) is
called the universe and may include lists with different values of K. We shall
suppose that all elements of lists in A are non-negative integers. The universe
is determined by the agency’s decision on which parts of the data are to be
released. If the agency knows the whole population from which the table to be
released is drawn, and the way the data were collected, then the nature of the
universe is clear. If not, then the agency has to rely on known ranges of the
attributes and possible cell sizes, and perhaps some other information, when
considering the universe. The universe plays a major role in providing privacy
to microdata, and the case of histograms or tables is much simpler.

We consider a mechanism M(-) on a universe A that replaces the list a =
(a1,...,ax) by the perturbed list to be published M(a) = b = (b1,...,bk)
containing perturbed frequencies bx. In this paper we consider mechanisms that
are random functions. The mechanism can be represented by a conditional prob-
ability distribution, denoted p(a, b), the conditional probability that the list a is
perturbed to b. In general we shall assume that different cells are perturbed in-
dependently and by the same conditional distribution p(ag, by) for k =1,..., K,

and then p(a,b) =[], p(ax, bx).
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2.2. Some Properties of the ABS TableBuilder

The ABS TableBuilder, which we use as a model for table generating servers,
has been evolving and its description varies in different papers. Chipperfield,
Gow and Loong (2016) describe a list as a above. In principle all perturbations
of a could be applied in advance, and the whole perturbed list could be released,
however for efficiency’s sake perturbations may be applied when users submit
queries, using a lookup table whose random values are drawn in advance. There
is no monitoring of queries, and from the differential privacy point of view which
holds in this paper, this is a non-interactive setting. According to Fraser and
Wooton (2005) different cells are perturbed independently, unless the cell counts
are associated with the same underlying set of individuals. If two cell counts do
in fact correspond to the same group of individuals, then the ABS TableBuilder
requires that the perturbed value is also the same. In this method, this ‘same-
participants-same-perturbation’ property is implemented in a straightforward
manner by attaching a random key drawn from some continuous distribution
to each individual in the population underlying the data, and a cell’s key being
the sum of the keys of its members. This cell key is used as a seed for the
random perturbation mechanism. This guarantees that two cells based on the
same group of individuals will be perturbed by the same seed to the same value,
and in particular that if a cell is requested by two different users, they will
receive the same perturbed output.

The ‘same-participants-same-perturbation’ property is aimed at preventing
repeated queries on the same group with independent perturbations, which can
be averaged to reduce the noise and thus leak information. However, as we
shall see, the ‘same-participants-same-perturbation’ property will have to be
abandoned if differential privacy is adopted. We explain it here informally by
demonstrating a scenario of confidentiality breach that results from this princi-
ple. As often happens, the scenario below may seem extreme, but it can be made
to seem more realistic, as can be seen in examples in Willenborg and de Waal
(2001) such as Table 6.3 on page 148.

The worst-case approach of differential privacy avoids having to consider dif-
ferent kinds of scenarios and how realistic they are. Suppose our data D is about
a given group, say workers in a factory, and an intruder wishes to obtain infor-
mation about the salary of a particular person, say Bob, the only worker hired
today. Suppose the following two queries are allowed: 1, the frequency of workers
whose salary exceeds s, and 2, the frequency of workers whose salary exceeds s,
and who have been working for more than one day. Suppose the responses (with
perturbation) to the two queries are different. Under the ‘same-participants-
same-perturbation’ principle Bob’s salary must exceed s, and thus new infor-
mation was obtained due to Bob’s participation in D. We will demonstrate the
breach of differential privacy later, after defining it formally in Section 4.1. In
the above scenario we obtained the information only because the two groups de-
fined by 1 and 2 above could have been the same (which was not the case here,
since we assumed different responses to the two queries). This is one indication
why the universe A must be taken into account, and not just the realised data
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or list.

This breach can be avoided if two queries with different descriptions as shown
in 1 and 2 above are perturbed independently, and the principle is modified to
‘same-participants and description-same-perturbation’. A similar scenario ap-
pears in Chipperfield, Gow and Loong (2016), leading them to the above mod-
ification of the principle. However this modification opens the possibility of
submitting queries for the same group in different ways, and averaging to can-
cel the perturbation noise. It may perhaps be possible to circumvent the whole
problem, and in particular such an averaging attack, by setting rules on the
structure of the list a and queries’ formulations which prevent the possibility
of referring to the same group in different ways. An example of such a rule is
a restriction on the structure with respect to sparseness, e.g., the number of
zeros (and sometimes also ones and twos) that may cause a margin to equal an
internal cell.

Some additional properties of a protection method for a frequency table dis-
semination server that are similar to those of the ABS TableBuilder are set
out below. The first three properties address disclosure risk concerns, via either
avoiding small cells, such as counts of one, and setting a criterion to minimize
risk for given utility. The remaining five properties address utility, via being
broadly concerned with either preserving important features of the original ta-
ble or reducing differences between the original and perturbed tables.

1. The perturbation does not produce values below a specified threshold,
that is p(ak, bx) = 0 if by, < ¢ for a specified value ¢ > 0, for any value of
ag.

2. The distribution of b, given a; has maximal entropy subject to constraints

on the range and variance of the perturbation.

Sparse tables according to given thresholds are not published.

The perturbed frequencies are non-negative integers, that is, by > 0.

5. Structural zeros, that is, counts of attribute combinations that are impos-
sible to observe in the population, are not perturbed.

6. The perturbations are unbiased, that is, the expected value of by given ay
equals ay.

7. The variance of b, given ay is constrained not to exceed a given value.

8. The distribution of by given ay is truncated by imposing a bound on |b;, —
a|, the absolute difference between the perturbed and original values.

=~ W

We remark that these properties are not all consistent, for example, properties
4 and 6 are generally contradictory. As discussed later, some of these properties,
such as 1, 2 and 4 above, may not be advantageous under the differential privacy
framework. They may well be justifiable if other risk measures are considered.

3. Example of Frequency Table

In order to provide a realistic example, we selected the following variables used
in data from the 2001 census in the United Kingdom (UK):
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TABLE 1
Typical user-specified sub-table of a larger frequency table (interior cells only) for NUTS2
Region = 1 and Country of birth = rest of Europe. The variables of interest are Age in
banded 5-year groups from 15 to 74, and Occupation classified as one of A,... K.

Age group Occupation

A B Cc D E F G H I J K
15-19 2 2 8 7 31 0 7 2 20 0 80
20-24 55 68 110 54 134 0 23 13 138 2 129
25-29 115 147 132 78 83 0 19 15 45 0 18
30-34 191 129 127 89 68 0 18 8 33 4 10
35-39 153 113 119 74 49 1 34 15 44 4 9
40-44 102 70 78 70 43 1 20 21 24 3 8
45-49 94 65 55 72 47 2 29 16 36 4 14
50-54 92 81 75 80 65 1 43 17 36 1 8
55-59 74 51 56 64 72 2 49 21 67 2 13
60-64 63 41 40 70 53 3 22 22 56 4 59
65-69 12 5 7 3 12 0 6 4 8 2 287
70-74 4 4 1 5 4 0 2 1 4 0 307

NUTS2 Region - 11 regions

Gender - 2 categories

Age in banded 5 year age groups - 21 categories
Current Employment Status - 5 categories
Occupation - 12 categories

Educational attainment - 9 categories

Country of birth - 5 categories

Here the NUTS (Nomenclature of Territorial Units for Statistics) is a hierarchi-
cal system for dividing up the economic territory of the European Union and
NUTS2 comprises basic regions for the application of regional policies, defined
for the purpose of socio-economic analyses. We generated a 7-way frequency ta-
ble by multiplying each of the UK 2001 census proportions by N = 1,500, 000,
to obtain a table that mimics a real population of size N.

In Table 1 we present a realistic example of a sub-table of the 7-way frequency
table that might be requested by a user. The sub-table is defined by fixing
NUTS2 Region = 1 and Country of birth = rest of Europe, and requesting a
2-way frequency table of counts for occupation, and age groups from 15 to 74.

Table 1 has some small cells, that normally have high associated disclosure
risks. We will use this table (in addition to some simulated tables) later , in order
to illustrate the implementation of our confidentiality protection approach.

4. Differential Privacy for Frequency Tables
4.1. Basic Ideas and Definitions

We review the basic definitions of differential privacy associated with releasing
data sets consisting of lists of counts. As indicated in Section 1, privacy loss
occurs when an intruder can learn from the perturbed list M(a) about an indi-
vidual contributing to the original list a. We consider a randomized mechanism
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M (a) that produces a random value b, the perturbed value of a, with probability
P(M(a) = b) depending only on the mechanism M. Roughly speaking, differ-
ential privacy requires that the distribution of M(a) remains almost unchanged
when any single individual is removed from the list a. This guarantees that a user
of M(a) cannot infer the presence of any particular individual in the data set,
and therefore nothing can be learnt about any individual. We denote the range
of the perturbation of a € A by B(a), that is, B(a) = {b : P(M(a) = b) > 0}.
Then B(a) C B, the range of M, and when B(a) does not depend on a, we
have B(a) = B. In this paper A = B is assumed, that is, the perturbed list of
frequencies has the same structure as the original one. For lists a, a’, we write
a ~ a’ and refer to a and a’ as neighbours, if a’ can be obtained from a by
adding or removing exactly one individual.

