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In the standard Bayesian framework data are assumed to be generated by a distribution parametrized by 6 in a
parameter space ®, over which a prior distribution 7 is given. A Bayesian statistician quantifies the belief that the
true parameter is 0y in © by its posterior probability given the observed data. We investigate the behavior of the
posterior belief in 6y when the data are generated under some parameter 61, which may or may not be the same as
6p. Starting from stochastic orders, specifically, likelihood ratio dominance, that obtain for resulting distributions
of posteriors, we consider monotonicity properties of the posterior probabilities as a function of the sample size
when data arrive sequentially. While the 6y-posterior is monotonically increasing (i.e., it is a submartingale) when
the data are generated under that same 6, it need not be monotonically decreasing in general, not even in terms of
its overall expectation, when the data are generated under a different 6;. In fact, it may keep going up and down
many times, even in simple cases such as iid coin tosses. We obtain precise asymptotic rates when the data come
from the wide class of exponential families of distributions; these rates imply in particular that the expectation of
the 6py-posterior under 6 # 6 is eventually strictly decreasing. Finally, we show that in a number of interesting
cases this expectation is a log-concave function of the sample size, and thus unimodal. In the Bernoulli case we
obtain this result by developing an inequality that is related to Turdn’s inequality for Legendre polynomials.

Keywords: Bayesian analysis; stochastic and likelihood ratio orders; sequential observations; expected posteriors;
unimodality; Legendre polynomials; exponential families

1. Introduction

Consider a sequence of observations x1, x2, ... whose distribution is governed by a parameter 6, in
a standard Bayesian setup with a prior distribution 7 on the space of parameters ®. For simplicity
assume for now that ® and the space of observations are finite (the results extend readily to general
observations and parameter spaces, as we will see later). Let Py denote the probability distribution
under the parameter 6, and let P =) ", _o 7 (6)Py denote the marginal probability; the corresponding
expectations are denoted by £y and [E, respectively (thus Pg(-) =P(- |0) and Eg[-] = E[-|0]).

Let 6y in ® be a fixed value of the parameter. We are interested in the way the belief in 6y varies as
one gets more and more observations, i.e., as n increases. We denote by q,fo the posterior probability

of 9y at time n; i.e., for every sequence s, = (x1, ..., x,) of observations up to time #,
Py, (sn)7 (60)
b = g% (s,) 1= P(Bo|sp) = —-" 07
qn qn ( n) ( 0| n) ]P)(Sn)
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As is well known, the sequence qﬁo of posteriors is a martingale with respect to the marginal probability
P, ie.,

Elg® | Is:] = g2 (s) (1)

for every n and s,,. Thus, given s,, a new observation x4 distributed according to P may increase or
decrease the posterior of 8, but on average this posterior does not change.

Posterior probabilities are used in Bayesian hypothesis testing, where the decision between hypothe-
ses depends on their posterior probabilities (see [4], Section 4.3.3). In sequential Bayes decision rules,
monotonicity properties of posteriors determine situations where more data lead to better decisions vs.
ones where more data could at times be misleading. This question was raised and discussed in [11].
For a discussion of sequential Bayesian inference and references see, e.g., [9] and [4]. Setups where
more data may be harmful according to certain criteria of the statistician are given, for example, in [3]
and [12]. In addition to the Bayesian setup, the questions addressed here are pertinent to setups with
agents that have different prior beliefs on the parameters. See [13] for details, including applications to
models with informed agents vs. an uninformed market, and reputation-building models.

Suppose that the true parameter is 6y (but this is, of course, unknown to the observer). What can
one say about the sequence of 6p-posteriors under Pg,? When the observations x, are iid and the
distributions Py are distinct (i.e., Pg # Py for 0 £ 6, referred to as “identifiable parameters™), the
Doob consistency theorem (see, e.g., [25] and [18]) says that under Pg, the sequence of 6p-posteriors
q,fo converges to 1 almost surely (i.e., except in a Pg,-null set). In fact, this happens monotonically
(see [11] and [13], and the references therein), in the sense that under Py, the posterior of 6y always
increases on average; that is,

Eoy[q. 1 15n] = g2 (sn) 2)

for every n and s, (recall that Eg,[-] =E[-|0p] stands for the expectation with respect to Pg,). This
submartingale inequality means that each additional observation increases on average the posterior of
the true parameter, under the probability law of the true parameter.