We may measure how much can be learnt about individuals by the likelihood
ratios P(M(a) = b)/P(M(a’) = b) for a ~ a’. It is the ratio of the intruder’s
likelihoods for observed b under a or a’ considered as parameters. The use of
likelihood ratios to measure how much can be learnt about individuals after
their data are perturbed by a randomized mechanism may be viewed as a gen-
eralization of the method of randomized response proposed by Warner (1965)
to protect the privacy of a respondent’s answer in a survey. The likelihood ratio
could alternatively be viewed as a posterior odds ratio, or Bayes factor, from a
Bayesian perspective (Berger, 1985).

Placing a bound on this likelihood ratio motivates the definition of e-differential
privacy, which we denote by DP(¢). We specialise the definition to lists as fol-
lows.

Definition 1. (Dwork et al., 2006) A mechanism M satisfies e-differential
privacy if for all neighbouring lists a,a’ in A, and all subsets S C Range(M) =
B, we have:

P(M(a) € S) < e“P(M(a') € S). (4.1)

Since in our setting Range(M) is discrete, we can use the simpler condition
that M satisfies e-differential privacy if for all neighbouring lists a,a’, and all
lists b we have:

P(M(a) = b) < e*P(M(a’) = b). (4.2)

As the neighbourhood relation is symmetric, we can equivalently say that the
mechanism M satisfies e-differential privacy if for all perturbed lists b and
neighbouring a and a’

e * <P(M(a) =b)/P(M(a’) =b) < €. (4.3)

For small e this guarantees that the distribution of the released data is not
affected by the data of a single participant in the data set, and therefore he
can feel safe that his participation and his particular profile is not reflected
in the released data. In the words of Dwork (2006): “A mechanism satisfying
this definition addresses concerns that any participant might have about the
leakage of her personal information: even if the participant removed her data

imsart-generic ver. 2014/10/16 file: "TB DP Revision2YR".tex date: January 3, 2018



Y. Rinott et al./Confidentiality Protection for Frequency Tables 12

from the data set, no outputs (and thus consequences of outputs) would become
significantly more or less likely.”

If there is a very large or small value of the ratio P(M(a) = b) /P(M(a’) = b)
for given a ~ a’ and some observed b, then a typical, albeit extreme scenario
for a confidentiality breach is the following: suppose an intruder knows the
whole original unperturbed list except for one targeted individual. Suppose the
intruder wants to know on the basis of M(a) whether the targeted individual is
in the given list a and if so, in which cell. Denoting the known (to the intruder)
list without the target by a*, the intruder computes the distribution of all M(a})
where aj, is the list a* with the targeted individual added to cell k in the list.
Note that the intruder is computing the distribution of the output of M on
lists that are known to him. Under DP(g) with a small €, all these distributions
will be approximately the same, making inference on whether and where the
target is in D difficult. Otherwise, an output M(a) that is very likely if a = aj,
suggests that the targeted individual is in cell k, and his privacy is violated.

Note that ‘all S” in the DP(e) definition refers to all possible subsets S of B.
Thus, the definition does not only refer to the realised outcome b observed by
the intruder but rather to all possible outcomes of the perturbation in 5. In this
sense DP(¢) can be viewed as a ‘worst-case’ requirement, and the definition refers
to the mechanism and is applicable at the stage of designing the mechanism
before the perturbation has taken place.

We briefly discuss the example of Bob from the second paragraph of Section
2.2. We consider a mechanism with non-degenerate independent perturbations
for cells representing different sets of individuals, and satisfying the principle of
‘same-participants-same-perturbation’. Consider the list a containing cells that
contain Bob, and let a; be the frequency of workers whose salary exceeds s,
and ay the frequency of workers whose salary exceeds s, and who have been
working for more than one day, so it differs from a;. Let b = M(a) where
the coordinates of b correspond to the perturbed coordinates of a. Since the
groups pertaining to a; and ay are different, the latter frequencies are perturbed
independently, and as we obviously consider non-degenerate perturbations, it is
easy to see that P(by # bg) > 0. Let a’ represent the same list apart from
Bob, and set b’ = M(a’). Then the corresponding cells satisfy a} = af and the
‘same-participants-same-perturbation’ principle implies P(b} # b)) = 0. For the
set S = {b: b # by} we see that (4.1) does not hold, and differential privacy
does not hold for any e.

As we shall discuss, a key challenge with the differential privacy requirement is
the possible effect on utility. We introduce two relaxations of differential privacy
that seek to reduce confidentiality protection in a controlled way, in order to
gain utility. Both of these relaxations will be used later in the paper.

The most widely known relaxation of the definition of differential privacy
for M, which may result in enhanced utility, is (g, d)-differential privacy, or
DP(e,d) (Dwork and Roth, 2014, Definition 2.4), under which

P(M(a) € S) < e P(M(a’) € S) + 6 (4.4)
for all subsets S of the range of M and neighbouring a and a’ in A. The pa-
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rameter 0 adds flexibility by allowing the randomly perturbed list to have a
probability of § of having an undesirable likelihood ratio with associated higher
disclosure risk. Clearly DP(e,0) = DP(e). An alternative relaxation of DP(g)
requires the likelihood ratio to be bounded by €%, as in (4.1), across a set of pos-
sible outcomes with probability at least 1 — 4. As a definition, (&, d)-probabilistic
differential privacy is satisfied if P(M(a) € G(a,a’)) > 1—dforalla~a’' € A,
where

G =G(a,a') = {b € B(a) : P(M(a) = b)/P(M(a') =b) < ¢},  (4.5)

and 0/0 is defined to be 0. Closely related definitions can be found in Gotz
et al. (2012); Machanavajjhala et al. (2008). We give the proof of the following
Lemma for completeness, since it will be used later in the paper.

Lemma 1. (Gotz et al., 2012) If a mechanism M satisfies (g,0)-probabilistic
differential privacy then it also satisfies DP(e,d).

Proof. Suppose M satisfies (g,0)-probabilistic differential privacy, and let C
denote the complement of G in B(a). For a subset S of the range of M and for
neighbouring lists a ~ a’, we have:

P(M(a) € S) > P(M(a)=b)+ Y PM(a)=Dh)
beSNG besSnC
< Y EPM(@)=b)+ Y  P(M(a)=Db)
besSNG besnC

< eP(M(a’) € S) +4,

where the first inequality follows from the definition of the set G and the second
from the definition of (e, §)-probabilistic differential privacy. O

In the differential privacy literature it is stated that § should be smaller
than 1/N where N is the total number of individuals in the protected data
(Dwork and Roth, 2014). The reason is that if 6 = 1/N then a mechanism
that chooses one individual at random and just releases her data without any
perturbation, would satisfy DP(e,d) for any e. Releasing the data of a single
individual is indeed inappropriate, but a realistic perturbation mechanism, even
with § > 1/N, would not really enable this. Indeed, § > 1/N means that the
probability that the likelihood ratio of (4.3) will be outside the defined desirable
interval is larger than 1/N. If this happens then testing whether the data set in
question is a or a neighbouring a’ may have a higher power than we would like,
but that does not necessarily amount to releasing the unperturbed data of some
individual. Extending this reasoning to the need to avoid releasing the records
of a small number of database participants, typically it is desirable to have the
value of § smaller than the inverse of any polynomial in the size of the database
(Dwork and Roth, 2014, p18). See Steinke and Ullman (2016) for consideration
of some utility implications of reducing the value of §. Another implication of
(4.4) is that with probability J, the whole data set may be released unperturbed.
This can be considered a drawback in the definition (4.4) of DP(e, §), suggesting
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that § should be small, and again, the DP(e,§) mechanisms described in this
paper never release the whole unperturbed data set.

We refer to € and § as the DP parameters. The choice of their values should
take into account a balance between confidentiality and utility, and perhaps the
sensitivity of the information in data; for example, certain health variables may
be much more sensitive to disclosure than, say, height and weight, and sensitive
variables may require more protection, reflected by smaller DP parameters. Val-
ues like £ = 0.1 and § = 0 guarantee a likelihood ratio of €%! = 1.1 making it
very hard to tell whether a particular individual is in the data set. However, it
seems that in practice, larger values of the parameters will be required if we are
to preserve the data utility. In some settings, the data custodian may consider
that it is sufficient for the mechanism to ensure that no adversary could have
more than limited evidence that a target individual’s data is in the dataset.
Evett et al. (2000) propose verbal summaries of ranges of values of a likelihood
ratio, in particular interpreting values between 1 and 10 as ‘limited evidence’.
A threshold of 10 for the likelihood ratio, implying a value of € of In(10) = 2.3,
would therefore ensure that such an objective is met, that is that that no ad-
versary could have more than limited evidence that a target individual’s data
is in the dataset.

Machanavajjhala et al. (2008) consider data on commuting patterns of the
population of the United States. In their experiments they use § = 0.00001 and
€ > 4, which seem rather large. The Netflix dataset is considered by McSherry
and Mironov (2009), where for application of the Laplace mechanism ¢ is chosen
to be of the order of 1, and § is zero. In all cases, the selection of ¢ (or ¢) is
a policy decision, not a statistical decision. However, policy makers are not
experienced in choosing DP parameters in practical contexts, which points to
the need for additional research. Our view regarding DP parameters is that even
in cases where they are not small enough to guarantee privacy at a desirable
level due to a compromise with utility, they are still useful in comparing different
perturbation schemes and selecting an efficient one.

Recall that two lists a and a’ in A are neighbours if a’ can be obtained from
a by adding or removing a single individual. Given a universe A, let d denote
the maximum number of cells in which two neighbours, a and a’ can differ. If
each individual appears only in a single cell, then d = 1, as one cell frequency
decreases by one when an individual is removed from the cell, and increases by
one if an individual is added to the cell. The number d will play a role in utility
computation, see Section 7, with a larger d leading to smaller utility. Other than
in Section 7 we assume throughout that d = 1, which occurs, for example, if the
data to be released consist of the interior cells of a standard frequency table.

Since the presence of an individual in a data set is unlikely to be inferred under
small DP parameters, participation in any past or future data set is unlikely to
increase the individual’s risk. In other words, the data environment in which
the perturbed data set is released is irrelevant to the confidentiality guarantees
under differentially private release with small parameters. On the other hand, if
an intruder can learn certain attributes of an individual with high probability,
he can later try to use these attributes to find the individual in other data sets
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and obtain further information about them. In this case the environment may
matter, and if individuals in the data set appear in other data sets, past or future,
the risk may increase. If the DP parameters of different perturbation schemes
are not small, and they are used for comparing confidentiality protection in
different data sets, one has to take the environments into account, and compare
only files which have similar environments. In this paper we focus on using the
DP parameters to compare different perturbation mechanisms operating on the
same file, thus avoiding this additional issue.

4.2. Utility/loss Functions and the Exponential Mechanism

As mentioned above, differential privacy is defined as a property of a mecha-
nism. Various candidates for differentially private mechanisms M(-) have been
proposed in the literature, see for example Dwork and Roth (2014). We shall
consider some alternative choices that might be suitable for implementation in
table-generating servers, specifically those that are cases of the general ‘expo-
nential mechanism’ (McSherry and Talwar, 2007). Informally, the exponential
mechanism is defined with respect to some utility function u which assigns a
utility score to possible perturbed values so that the mechanism is more likely
to produce values with higher utility scores (see Dwork and Roth, 2014).

The exponential mechanism includes the perturbation mechanisms which we
shall apply in the remainder of this paper. The approach starts by specifying a
utility function u(a, b), measuring the utility of the perturbed list b given the
original list a. Following Dwork and Roth (2014), we shall generally consider
additive utility functions of the form u(a,b) = Zle v(ag, br). As we shall see,
this additive form enables us to specify a mechanism which ensures that the
K cells in the list are perturbed independently. Statisticians are familiar with
loss functions, so we start with examples of those, and then transform them to
utilities by a sign change. The loss functions we shall use are:

K
6 = hab) =" lax — by

M= T

by = fl(a,b) =) (ap—by),
k=1
K
by = Ls(a,b) =" |var —V/byl.
k=1
The utility functions considered in this paper are u; = —¢; for i = 1,2, 3.

As loss functions, #1 and /o are natural and standard. The loss /3 is remi-
niscent of Hellinger distance. It has the intuitively appealing property that the
loss varies with the size of the perturbed cell: for example, the same loss of 2
is incurred by perturbing 0 to 4, 100 to 144 and 10000 to 10404. This is in
contrast to ¢; for which the perturbation from 10000 to 10404 has a higher loss.
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Although as a loss function ¢3 seems very reasonable, and we use it to demon-
strate some points, we shall see that it does not turn out to be very useful in
practice when using the exponential mechanism for protecting frequency tables.
Note that the Hellinger distance, (Ele(\/CT — V/bi,)?)Y/2, proposed as a loss
function in Shlomo (2007), is not of an additive form.

To describe the exponential mechanism, consider mechanisms where the range
of b, denoted by B as before, does not depend on a, that is, every b € B
satisfies P(M(a) = b) > 0 for all a. This assumption will be modified later. The
exponential mechanism is defined by

given a choose b € B with probability proportional to e™(&P)/Au (4 ¢)

where 7 is a specified value, depending on the DP parameter ¢, and the scale
factor Au is

_ - /
Au = max max |u(a,b) —u(a’, b)|. (4.7)

It is easy to see that this mechanism attaches higher probability to perturbed
lists which have higher utility. In this paper we consider only additive utility
functions of the form u(a, b) = Ele v(a, by), and the case where the K cells in
the list are perturbed independently and the probability that list a is perturbed
to b is

K K
Pa.b) = [] plax.by) o [[ emviemto/an = gmtap)/an,
k=1 k=1

where p(ag, by) is the probability of a cell of size ay, being perturbed to by. Inde-
pendent perturbations are simple to apply and to analyse, and we focus on such
perturbations in order to keep the discussion within the framework of the ABS
TableBuilder. We provide some references on dependent perturbations in Sec-
tion 7. For example, implementation of the method proposed in Li et al. (2015)
requires additional work from the releasing agency and/or the data user, which
may be prohibitive in practice. Moreover, in Section 6 we discuss data analysis
that takes the perturbations into account, assuming their distribution is known.
Such an analysis, which is usually nontrivial, is facilitated by the assumption of
independent perturbations and may become too complex otherwise. However,
independent perturbations may have a negative effect on utility. For example,
if one cell in the list to be perturbed consists of a marginal count, that is, the
sum of some other cells, then this additive relationship will generally not hold
after independent perturbations have been applied.

A key property of the exponential mechanism is that DP(e) holds for a suit-
able 1 depending on ¢ in a simple way. The following result is Theorem 3.10
in Dwork and Roth (2014), where the proof is given. We mention again that in
Theorem 4.1 we assume that the range of M(a), denoted by B, does not depend
on a. This result shows that under any such exponential mechanism we obtain
DP(e) by choosing n = ¢/2.

Theorem 4.1. Let u be a utility function and M a perturbation mechanism such
that P(M(a) = b) is proportional to es“@P)/2A% for qll possible lists a € A and
perturbed lists b € B. Then M is DP(g).
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Proof. For a,a’ € A and b € B we have
P(M (a) — b) { 65u(a,b)/2Au } / esu(a',b)/QAu
P(M (a/) —_ b) - EbeB ecu(a,b)/2Au ZbeB ecu(a’,b)/2Au
esu(a,b)/QAu ZbEB eau(a ,b)/2Au c
ecu(a’,b)/2Au ZbGB ecu(a,b)/2Au -

Using |u(a,b) — u(a’,b)| < Auw, it is easy to see that each of the two terms in
the latter product is bounded by e/2, and the result follows. O

Recalling that d denotes the maximum number of cells in which two neigh-
bours, a and a’ can differ, consider, for example, the case that all cells pertain to
disjoint sets of individuals, as in a standard frequency table, and therefore d = 1.
As shown in Section 5 we have for u; and us, as defined above, Au; = Auy =1
and with perturbations truncated by m we have Aus = 2m + 1. Therefore,
apart from the assumption that d = 1, the exponential mechanism under these
u; does not depend on the structure of the data list, such as the cell sizes and
the number of cells. This holds for any d with a suitable adjustment of Aw,.

4.3. Truncated Cell Perturbations

Recall from Section 2.2 that it can be desirable in terms of increased utility
to truncate cell perturbations by setting |ay — bg| < m for some m, for all k.
In this case, the range of M(a), denoted by B(a), will depend on a. Theorem
4.2, a variant of Theorem 4.1, demonstrates that the increased utility provided
by the truncation is achieved at the cost of relaxing DP(e) to DP(e,d) with
0 > 0 depending on the truncation bound m and the utility function w. With
an additional assumption on the utility « in Theorem 4.2, which holds for the
examples considered in this paper, the exponent is not divided by 2 ( = € rather
than €/2 as in Theorem 4.1) implying a smaller spread of the perturbation
in addition to the truncation by m. Consistent with these adjustments, the
definition (4.7) is replaced by

o o . /
Au = Au(a) = b.Ig%a();/)aLnﬁéA |u(a,b) —u(a’,b)|. (4.8)

Note that (4.7) is a special case of (4.8) where for all a we have B(a) = 5.

Theorem 4.2. Let u be a utility function of the form u(a,b) = g(a —b) for
some g, and M a perturbation mechanism such that P(M(a) = b) is propor-
tional to e=“@P)/Av for gl possible lists a € A and perturbed lists b such that
lap — bx] < m < oo for all k, and otherwise P(M(a) = b) = 0, and Au is
given in (4.8). Assume also that for all a ~ a', P(M(a’) = b) = 0 implies
P(M(a) =b) < 4. Then M is DP(g,0), with 6 =0 when m = co.