Taking the posterior probability of 6y as one’s belief in the model determined by 6, the expected
belief in 6y increases with more data generated under 6. Thus, as stated in [11], Bayesian inference
does not lead one astray on average. In [13] we show that this is in fact a consequence of an even
stronger result, which holds for any observation (and thus, in particular, for x,4; after s,): the dis-
tribution of the fy-posterior under Pg, dominates the distribution of that same 6y-posterior under the
marginal probability P, where the domination is in the likelihood ratio order, which is a strengthening
of the usual stochastic order; see Sections 2 and 3. We thus get the submartingale inequality (2), from
which it follows that the overall expectation [, [q,f‘)] = Eg,[P(Bols,)] of the 6y-posterior q,fo under the
probability Py, is an increasing function of the number of observations 7.

Now suppose that the true parameter, 01, is different from 6. In the above case of iid observations
and identifiable parameters, the Doob consistency theorem now says that under Py, the sequence of
Bp-posteriors qgo converges to 0 almost surely. When 6y and 0; are the only possible parameter val-
ues (i.e., ® = {6y, 01}), by (1), (2), and IP being the average of Py, and Py, it immediately follows
that g, [qzﬁr 11sn] < qgo (sn); thus, each additional observation decreases on average the posterior of
a “false” parameter, under the probability law of the true parameter. However, this seemingly natu-
ral property need not hold when there are more than two possible values of 6 (see [13] for a simple
example, and Section 4 below).

We next turn to consider monotonicity as a function of n of ¥ (n) := Eg, [qﬁo] = [, [P(6pls,)], the
expectation over s, of the 6p-posterior q,f“ under the probability [Pg,, where 01 # 6y. Consider for
concreteness the simple setup of iid coin tosses. By Doob’s consistency result, ¥ (n) — 0 as n — oo.
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This convergence to zero need not however be monotonic. Indeed, when the true parameter 0 is “close”
to 6y in a suitable sense (which we will quantify in Proposition 6), it is natural for data under 6 to
strengthen the belief in 6y at first (i.e., for small n), and so for v (n) to increase for small n (as is indeed
the case when 61 = 6y; see (2)). Eventually, however, ¥ (n) must approach zero. Once v (n) starts
decreasing in n, suggesting that evidence against 6 is mounting, can ¥ (n) increase again? While there
may well be particular realizations after which the 6y-posterior goes up (i.e., qs‘il > q,fo), and perhaps

even particular data s, after which the 6y-posterior is expected to go up (i.e., Eg, [qs(jrl [ = q,f“ (s0)),
the overall expectation is expected to be well behaved and continue to go down (i.e., Eg, [‘133-1] <

Eg, [qSO]). Perhaps surprisingly, that is not the case: we provide simple examples where 1 (n) is not
unimodal in # and may have multiple local maxima; that is, it can go down and then up many times.
Thus, after v (n) starts decreasing and the statistician may begin to doubt that 8y is the true parameter,
the increase in ¥ (n) with more observations strengthens the statistician’s wrong belief that 6y is the
true parameter; the new observations do “lead one astray on average.” While this is not a knife-edge
phenomenon and may indeed happen, we show that certain natural assumptions rule it out: the expected
posterior is eventually decreasing, and even log-concave and thus unimodal.
‘We now summarize the results on the behavior of ¥ (n) = Eg, [q,fo]:

1. When 61 = 6y, the sequence ¥ (n) is increasing in n (as stated above, this is a consequence of the
likelihood ratio dominance, which in turn implies the inequality (2); see Sections 2 and 3).

2. When 6y # 6, the sequence ¥ (n) may increase in some range of values of n and decrease in
others, and may, for example, decrease first, then increase, and then decrease again (which, as we
will show in Section 6.3, can happen already in the case of iid normal observations with a normal
prior). Moreover, a large number of modes (i.e., local maxima) can occur in the simple case of
iid Bernoulli coin tosses (see Section 4).

3. The sequence ¥ (n) is asymptotically equivalent to C/n w" as n — oo (for constants C > 0 and
0 < w < 1) in the case of exponential families of distributions (discrete and continuous) with a
continuous prior, where w = 1 when 61 = 6, and w < 1 when 6] # 6p; in the latter case ¥ (n) is
therefore strictly decreasing from some n on (see Section 5).