Proof. Let a ~ a’ be neighbouring lists and let b € Range(M). Clearly, we
can assume b € B(a) as otherwise P(M(a) = b) = 0 and (4.9) holds triv-
ially. If P(M(a’) = b) = 0 then P(M(a) = b) < ¢ so that P(M(a) = b) <
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efP(M(a’) = b) + § as required. If P(M(a’) = b) > 0 then

P(M(a) =b) ecu(ab)/Au ecu(a’,b)/Au
P(M(a') = b) {W} / 5w [ 49

eeu(a b)/Au

A <
where the second equality follows from the fact that the tWO sums in the
denominators cancel since Y3, <, €7 = 3T ) does not de-
pend on a, and the last inequality follows from |u(a,b) — u(a b)| < Auw.
Thus M(a ) = b € G(a,a’), where G(a,a’) is defined in (4.5). It follows that
P(M(a) € G(a,a’)) > 1 — §, and the result follows from Lemma 1. O

We now demonstrate the calculation of the value § when applying Theorem
4.2. Suppose we wish to impose a bound m on |b — al, the difference between
the perturbed and original value so that p(a,b) = 0 for |b — a| > m. Here and
in all our applications we assume also that p(a,b) > 0 for |b — a] < m. For
neighbouring a,a’, P(M(a’) = b) = 0 and P(M(a) = b) > 0 occurs when the
value in a particular cell, say j, of ais a+1 and that of a’ is a, and all other cells
of a,a’ are equal. We have p(a+1,a+14+m) >0and p(a,a+1+m)=0and
therefore, if cell j of b has the value a + 1 +m then P(M(a’) = b) = 0. With a
similar argument for p(a,a — m), we claim that the exponential mechanism of
Theorem 4.2 is DP (g, §), with

0 = max{maxp(a+1,a + 1+ m),maxp(a,a —m)} = p(m), (4.10)

where the p(m) = p(a,a + m), the probability that the perturbation takes
its maximal value m, which for the symmetric utilities we consider equals the
probability of —m. In fact, in the above case, if a,a’ differ as above in cell j,
and b; = a; + 14 m, then

P(a,b) <4 Hp(ak,bk) <. (4.11)
k#j

Thus for any such b we have P(M(a) = b) < ¢ as required in the theorem.
Note that there may be a considerable slack in the second inequality of (4.11),
implying that the § parameter in differential privacy could be much better, that
is, smaller than stated.

4.4. Post-Processing and Negative Perturbed Values

In general, agencies will be reluctant to disseminate perturbed tables with nega-
tive frequencies. However, as our brief discussion below shows, this policy should
be reconsidered if differential Privacy is to be adopted. Our proofs of DP allow
negative values, but as we shall see, the same DP level continues to hold if all
negative values are replaced by zeros. We show below that negative values may
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be useful and informative in various ways and that information may be lost by
replacing negative values by zero.

If the perturbations are unbounded, as in Theorem 4.1, then M(a) may have
negative cells for any a depending on the utility u. This is the case for our main
examples, u; and us under the exponential mechanism. If the perturbations are
truncated by m as in Theorem 4.2, then cells with a < m may be perturbed to
a negative b. Negative values are required to achieve unbiasedness of the per-
turbed data. Unbiasedness is clearly desirable on its own, and when computing
marginals as sums of perturbed interior cells, unbiasedness implies that the per-
turbation would cancel rather than accumulate. Therefore, it seems reasonable
to allow release of negative values, and advise users to consider replacing them
by zeros at a suitable stage of their analysis, e.g., after computing marginals or
merged cells from interior cells.

However, if publishing data with negative perturbed frequencies is not ac-
ceptable for some reason, the data releasing agency can just report all negative
values as zeros. This will effectively replace the perturbed value b by a value
closer to the original count a since counts obviously satisfy a > 0. More gener-
ally, if for some reason an agency wishes the released entries of the list to satisfy
some constraints such as b > ¢ for some ¢, it can replace all smaller values by c.
Such post-processing preserves differential privacy, see Proposition 2.1 in Dwork
and Roth (2014). To see this in the current context, let M(-) be a DP(e, §) mech-
anism and let f be any function not depending on the unperturbed data, such
as the function that maps negative values to zero. Then f(M(-)) is DP(e,0),
since

P(f(M(a)) € S) = P(M(a)e f1(S)) < eP(M(a’) € f1(S)) +4
EP(f(M()) € S) + 6.

Another common post-processing step performed on perturbed tables is the
application of an algorithm to ensure that each marginal cell value equals the
sum of the corresponding cell values. This would occur if the marginal cell
value is perturbed separately from the internal cell values (see Section 7). Such
post-processing after a DP perturbation would not affect the differential privacy
property of the table.

4.5. Zero Cells

Structural zeros are cells representing combinations of attributes that are known
to be impossible and have an expected value of zero, for example, in Table 1,
children under the age of 14 are not in the labour force. There is no need to
publish them since their value of zero is known a priori, and hence there is no
need to perturb them if published. We shall simply assume that our lists do not
contain structural zeros.

In the case of non-structural zeros, there may be an impression that such
zero cells do not constitute a disclosure risk, since an empty cell cannot reveal
information about anyone. However, consider the following scenario: suppose
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the intruder wishes to know the health status of a targeted individual, who lives
in a certain area and is in a known age group. Suppose the intruder knows that
excluding the targeted individual, there is no individual having the given disease
in this area and age group. If non-structural zeros are not perturbed, and if the
targeted individual does not have the disease then the corresponding cell would
be empty in the released data. Observing a zero in this cell, the intruder can
conclude that the targeted individual does not have the disease. This is reflected
in differential privacy as follows. Consider only the cell in question, as if this is
the whole list. If zeros are not perturbed then P(M(0) = 1) = 0 while P(M(1) =
1) > 0. Taking S = {1} in (4.4) we can have P(M(1) = 1) < efP(M(0) = 1)+§
only with 6 = P(M(1) = 1), and in general there is no reason for this value to
be small. Note that neighbouring lists can differ in the above way in a given
cell.

Therefore we conclude that non-structural zeros should be perturbed. Con-
straining the perturbed values to be non-negative can introduce statistical bias.
Unless p(0,0) = 1, there is a positive bias, and p(0,0) = 1 implies that zeros are
not perturbed. It is straightforward to verify that DP(e) cannot be satisfied if
p(0,1) = 0 and p(1,1) > 0. On the other hand, if we relax to DP(e,d) then we
need a condition such as p(1,1) < ¢ which seems very undesirable for small 4.
Thus differential privacy and unbiasedness are contradictory, unless release of
negative values is allowed.

4.6. Summary of implications of the structural constraints discussed

The implications of the three different types of structural constraints considered
in this section are summarized as follows.

First, it may be desirable to truncate the cell perturbations, as in Section 4.3.
However, the increase in utility provided by the truncation is achieved at the
cost of relaxing the confidentiality protection standard from DP(g) to DP(e, ),
where § > 0 depends on the truncation bound m and the utility function .

As described in Section 4.5, structural zeros need not be published and hence
do not need to be perturbed. We have demonstrated that non-structural zeros
may be informative to intruders and therefore must be perturbed.

Finally, consider the treatment of cells that become negative after perturba-
tion, as in Section 4.4. Such negative values should be released since they may
be informative, and replacing them by zeros will introduce bias. Users should be
advised to consider replacing them by zeros at a suitable stage of their analysis.

5. Examples of Exponential Perturbation Mechanisms

In this section, we study in more detail three special cases of the general ex-
ponential mechanism introduced in Section 4.2. We discuss the nature of these
mechanisms, compare their differential privacy properties and illustrate numer-
ically the utility consequences of the different choices of differential privacy pa-
rameters. The three special cases are easy to explain and implement in practice.
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For an alternative optimal perturbation mechanism that may perform better
than the Laplace and Gaussian mechanisms, but is more complex, see Geng
and Viswanath (2016).

5.1. Laplace Perturbations

Corresponding to ¢; in Section 4.2, we have the utility function u; = uq(a,b) =
- Zle lar, — br|. We first consider perturbation without truncation. To con-
struct an exponential mechanism as in Equation (4.6), we need to determine
Auq. Assume for now that each individual appears in the list only in one cell
and therefore when one individual is removed or added relative to the list, only
one cell count changes by 1. This assumption will be removed later. In terms of
d defined above as the maximal number of cells in which two neighbours, a and
a’ can differ, we have d = 1. It follows readily that Au; = 1. We remark that
the maximum appearing in (4.7) is attained in the case of Au; for all a, a’, b
so here the worst case is typical. This is one explanation why the exponential
mechanism constructed from w; is very efficient for frequency tables.

Under this choice of utility function, the exponential mechanism becomes a
discretised Laplace perturbation distribution, or a symmetric geometric distri-
bution having probability p(a,b) of perturbing a cell count a to b given by

p(a,b) = ée—f“’—“', a=0,1,..., b=0,+1,+2, .... (5.1)
where the normalizing constant is C' = Y 7o e % = 1+2e7¢/(1 — e °).
Theorem 4.2 implies DP(¢).

Clearly one can view this perturbation as adding to each cell count a an
independent random variable X satisfying P(X = z) = %e‘am for all integers
x, so the perturbed cell is a+ X. More generally, it is easy to see that any of the
perturbations based on the exponential mechanism and additive utilities such
as the above u;, i = 1,2, 3, results in adding to the data counts noise which is
statistically independent of the data, and its distribution does not depend on
the data and their distribution, as pointed out at the end of Section 4.2. In the
case of uy the added noise has the Laplace distribution, and in the case of us,
the normal, both discretised.

We can impose truncation of the type |ap — bx| < m as above to improve
utility, and the conditions of Theorem 4.2 hold. In this case we have

— 00

1
p(a,b) = C—e_slb_a‘ for b satisfying —m < [b—a| < m, (5.2)

where C,, = Y00 ekl =14+ 2(e7% — e~ (mFe) /(1 — ¢79). In this case, it
follows from (4.10) that § = e~ /C,, and by Theorem 4.2 we obtain DP(e, ).
Again, negative perturbed values can be replaced by zero, maintaining the same
level of differential privacy. For € = 1 and m = 10 we obtain § = 0.00002 and
for ¢ = 0.5 and m = 10, § = 0.0016. It is readily seen that & decreases in m
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for each €, so in terms of the differential privacy parameters the larger m the
better.

A strong universal optimality property of the discrete Laplace (two-sided ge-
ometric) perturbation for the case of perturbing a single cell appears in Ghosh,
Roughgarden and Sundararajan (2012). They show that without truncation,
the Laplace perturbation of a single cell is optimal relative to a wide class of
loss functions that includes the ones we consider, provided some post process-
ing of the kind we do, e.g., replacing negative outputs by zero, is performed.
More specifically, they show that Laplace with DP(e) minimizes Ep[), £(a, b)] =
Y a2 P(M(a = b)(a,b) among all DP(e) mechanisms having the same range,
provided £(a,b) is non-negative and non-decreasing in |a — b| for all a, the fre-
quency in the single cell. This was followed by Brenner and Nissim (2010) where
it is shown such universality does not extend beyond a single cell, and therefore
does not apply for tables as in this paper. Still, the Laplace perturbation seems
to be a very efficient choice, better than the normal perturbations of the next
section, in the sense of providing higher utility for a given DP level, as indicated
also by our simulations and those of Liu (2017).

5.2. Normal Perturbations

As a further example of the exponential mechanism, consider the utility function
uz. We show below that without truncation we have Aus = oo. Therefore, in
order to determine a finite Aus , we truncate the perturbations by m so that
|ar — bi| < m for all k. This forces us to consider DP (g, ¢) with ¢ > 0.

Making the same assumption as in the previous section that d = 1, we have
Aug = 2m + 1, since in cells that differ between neighbouring lists we have
(a+1-0b)2—(a—b)? = 2(a—b)+1 and likewise if +1 is replaced by -1. Clearly
Aus can be finite only if m is finite. The probability p(a,b) is now given by the
proportionality relation

1
p(a,b) = D—e_s(b_“)2/(2m+1), for b satisfying |[b —a| < m (5.3)

m

where D,,, = > 7L e—k*/(2m+1) This is a discretised and truncated normal

normal distribution. Theorem 4.2 guarantees DP(g, §) with § = e=¢m"/@m+1) /p
For e =1 (¢ = 0.5) and m = 10 we have ¢ = 0.001 (6 = 0.008).

5.3. Maximum Entropy Perturbation

One of the desiderata of frequency table dissemination mechanisms noted in
Section 2.2 is that the distribution of the perturbations has maximum entropy,
subject to the range and first two moments (see Andersson, Jansson and Kraft,
2015; Marley and Leaver, 2011). This may be intuitively appealing, and if one
takes the variance of the perturbation as being indicative of its confidential-
ity protection performance, then maximum entropy subject to variance makes
sense, although we are not aware of a formal statement regarding its advantage.
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The normal distribution is well known to have maximum entropy subject to
a given variance and range on the real line. Numerical calculations show that a
discretised version as used above has approximately maximum entropy. An exact
calculation of the discrete maximum entropy perturbation distribution subject
to variance and range constraint requires a calculation using Lagrange multi-
pliers. The Laplace distribution has a similar characterization, if the range and
expectations are prescribed. In fact, the principle of maximum entropy in statis-
tics goes back to Laplace. Again the discrete version inherits an approximate
maximum entropy property. See, e.g., Cover and Thomas (2006, Chapter 12) for
a discussion of maximum entropy distributions. The fact that Laplace perturba-
tions seem to perform better than Normal, suggests that the ABS TableBuiler
principle of maximum entropy subject to variance should be reconsidered.

5.4. Hellinger-type Perturbations

Turning to the utility function uz = uz(a,b) = — Sk |\/ax — Vx|, casy
calculations show that Aus = 1, assuming again that d = 1. However, in this
case the maximum in (4.7) is attained in the extreme case of small a, a’ due
to the concavity of v/, so here the worst case is not typical unless all cells are
very small. In other words, for large cells, the value of Au in the exponential
mechanism is too large, making the inequalities in the proof of Theorem 4.1
crude, and therefore leading to over-perturbation and loss of utility. For the
exponential mechanism with us we have

p(a,b) ocefs‘\/gf\/aw, a,b=0,1,.... (5.4)

and Theorem 4.1 implies DP(e).

Although the loss function ¢3 that corresponds to ug has very attractive
properties, the worst-case aspect explained above implies that as a perturbation
mechanism the scheme defined in (5.4) performs very poorly in terms of data
utility. It is a somewhat interesting lesson that a loss function that appears so
natural leads to a poor mechanism.

5.5. Comparisons of Perturbation Mechanisms

Since small cells are considered to be particularly risky, we first compare the
utility of the Laplace and Normal perturbations for a given DP level, when
negative values are replaced by zero (and therefore the resulting perturbation
depends on the original value). In Table 2 we calculate the probability of ob-
taining a perturbed value in an interval range of & 0 to &£ 4 of the original value,
when the original values are 0 to 5 and over, ¢ = 1.5 and € = 0.5. In order to
compare the two perturbation mechanisms we fix the value of ¢ for each e. For
e = 1.5 and 6 = 0.00002, Laplace perturbations are truncated at m = 7 and
Normal perturbations are truncated at m = 12. For ¢ = 0.5 and § = 0.008,
Laplace perturbations are truncated at m = 7 and Normal perturbations are
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TABLE 2
Probability of range for Laplace and Normal perturbations with negative values replaced by
zero

Range for e = 1.5 and § = 0.00002 Range for £ = 0.5 and § = 0.008
Original Value +0 +1 +£2 +£3 +4 +0 +£1 +2 +£3 +4
Laplace m =7 Laplace m =7

0 0.82 096 099 1.00 1.00 0.63 0.78 0.87 0.93 0.96
1 064 096 099 1.00 1.00 0.25 0.78 0.87 0.93 0.96
2 064 092 099 1.00 1.00 0.25 0.55 0.87 0.93 0.96
3 0.64 0.92 098 1.00 1.00 0.25 0.55 0.74 0.93 0.96
4 0.64 0.92 098 1.00 1.00 0.25 055 0.74 0.85 0.96
>5 0.64 092 098 1.00 1.00 0.25 0.55 0.74 0.85 0.92
Normal m = 12 Normal m = 10
0 0.57 0.70 0.81 0.89 0.94 0.54 0.63 0.71 0.78 0.84
1 0.14 0.70 0.81 0.89 094 0.09 0.63 071 0.7 084
2 0.14 0.40 0.81 0.89 094 0.09 0.26 071 0.78 0.84
3 0.14 0.40 062 0.89 094 0.09 0.26 042 0.78 0.84
4 0.14 0.40 0.62 0.78 094 0.09 0.26 042 0.57 084
>5 0.14 0.40 0.62 0.78 0.88 0.09 0.26 042 0.57 0.69

truncated at m = 10. The choice of the above parameters for the purpose of this
introductory article is somewhat arbitrary, as our goal is to demonstrate how
perturbation mechanisms can be compared and not to provide a comprehen-
sive study. However, we chose values which demonstrate well the privacy utility
balance and may be considered reasonable choices.

From Table 2, it is clear that the Laplace perturbations are smaller (in prob-
ability) and thus have higher utility under differential privacy with the given &
and d. These results are consistent with those in Liu (2017). All perturbed values
are within £3 for ¢ = 1.5 and § = 0.00002 and over 92% of the perturbed values
are within +4 for ¢ = 0.5 and § = 0.008. The corresponding probabilities for
the normal perturbations are between 6% and 25% lower. Note that replacing
all negative perturbed values by zero impacts on the perturbation ranges when
a zero is included in the interval.

A similar calculation for Hellinger-type perturbations shows that they are
considerably worse than the other perturbation mechanisms, and the probabili-
ties are very small compared to those in Table 2. Therefore, we will not include
the Hellinger-type perturbations in further analyses.

5.6. Risk-Utility Analysis
5.6.1. Utility of the Laplace and Normal Perturbations

We begin by presenting some expressions for the expected loss under these
mechanisms. Beginning with Laplace perturbation and setting o = e™° we have

E(b—al)= Y |mle™* =2a(ma™*) — (m+1)a™ +1)/Cp(a — 1)?,

k=—m
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where (), is defined in (5.2). Letting m — oo we obtain for the untruncated
case, B(|b —al]) = e™¢/C(e™® — 1)? with C =1+ 2¢7¢/(1 — e™¢). If we replace
negative outputs by zero, the loss improves.

Turning to normal perturbations, we have

E(b—a) = Y |mPe /@m0 /D,

k=—m

where D,, is defined after (5.3). Again, if we replace negative outputs by zero,
this utility improves.