4. The sequence v (n) is log-concave in n, and thus unimodal, in a number of scenarios: iid coin
tosses with a uniform prior, iid normal observations with a normal prior (in a wide region of
parameters), and iid exponential observations with an exponential prior (see Section 6).

The paper is organized as follows. In Section 2 we discuss various order relations between posteriors
under different distributions. In Section 3 we extend these results to sequences of observations and see
that v (n) is increasing when 6; = 6. In Section 4 we exhibit situations in which ¥ (n) for 8; # 6
is not unimodal in 7, and quantify, for Bernoulli observations, the notion of 6y and 6; being close
together such that an observation under 6; increases the belief in 6y on average. Section 5 provides the
asymptotic analysis of ¥ (n), and Section 6 deals with cases where the sequence ¥ (n) is unimodal and
even log-concave. For Bernoulli observations this is obtained by proving in Section 6.2 a reversal of the
reverse Turdn inequality for orthogonal polynomials, which is of independent interest. The Appendix
contains discussions on possible extensions of the results as well as some technical details.

2. Preliminaries: A single signal

In this section we summarize results on various order relations for posterior distributions that appeared
with a somewhat different emphasis in [13]. We consider a signal s, which can be a single observation
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as well as multiple ones. For simplicity we now consider discrete random variables s and finite param-
eter spaces ®. The extension to continuous random variables and prior distributions is straightforward,
see Appendix A.1 and Section 5.

We use the following standard notions and notation. The random variables x and y satisfy y > x
(stochastic order; also known as first-order stochastic dominance) or y >icx X (increasing convex or-
der) if E[ f(y)] = E[ f (x)] for every increasing function or increasing convex function f, respectively.
By “increasing” or “convex” we do not mean “strictly” unless otherwise stated. The probability law
(distribution) of a random variable x is denoted by £(x) (formally, £L(x) =Po x~1). Instead of y > x
we may write L(y) >¢ L(x).

The likelihood ratio order, denoted by y > x or L(y) >y L(x), is said to hold if P(y = 1) /P(x =1)
is increasing in z, or equivalently, P(y = t')P(x = t) > P(y =t)P(x = ') for all #’ > ¢. This is stronger
than the stochastic order: £(y) >}, L£(x) implies £(y) >¢ L(x). Moreover, L(y) >} £L(x) implies

L(yly € A) > L(x|x € A), and hence L(y|y € A) >4 L(x|x € A), for any measurable subset A of the
real line. In fact, the latter condition of stochastic dominance for every A is equivalent to L(y) >} L(x);
see [22].

In the standard Bayesian setup we have a prior 7 with support ®, and so 7w (9) > 0 for ev-
ery 0 € ©, and a random variable s whose distribution depends on 6. The conditional distri-
bution P(s]|0), namely, the distribution of s given 6, is denoted by Py, and its probability law
by Lp. We also consider the marginal probability (also called the “prior predictive probabil-
ity”) P(s) := Zee@ Py (s)7(0), and denote its law by L. Expectations with respect to P, Py, and
Pr(s) :=P(s|I') = Zaer T (0)Py(s)/ Zeer 7 (0), for a set of parameters I' C ®, are denoted by E,
Ey, and Er, respectively. We use the notation

7" =4°(s) :=P@ls)

for the posterior probability of 6 (the “6-posterior” for short) given s. We will compare random vari-
ables like q9 under different distributions, such as P and Py.

‘We now summarize several simple results with short proofs. They are given in [13] with more details,
interpretations, and related references.
Proposition 1.

(i) Let Py and P, be two probability measures on a measure space S such that Py < P (i.e.,

P>(s) = 0 implies P(s) =0), and let r(s) = Pi(s)/ P2(s) be the likelihood ratio." Then
LP] (r) ZIr ‘CPZ (}’),

where Lp, denotes the probability law with respect to P;, and for any increasing function f,

Lp (f(r) zir Lp,(f(r)). 3)

(ii) In the Bayesian setup, for every 6 the posterior q° (s) =P(0|s) of 6 satisfies
Lo(q") =i L(g”). )
: o B S 1C) R _ _ —
Proof. (i) For every value ¢t of r let B := {s : Pty = t}; then Pi(r =1t) = erB Pi(s) =
t er g P2(s) =tPy(r =1t). It follows that % =t, which is an increasing function of ¢, and so

IWhen the ratio is 0 /0 define r(s) arbitrarily; this will not matter since it occurs on a null event for both P and P;.
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we have the result for » by definition. The result for increasing f then follows readily (see [22],
Theorem 1.C.8).