5.6.2. Risk-Utility Plots

In this section, we shall present risk-utility plots for the real Table 1 and for
additional two-way tables that were generated assuming independence of the
two attributes, in order to assess the impact of the perturbation mechanisms on
statistical inference. Risk is measured in terms of the value of €, from ¢ = 0.1
to ¢ = 3.0, for both the Laplace and Normal perturbations. The truncation
of m is fixed at m = 7 for the Laplace perturbations and allowed to vary
for the Normal perturbations to ensure the same value of ¢ for each €. For
€ =0.1,0.5,1.0,1.5,2.0, 3.0 the corresponding values of m for the Normal per-
turbations are 8, 10, 12, 12, 13, 14, respectively. Utility is measured using the
loss functions /41, £5, and 3 defined in Section 4.2 as well as by the accuracy of
the Cramer’s V statistic and the associated p-value for the Chi-square test for
independence.

Figure 1 presents results of applying perturbations to Table 1. For each ¢, the
table was perturbed 100 times in order to produce the box plots. The real table is
highly dependent and hence p-values (not shown) for testing independence were
close to zero for the original table and all perturbations and the inference did not
change. The true value of Cramer’s V is represented by the horizontal line and
we can see that under both perturbation mechanisms, the inter-quartile range
of the statistic is less than 0.005. The three loss functions are also included in
Figure 1 where the smaller the value, the higher the utility. It is clear that utility
improves as ¢ increases. In all cases, the Laplace perturbations show higher
utility and in fact out-performs the Normal perturbations even for the 5 loss
function which defines the exponential mechanism for Normal perturbations.

In order to assess the impact of the perturbations on statistical inference when
testing for independence on the perturbed data as if they were true data, we
generated two tables having two independent attributes, both with a population
size of N = 10,000, a large table with 1,000 cells (average cell size of 10) and a
small table with 100 cells (average cell size of 100). The marginal probabilities
of the tables were generated by the Dirichlet distribution. From the marginal
probabilities, we define the internal probabilities under the assumption of inde-
pendence p;; = p;.p.;. Finally, we generated the counts in the table by random
draws from Mult(N, p;;). We carried out 100 perturbations on each table and
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under each ¢ for the Laplace and Normal perturbations using the same settings
of m as described above to ensure equal §.

Figures 2 and 3 show the risk-utility plots for the two tables. The horizontal
lines for the p-value and Cramer’s V statistic show the true values obtained
from the original tables. We see that utility improves as € increases and the
Laplace perturbations out-perform the Normal perturbations as expected by
now. Under both perturbation mechanisms we rarely change the inference from
independence to dependence for the small table (with large counts) but this is
not the case for the large table (with small counts). For the latter table under the
Normal perturbations, we are unable to obtain correct inference for any of the
whilst under the Laplace perturbations we would need € over 2.0 in order not to
reject independence. For the Cramer’s V statistic the Normal perturbations in
the large table show greater discrepancies than the small table, and compared
to the Laplace perturbations. The three loss functions are also shown in the
figures for comparison.

6. Data analysis taking the perturbation distribution into account

Poisson and multinomial distributions of counts and log-linear models are stan-
dard in the analysis of frequency tables. See, e.g., Bishop, Fienberg and Holland
(1975, Section 3.2) for a classical reference. Under such models, with additive
perturbations having a known distribution, it is natural for the data user to
test hypotheses using the model and the perturbation distribution. The exam-
ple of testing independence in Section 6.1 shows how this can be done with a
valid significance level and a power that varies with the DP parameters. On the
other hand, it is shown here and in Figures 2 and 3 that applying a standard
( ‘naive’) Chi-square test to the data as if it were not perturbed may lead to a
very wrong level of significance, and hence to wrong conclusions, even when the
sample sizes are such that standard asymptotic theory (with no perturbations)
applies. Unfortunately, since agencies release perturbed tables which have an
appearance similar to that of the original table (and this is why the agency
may avoid releasing negative cells, for example), it is tempting to ignore the
perturbations and analyze the released data ’naively’. A further example of a
goodness-of-fit test for a single binary attribute is given in Section 6.2.

Uhler, Slavkovié and Fienberg (2013) and Fienberg, Rinaldo and Yang (2010)
have shown that perturbations can lead to unreliable conclusions in the analysis
of tables if their presence is ignored, and proposed methods to overcome this
problem. Methods of improving the performance of tests of independence in
two-way tables under such perturbation have been proposed by Wang, Lee and
Kifer (2017). Karwa, Kifer and Slavkovi¢ (2015) considered working with the
true likelihood as we shall do, but they consider that in most cases the likelihood
is intractable and that approximate computational methods are needed. Karwa
et al. (2016) develop a likelihood-based approach to inference for a particular
model of an undirected graph. Charest (2010) suggests a Bayesian approach
that accounts for the effects of additive noise on inferences in the context of
differential privacy. This area seems to be open to further research.
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6.1. Testing for independence

Consider an r X ¢ frequency table a that is to be released with truncated Laplace
perturbation L;; applied independently to each cell, where —m < L;; < m. As-
sume that the table consists of independent Poisson(su,;) entries, a standard
model in frequency table analysis. Specifically, we assume that the data a con-
sists of a table of independent Poisson(y;;) entries. With additive Laplace noise
(see comment in the paragraph following (5.1)) the released table is X =a+ L
where L is a r X ¢ matrix of truncated independent Laplace variables. Indepen-
dence of the attributes amounts to the hypothesis Hy : log p;; = 7+ o + 5.

The standard Chi-square or the asymptotically equivalent likelihood ratio
test remain correct asymptotically when applied ‘naively’ to the table with per-
turbations, when the counts of the original tables increase to infinity (and as
pointed out in Sections 4.2 and 5.1 above, the noise distribution remains the
same). However, as pointed out in Wang, Lee and Kifer (2017) and references
therein “the p-values produced by this method are extremely biased and will
often lead to false conclusions.” In particular, using a standard test and ignor-
ing the noise in finite samples may lead to tests with a much higher significance
level than could be claimed by asymptotic theory. The simulations below show
that this is indeed the case, and here we discuss a very natural approach: to
compute the likelihood ratio test taking the perturbation distribution into ac-
count. Our simulations show that in this case the asymptotic distribution leads
to a correct significance level, and that the tests have a reasonable power for
certain DP parameters, close to that of the standard tests on the original data
under reasonable conditions (depending of course on the data, and the noise
parameters).

Our goal is to test the above Hy, taking the perturbation distribution into
account. The likelihood ratio test statistic is the ratio of two maximized likeli-
hoods

L gl L ij 1
max L({uig}) /| max - Lx({)) (6.1)

where apart from a constant the likelihood Lx ({g;}) is defined by

min{z;;,m}

Lx({n}) = ]I Py (wij — Ci)e %), (6.2)
)

ij——Mm

x
and P,(x) = e‘“u—' is the Poisson probability that arises from the model on
x

the data; also, x;; are the entries of the released perturbed table, and e—cltisl
the (unnormalized) Laplace probabilities. In the numerator of the likelihood
ratio statistic (6.1), the max is over all y;;, and in the denominator we need to
maximize the function of (6.2) over the parameters 7, o; and §;, where we set

log iy =n+ao; +8; and a; =3 =0.

For our example, we generate 10 x 10 tables, so we have 19 parameters to
estimate. The maximization was done numerically using SAS procedure NLP.
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TABLE 3
Simulation results for testing independence.
Table Type Para- % p-value | Mean (S.E.) Para- % p-value | Mean (S.E.)
meters <0.05 \ Test Statistic p-value meters <0.05 \ Test Statistic p-value

Tndependent  Original 50  81.6 (0.395) 0.457 (0.009) 60 817 (0.423) 0.457 (0.009)
Attributes Naive e=0.1 86.7  124.5 (0.616)  0.027 (0.002) e=0.1 53.3  105.1 (0.524)  0.123 (0.006)

LR test m=10 30  78.6 (0.388)  0.555 (0.009) m=7 40 80.1(0.400) 0.521 (0.009)
Dependent  Original | §=0.0283 79.3  118.8 (0.587) 0.044 (0.003) | 6=0.0470 §7.3  124.8 (0.620) 0.027 (0.003)
Attributes  Naive 99.6  162.1 (0.792)  0.001 (0.000) 98.3  149.2 (0.742)  0.004 (0.001)

LR test 51.0  103.6 (0.526) 0.140 (0.006) 733 114.5 (0.583)  0.066 (0.004)
Tndependent  Original 58 817 (0.414) 0.485 (0.009) 17  81.4(0.395) 0.485 (0.009)
Attributes  Naive £=0.5 2.4 92.9 (0.476)  0.274 (0.008) e=0.5 18.7  90.8 (0.435)  0.299 (0.008)

LR test m=10 6.9  82.5(0.419) 0.467 (0.009) m=7 53  82.0 (0.391)  0.473 (0.009)
Dependent  Original | §=0.0017 $21  118.3 (0.551) 0.041 (0.003) | 6=0.0076 $1.3  119.6 (0.591) 0.040 (0.003)
Attributes  Naive 91.3  129.3 (0.601)  0.017 (0.002) 91.0 128.6 (0.627) 0.018 (0.002)

LR test 76.3  114.8 (0.532)  0.054 (0.004) 76.9 116.2 (0.567)  0.051 (0.003)

We first generated 1000 10 x 10 tables under Hy with o; and 3; drawn each time
from the Uniform(—0.5,0.5) distribution, and n = 4, and then added to each
table independent Laplace noise with € = 0.1 or 0.5 with truncation between
—m and m for m = 10 and 7. The values of ¢ are obtained from formulas of
Section 5.1 leading to DP(e, d). The average cell size was about 50, which is not
a small sample.