(i) Setting P; =Py and P, = P we have q%(s) =m(0) gg; = m(0)r(s), and the result follows from
(i) since Py < IP. ]

Remark. In (i) the ratio Py (r =1t)/P,(r =t) =t is a strictly increasing function of 7—unless r is con-
stant, which happens only when P; = P, (and then r = 1)—and the domination is therefore strict. In
(ii) this happens except when the signal s is completely uniformative, i.e., when the posterior is iden-
tical to the prior: g% (s) = () for all s. The strict domination implies that the resulting inequalities,
such as (6) below, are strict (this is pointed out in [13]).

Since likelihood ratio order implies stochastic order, (3) implies Lp, (f(r)) >¢ Lp,(f(r)), and so
for any increasing function f we have

Pi(s) Pi(s)
Zj Pi(s) f (PZ(S)> > Pys)f (Pz(s)) :

N

The quantity on the right-hand side is known (for convex f) as f-divergence. Similarly, the likelihood
ratio order relation (4) implies stochastic order; that is, Eg[ f (qe(s))] >E[f (q9 (s))] for increasing f.
Moreover, this holds also when conditioning on a set of values of the posterior (such as being, say,
more than 1/2):

Eolf (¢ (5))1q% € A1 > El£(¢° (5))I¢% € A] (5)

for increasing f and A C [0, 1]. Thus the posterior of & when the data s are generated according
to Py (s) is stochastically larger than the posterior when the data are generated under P(s). Taking
f(x) = x we obtain

Eolq’1> Elq’1=r (), (6)

where the inequality is strict for any informative signal s (see the above remark), and the equality is
the martingale property of posteriors under P (see (1)). Replacing the single parameter 6y with a set
[’ C © of parameter values, the result of (4) readily implies that

Lr (P(Tls)) =i £L(P(T]s)) =ir Lre (P(T]s)) (7
(for the second >y use P =7 (I")Pr + 7 (I'“)[Pr¢), and thus
Er[P(T]s)] = E[P(I'|s)] =7 (') > Epe[P(I[s)]. 3)

Result (7) is given in [13], and (8) is given in [11]; see these papers for further results, references, and
history.

When there are only two parameter values, say ® = {6, 61}, (7) becomes Ly, (q9°) >Ir E(qeo) >
Ly, (q90). However, the latter dominance relation need not hold when there are additional parameter
values in ®; see, for instance, the example at the end of Section 1 in [13].2 A case where it does hold
is provided in the proposition below, which applies, for instance, to the Bernoulli and normal distribu-
tions, and many other exponential families discussed later; see, e.g., [16] or [14]. The parameter space
is now an interval on the real line, 6y and 6, are the two interval ends, and the family of distributions
Py satisfies the monotone likelihood ratio property (MLRP), i.e., Py/(s)/Py(s) is increasing in s € R

2Where © = {a, B, v} and the dominance is reversed: £y, (¢%) >1; £(¢%) (in the notation of the present paper, [13] shows that
ﬂy(l —q%) <1 L(1=¢*)).
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for 8’ > 6. The order >, below can of course be replaced by the weaker > or by comparisons of
expectations.

Proposition 2. Let ® = [0y, 01] C R and assume that Py is a monotone likelihood ratio (MLRP)
Sfamily. Then

Loy(q™) =1 L") >1r Lo, (g™).

Proof. The only new part is £(g%) >, Lo, (g%). First, I;'(:;) is increasing in s by the MLRP assump-

tion, because the denominator is a mixture of Py’s over 8 < 6, and so Ly, (s) =1 L£(s). Similarly,

g% (s) = 7 (6p) ]p];(zg) is decreasing in s, and the argument in the proof of Proposition 1 (i) leading to

(3), now applied to a decreasing rather than increasing function and thus reversing the order, implies
L(q%) =1 Lo, (g™). U

We conclude with a simple symmetry between the 6p-posterior under 6; and the 0;-posterior under
6o.