We also generated 1000 10 x 10 tables where the attributes are dependent,
using the Poisson model with p;; = n 4+ o; + 5; + 0.7;; where also v;; ~
Uniform(—0.5,0.5). The results for both independent and dependent attributes
are presented in Table 3, where ‘Original’ refers to applying a standard likeli-
hood ratio test to the unperturbed table, ‘Naive’ stands for applying the same
likelihood ratio test to the perturbed data and ignoring the perturbations, and
‘LR test’ is the likelihood ratio test of (6.1) that takes the perturbation distri-
bution into account.

Out of 1000 repetitions for each set of parameter values, the table provides the
percentage of test statistics whose p-value according to the (asymptotic) Chi-
square distribution with 81 degrees of freedom is below 0.05. For example, for
independent attributes, e = 0.1 and m = 10 the Original gave exactly 5% below
critical value so here the asymptotic significance level was attained perfectly by
the simulations. The naive test showed almost 87% below 0.05, meaning that its
level of significance is about 0.87, which is extremely high, rendering this test
very unreliable for the given sample size. The LR test of (6.1) showed a level
of significance of 3%, suggesting that the approach that takes the perturbation
distribution into account is reliable with the present sample size. The power of
the test on the unperturbed data under the dependence model we chose was 79%
whereas the LR test had a smaller power of 51% showing that the perturbations
reduce the power. When changing e to 0.5, the significance level of the naive
test was 0.25 which is still unreliable. The LR test had a significance level of
0.058, and the power was 0.76, very close to that of the original unperturbed
data of 0.82.

Clearly, more extensive simulations and theoretical study is required, how-
ever from these and related simulations not presented here we conclude that
when the sample sizes are such that the standard asymptotic theory applies for
unperturbed data, it also applied to the proposed LR test of (6.1) in determin-
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ing the correct significance level. However, the naive test that applies standard
theory and ignores perturbations is useless unless the sample size is very large.
Simulations show, for example, that with ¢ = 0.1, m = 10, and an average count
of about 400 per cell, the naive test still has a significance level of about 0.12,
rather than the asymptotic value of 0.05, while the LR test achieved a level of
about 0.05.

6.2. Testing Goodness-of-Fit for a Binomial distribution

Consider a list consisting of a single cell, with a = a1, a; ~ Binomial(V, p) and
N known. If a; is the number of individuals having a certain property, then
Auy, = 1. The perturbed data released is X = ay + L, where L is a Laplace
perturbation truncated by m as in (5.2). The likelihood of an observation X is
a function of p:

Ly(p) = P(X=12)=Pla=z-1)
min{z,m} e_E‘él

N —¢ N—az+t
N O A~ =t

{=max{—m,z—N}

The likelihood ratio statistic for the goodness of fit of the parameter value pg
given X = x is

and we reject Hy : p = po if the statistic is large.

Figure 4 shows histograms of 500 values of 2log(likelihood ratio) statistic
obtained by simulation when the data comes from p = 0.5 and we test Hy : p =
0.5 and Hy : p = 0.7, with N = 80 and for the perturbation we have ¢ = 0.5
and m = 5. In this case the formulas below (5.2) show that § = 0.02 so we have
DP(0.5,0.02). The plot on the left of Figure 4 shows that for testing Hy : p = 0.5
the statistic values are mostly small, and when testing Hy : p = 0.7, the plot on
the right shows that most values of the statistic are large, and Hy : p = 0.5 is
rejected. For numerical reasons, if twice the likelihood ratio exceeded 50, it was
set as 50.

Of the 500 values for testing Hy : p = 0.5, 95% are below the (empirical)
critical point of ¢ = 3.36. This should be compared with the critical value of 3.84
for the Chi-square with df=1 asymptotic distribution. For testing Hy : p = 0.7,
the proportion of statistics out of the simulated 500 that are above ¢ = 3.36 is
0.95. Thus the power of our test, at level of significance a = 0.05 is 0.95, whereas
the power of the same test without the Laplace noise is 0.96. The added noise
did not reduce the power by much in the present case. If one uses the asymptotic
critical value of 3.84, rather than the empirical 3.36, the empirical power and
level of significance change very little, implying that the asymptotic theory of
the likelihood ratio statistic applies at this sample size.

For m = 10 with other parameters as above we obtain ¢ = 3.82, the empirical
power for testing Hy : p = 0.7 with a = 0.05 is 0.92, and 6 = 0.00166 as can
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Fic 4. Histogram of 500 2log(likelihood ratio) tests when N = 80, p = 0.5, ¢ = 0.5, and
Ho :p=0.5 (left), and Ho : p = 0.7 (right) is tested

be seen from Table 3. Thus, allowing a larger perturbation range, that is £10
rather than 45, improves (reduces) 4, at the cost of some reduction in the power
of the test.

From the histograms (for m = 5) one can obtain the power of the test for
any given significance level by choosing a point on the x-axis and looking at the
percentage of values below the point in the left histogram (level of significance)
and above in the right one (power). A comparison to the case of no noise shows
that the loss of power is not very significant, and the left histogram resembles
a Chi-square distribution with 1 degree of freedom, to which it converges with
N.

7. Complex lists with overlapping cells

In this section we deal with lists in which an individual may appear in more
than one cell. This arises, for example, if the list includes margins as well as
interior cells in a multi-way frequency table, or when the list contains several
tables drawn from the same population or overlapping populations. Margins
(perturbed) can be computed by summing perturbed interior cells, however,
such aggregation results in a standard deviation (SD) that becomes larger with
the number of summands. If some marginal cells are of special interest, the
agency can release them with their own perturbation, which may have a smaller
SD than that obtained by aggregation. Overlapping cells affect the number d of
cells in which two neighbouring lists can differ. For example, if the list consists
of a t-way table and all its marginal tables except for the total which is almost
always known, then it is easy to see that each individual appears in 2¢ — 1 cells,
and therefore two neighbouring lists can differ in d = 2! — 1 cells.

An attractive property in the release of non-overlapping cell counts using the
perturbations schemes of this paper is that if DP(e) holds for each cell, when
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perturbed independently, then DP(e) also holds for the whole table, irrespective
of the number of cells in the table. To see this, note that when cells are non-
overlapping, removing or adding an individual affect only one cell and therefore d
and Awu; are determined by a single cell. This is no longer the case for overlapping
cells, when achieving DP(e) for the whole table will, generally, require greater
noise for each entry in the table, with the amount of required noise increasing
with d. We now focus on the case where the list a includes both interior cells
and some margins so that d > 2, and Laplace perturbation is applied to the
whole list. We have Au; = d and the exponential mechanism will now perturb
according to p(a,b) o< e~cI*=al/d which is equivalent to replacing € by e/d,
in order to obtain DP(e). For large d this results in large perturbations and
reduced utility. In fact, the discrete Laplace perturbation distribution of (5.1)
with € replaced by e/d has SD approximately v/2d/e, which will apply to all
released cells.

In this section we shall consider various ways of ‘spending’ a privacy budget
of ¢ if DP(e) is to hold for the whole table. Given our focus on the scenario
of an official agency implementing an online flexible table generator, we shall
only consider straightforward and practical approaches of applying Laplace per-
turbation independently to the table entries, with possibly varying levels of
noise applied to different parts of the table. There is further literature on algo-
rithms which do enable reduced levels of noise to be applied for a given privacy
budget by perturbing the interior cells and margins in dependent ways, using
the fact that the margins are linear combinations of the interior cells. Several
such proposed algorithms are examples of a matrix mechanism (Li et al., 2015).
Barak et al. (2007) is an early example, where the perturbation is applied to a
transformation of the list using a Fourier basis. Hay et al. (2016) find that the
multiplicative weights exponential mechanism of Hardt, Ligett and McSherry
(2012) out-performed a number of instances of the matrix mechanism, although
this algorithm produces synthetic rather than perturbed tables. Gaboardi et al.
(2016) propose a related Dual Query approach for practical applications with
high dimensional tables. We shall not pursue such alternative options here, how-
ever, due to our focus on flexible table generators. A further potential concern
that we shall consider in the perturbation of overlapping cells is that the re-
leased table may be inconsistent in the sense that the perturbed margins do
not coincide with the relevant sums of the perturbed interior cells, though they
will generally be close. In further literature on algorithms which perturb over-
lapping cells in dependent ways, it is found that the objectives of consistency
and reduced levels of noise need not conflict and can be achieved jointly (Barak
et al., 2007; Hay et al., 2010).

Consider a t-way table where each of its ¢ attributes has C' categories, say, and
the user computes marginals by summing over interior cells. In this case consis-
tency of interior cells and marginals is obvious and each cell in a k—dimensional
marginal table is obtained as the sum of C*~* frequencies. If only interior cells
are released, then d = 1, and if each cell is perturbed by Laplace noise with
a given €, see (5.1), we have DP(g) and the perturbations have a SD close to
V/2/e. In this case the standard deviation of the sum of the perturbations in

imsart-generic ver. 2014/10/16 file: "TB DP Revision2YR".tex date: January 3, 2018



Y. Rinott et al./Confidentiality Protection for Frequency Tables 35

a k—dimensional marginal table will be proportional to v2C*~*/e. Consider
a 4-way table with C' = 10, for example. If only interior cells are perturbed
then d = 1 and the perturbation SD in each cell is \/§/E Suppose now that
the agency releases all 2-dimensional marginal tables. If they are obtained by
summing perturbed interior cells, the SD of the perturbation for each cell of
a 2-dimensional marginal is proportional to v2C?/e = v2-102/e ~ 14/e. If
only 2-dimensional marginal are perturbed then it is easy to see that d = 6 and
the SD of each cell in these marginals is v/2d/s = v/26/s = 8.5/¢. If all cells
and marginals are perturbed and released then d = 2* — 1 and then the per-
turbation SD in each released cell, including cells of 2-dimensional marginals is
V2d/e = \/2(2* — 1)/ ~ 21 /¢, so for such marginals the scheme that perturbs
only interior cells is preferable to perturbing all cells in the sense of having a
smaller SD, and the smallest SD is achieved by perturbing only 2-dimensional
marginals. When considering the release of a table, the importance of some
marginals relative to others and interior cells should be considered when de-
ciding on the perturbation scheme, and in many situations, perturbing only
interior cells, and letting users compute marginals from those perturbed cells,
is efficient.

It may also be useful to perturb interior cells and different marginal tables
with different values of €, depending on the importance of these marginals. We
can allow smaller perturbation for some marginals and compensate by larger
perturbations in others. In this case we consider several mechanisms M; for
i =1,...k and apply them on the same data, and release (Mjy,..., My)(a) :=
(Mi(a),..., Mi(a)) which is known in the differential privacy literature as
composition. To assess whether such schemes satisfy differential privacy, the
composition Theorem 3.16 in Dwork and Roth (2014) is relevant. We bring a
proof in order to keep the paper as self contained as possible.

Theorem 7.1. Let M; be independent DP(g;,6;) mechanisms fori=1,...k.
Then (M ..., My) is DP(XF_ e, S0 6,).

Proof Tt suffices to consider £ = 2, and then proceed by induction. Let the
ranges of M; be B; for i = 1,2 and S = S; x Sy C B := By x By and denote
S1(s2) = {s1 : (s1,s2) € S}. Below, the first inequality uses the differential
privacy property of M; and the second uses (¢+ §) A1 < ¢ A1+ 6. The third
inequality uses the differential privacy property of My and the last one and the
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first equality are obvious. We have

P((Mi(a), Ma(a)) € §) = Y B(Mi(a) € Si(s2))P(Ma(a) = s2)

52€852

< Z [{e'P(M1 (@) € Si(s2)) + 01} A 1JP(Ma(a) = s2)

S$2E€S2

< Y {eP(My (@) € Si(s2))} A 1P(Ma(a) = s3) + 61

52€852

< Y {eP(My (@) € Si(s2))} A ][eP(Ma(a') = s5) + 62] + 01
EPISeD)

< esl+52]P’((M1(a’),M2(a’)) S S) +61 +d62. O

Theorem 3.20 in Dwork and Roth (2014) provides a more advanced compo-
sition result, where instead of obtaining DP(ke) when composing k& mechanisms
with DP(e), as in Theorem 7.1, a composition with DP(¢’,§) is obtained with
¢’ of order v/ke but with constants depending on ¢ that make it useful only for
rather large values of k. Other more sophisticated composition results can be
found in Dwork, Rothblum and Vadhan (2010); Dwork and Rothblum (2016);
Abadi et al. (2016); Kairouz, Oh and Viswanath (2017).

As an example consider now a 3-way table {X,;x}, and suppose we wish to
perturb independently all interior cells and marginals. In this case, the list a
consists of 7 tables:

(6 02 Xagnd (32 K (0 Xagnd (30 Kb (3 Xigu {3 X}

For the whole list a we have d = 23 — 1 = 7, and we can apply (5.1) with ¢
replaced by /7 to obtain DP(g). Alternatively, we can apply Theorem 7.1. Each
of the above 7 tables has d = 1, and if we apply a Laplace perturbation with
/7 for each of the 7 tables of the above a, we naturally obtain again DP(e).
However, one can release the rth table of a with DP(e,), r =1,...,7, using
the corresponding Laplace perturbation, and by Theorem 7.1, the whole list will
be released with DP(ZZ:1 €;). Suppose we expect users to be more interested
in 2-dimensional tables, and less in others. For example, if the attributes are
Income, Education, and Ethnicity, then it may be that the releasing agency or
the data users consider Ethnicity to be of lesser importance, and the important
table might be Income by Education, and the table of interior cells, so that one
can see the Income by Education table for each fixed Ethnicity. In this case
{Xijr} and {3, Xijr} could be released with DP(e/3), say, and the other 5
tables with DP(e/15). The latter tables may be quite perturbed, much more
than the important ones, and the whole release will satisfy DP(¢). It should
be noted that large high-dimensional tables, which arise in certain surveys,
will often be very sparse, and it does not seem useful to perturb every cell. In
fact, a common practice of agencies in this situation is to merge cells and to
reduce the dimension and hence sparseness, and then to perturb the resulting
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list. Obviously, this incurs loss of information. The development of practical
methods for the confidentiality-protected release of such tables seems to be a
worthwhile direction for research.

The above discussion indicates that the data releasing agency has a great
amount of flexibility in deciding on the construction of the list and the amount
of perturbations of different parts according to the number of categories of the
attributes, the expected interest in particular marginals (which are often more
relevant than interior cells), and the dimension of the table and the marginals
of interest.

8. Conclusions

In this paper we have considered practical perturbation schemes that resemble
ones currently used by some official agencies when releasing frequency tables,
with the goal of assessing how random perturbations, along with other common
practices of these agencies, protect confidentiality in terms of the differential
privacy standard. We have seen how this approach can highlight specific issues,
such as the effect of truncation, not perturbing zeros, or ‘same participants-same
perturbation’ schemes. We focused on a few alternative perturbation mecha-
nisms and the Laplace perturbation seems to have a clear advantages in terms
of the utility of the resulting tables for a given level of confidentiality protection.
The extent to which the perturbations damage the value of tables for analysis
will depend on user needs and it is hard to draw any general conclusions. Our
numerical work in Section 5 compared the properties of a small number of algo-
rithms that we believe would be likely candidates for practical implementation
by an official agency. See Hay et al. (2016) for a framework for undertaking a
comprehensive evaluation of differentially private algorithms and for the find-
ings of such an evaluation of a broader range of algorithms for answering 1- and
2- dimensional range queries over 27 datasets.

Maximum entropy perturbation subject to variance constraints is one ex-
isting criterion for selecting perturbations in statistical disclosure control, but
the implied approximately normal perturbations did not perform well in our
assessment. We found that insisting on releasing only non-negative perturbed
frequencies may result in loss of utility, without a well defined gain in confiden-
tiality protection. Other desiderata that have been proposed for perturbation,
for example that perturbed frequencies be unbiased for the true frequencies and
that perturbations be truncated by a specified bound, may be contradictory,
and compromises of these criteria may be desirable.

We have studied the trade-off between different values of the two parameters
¢ and ¢ governing differential privacy and the utility of the resulting tables, and
seen how compromises in the former values can make a considerable difference
to the level of utility. We have noted the desirability of making the perturbation
mechanism and its parameters available to users and the possibility that users
could take account of this knowledge when analysing the data. Thus, in principle,
given a specified model for the data and a perturbation mechanism, it may be
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feasible to determine a likelihood function for the perturbed data, and make
inference on the parameters of the data model. We demonstrated this procedure
in simple examples. In practice, the computational challenges may be severe for
the kinds of tables released by national statistical agencies, but this is an area
for further research. We also noted that testing independence on perturbed
data using ‘naive’ test statistics that ignore the perturbations will be wrong for
reasonable sample sizes, even if asymptotically justified.

Another area needing further research relates to tables based on sample data
rather than on population counts. The cells in tables based on sample data may
contain sample-based estimated counts, consisting of sums of survey weights.
In this case, adding or removing a sample unit from the dataset will change
the estimated count by the value of the corresponding survey weight. If d =
1 and w is the maximal possible weight then Au; = w, and the differential
privacy methodology applies. In this paper we did not pursue this direction, the
practicality of which seems to be worthwhile of investigation. Confidentiality
considerations for sample-based tables may also take account of the potential
confidentiality protection afforded by sampling, when sample membership can be
assumed unknown (e.g. Chaudhuri and Mishra, 2006). Further protection may
arise from the fact that sampling error considerations often lead official agencies
to design tables that do not include cell estimates based on small numbers of
sample units.

This paper focused on the non-interactive setting, where the list and all
perturbations are prepared in advance to satisfy a given level of DP (although
the perturbations can be applied only to the data actually requested). If some
cells in the list are never requested, then their contribution to d or ¢ (and
0) can be seen as over-protection. The differential privacy literature proposes
interactive query submission and monitoring for all users online, responding to
queries with a certain level of DP which accumulates as in Theorem 7.1, and
allocating a “budget” of a certain ¢; to user j so that the total of all &’s (and
0’s) achieves the required DP level. Such monitoring is quite demanding of the
agencies, but could potentially be automated. Further research on interactive
dissemination by official agencies and its implications seems to be needed.
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