Proposition 3. Let 6y and 0 be in ©. Then

1
Egylg" 1= ————E[g% - ¢"1.

o7
Eg [¢7™]= 7 (6o)7 (61)

1
7 (6o) 7(01)

Proof. We have

1 Py (s)7(60)
7(60) Z P(s)

1 Py, ()70 (60) Pg, ()7 (61) 1
— P
7(60)7(6) 2 (<)

Eg, [¢%] = Py, ()

1
(6o)

=———FIg%-¢"1.
P(s) P(s) 2@y 49

N

The last expression is symmetric in g and 61, and so it is equal to ﬁEgO [qgl] as well. O

The same symmetry applies of course when we consider sequences of observations (see for instance
Corollary 7 below).

3. Increasing posterior of the true state

We now consider observations that arrive sequentially and apply the results of Section 2 to obtain
monotonicity and order relations as a function of the sample size n.

The data consist of a process of observations x1, x3, ... whose distribution is Py, where 6 lies in the
parameter space ®. At this point we make no assumptions about the distributions of the observation
process and the dependence structure (over n). We assume the standard Bayesian framework given in
Section 1. Given the vector of observations up to stage n, which we denote by s, = (x1, ..., x,), the
posterior of 6 at time n is g, =P (f]s,). Viewing q,f as an s,-measurable random variable, we obtain
that the sequence qg is a martingale with respect to the probability P, i.e., ]E[qg L1lsnl= qg.

Proposition 1 (ii) applied to x,,11]s, yields
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Proposition 4. For every 0, the posterior qlf 41 of 6 at time n + 1 satisfies
Ly (qr?-q-] |Sn) > L (q,?ﬂ |S,,) .

Thus, given s,, the 6-posterior qfl' = P(0)x,+1, sn) under the probability Py (-|s,) likelihood-ratio
dominates that same 8-posterior under the probability P(-|s;,). Since, again, >}, implies >, by Propo-
sition 4 and the martingale property of g, =P (6]s,) we get

Eolg?iIsn]1=Elgl, Isa1 =g 9

(as in (5), one may also condition on qg 41 lying in a certain set). Proposition 4 generalizes Proposi-
tion 1 (ii): given any past data s,, the posterior belief in 8 with an additional observation x,4; dis-
tributed according to Py likelihood-ratio dominates the same posterior when the additional observation
is distributed according to PP; (9) is then the consequent expectation comparison.

Inequality (9) means that under Py the process qﬁ is a submartingale. Since every increasing convex
(integrable) function of a submartingale is a submartingale, for any increasing convex f we have

Eolf (gl Dlsal = f(g)). (10)

Taking expectations on the two sides of (9) and (10) with respect to s, distributed under 8 we obtain

Corollary 5. The expectation Ey [qg 1 of the posterior probability of 0 with respect to Py is increasing
in n, and, more generally, so is Eg[ f (qg )] for any convex increasing function f.

Thus, with more data generated under 6, the -posterior increases in the increasing convex order,
and in particular in expectation. The convergence of the expected posterior to 1 (by Doob’s theorem) is
thus monotone. We have obtained this result starting from a strong ordering: the likelihood ratio order.
That qf is a submartingale under Py is shown in [17] and [11] (see also the references therein), where
other relevant results are given.

4. Nonmonotonic and multimodal expected posteriors

Assume now that the observations are generated under 61, which is different from 6y; then the posterior
probability of 6y given s, converges to zero as n — oo by Doob’s theorem. This convergence may not
be monotone, and in fact, if 6; and 6y are close together, the expected posterior v (n) = g9, (n) =
[y, [qso] may increase as a function of n for small n before it starts decreasing. The question that
we address in this section is whether it is possible for the expected 6p-posterior, with data generated
under 61, to increase again after it starts decreasing. If some observations distributed under 8; cause
the expected 6p-posterior to decrease, the average belief in 6y decreases, as it should under 61, but as
we will show below it is possible for further observations generated under the same 6; to cause ¥ (n)
to increase before it eventually decreases to zero. Such an increase leads to an erroneous upturn of
the Bayesian statistician’s degree of belief in 6y. Furthermore, ¥ (n) need not be unimodal, and may
fluctuate many times.

We present two examples of this behavior in the simplest case of iid coin tosses, i.e., Bernoulli(6)
observations. In Figure 1 the sequence v (n) decreases, then increases, and then decreases again to 0.
Figure 2 provides a further counterexample to the unimodality of the sequence ¥ (n), showing that it
may have many modes, and thus may alternate several times between being increasing and decreasing.
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T T T T T T T
0 20 40 60 80 100 120

n

Figure 1. The sequence v (n) = Eg, [q,fo] for iid Bernoulli observations: ® = {6y, 0;,6>} with
0; =0.5, 0.65, 0.85, and prior probabilities o ; = 7 (6;) =4100/5001, 1/5001, 900/5001 (for j =0, 1, 2).

In both examples the priors concentrate on three points ¢; (for j = 0,1,2) with probabilities
7(0j) = «j, and so the distribution of the sufficient statistic u, := ) ;_, x; is a mixture of three
Binomial(n, 6;) distributions: P(u,, = k) = Z?:o o jIP’gj (un, = k). By continuity, it is clear that such
examples are robust to small changes in the parameters and their associated probabilities, and priors
having a larger or even continuous support with a similar behavior can be constructed. The function
Yoo,6, (1) = Eg, [q,?”], which is given by the formula

n 2,k n—kpk n—k
05 (1 — 6, O (1—6 (%
Veo.0,(n) = Eg, [qgo] — Z (k) o ( O?P(u lz(k) D" (Bo)

k=0

(1)

(and thus equals Z Ez(l’;Ego [q,?‘], as in Proposition 3), is depicted in Figures 1 and 2. In Figure 3 we

provide an example of iid observations with a normal prior, which will be analyzed in Section 6.3.
For some intuitive explanations, take Figure 1 first, where we consider the posterior of 6y = 0.5,
the data are generated under 6; = 0.65, and there is another possible parameter, 6, = 0.85. Initially
the expected posterior belief in 6y decreases, as the observations under 6; make both 6; and 6, seem
more likely (on average). After 11 observations the expected belief in 6y starts to increase, as 6>, whose
distance from 6; (under which the data are generated) is greater than that of 8y, begins to seem less
likely. Eventually, after a further 70 observations, the expected fp-posterior begins its final descent to 0.
Turning to Figure 2, we see that, in addition to long-term fluctuations similar to those of Figure 1
(see also Figure 3), there are many short-term up and down fluctuations’ that are likely due to the
discreteness of the data (cf. Figure 3) and of the time steps. In Proposition 6 and Corollary 7 below
we try to shed some light on these fluctuations. Interestingly, the fluctuations of the expected posterior
beliefs are rather sensitive to the values of the parameters; for example, changing 6; from 0.5 to 0.45,
or 8, from 0.85 to 0.8, yields a strictly decreasing sequence v (n), with no up and down fluctuations.

3We have generated other examples where the number of modes exceeds 8 by far.
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0.63
Il

n

Figure 2. The sequence v (n) = Eg, [qso] for iid Bernoulli observations: © = {6p,01,0,} with
6; =0.2, 0.5, 0.85, and prior probabilities ' j = 7 (¢;) = 2000/3001, 1/3001, 1000/3001 (for j =0, 1, 2); we
see 8 modes.

In Figure 3 we have iid normal A/ (8, o2) observations with a large variance (o = 100) and a standard
normal prior (see Section 6.3). For data generated under 6; = 1/3, the expected belief in 6) = —1/3
starts by decreasing for nearly 2,000 periods, following which it goes in the “wrong direction” for
a very long time, increasing for about 30,000 additional observations; only then it starts decreasing

1.02
|

0.96
|

0.94
|

T T T T T
10000 20000 30000 40000 50000

o

n

Figure 3. The sequence ¥ (n) = Eg, [q,fo] for iid N (8, 02) normal observations with a standard normal prior on
0 (see (31)): g =—1/3,0; =1/3 and o = 100.
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monotonically to its limit of 0. As we will show in Theorem 16 (iv), additional up and down turns are
not possible for normal distributions.

Consider now the effect of a single observation x on the 6p-belief when x is generated under a
different 61. As seen above, while in many cases the belief in 6y is reduced, this need not be so when
01 is close to 6y and there are other points in ®; indeed, the fy-posterior strictly increases on average
when 0 = 6y (see the remark after Proposition 1), and thus, by continuity, also when 6; and 6y are
close enough together. We quantify precisely this “closeness” of parameters in the simplest case of a
Bernoulli observation, as follows.

Proposition 6. Let x be a Bernoulli(9) observation, and let 7w be the prior probability of 0 for 6 €
® C[0,1]. Let 0 :=E[0] = 2966 0 (0) be the (pﬁior) average parameter. For any 6y and 01 in ©,
the inequality g, [¢%] < 7 (60) holds if and only if © lies between 6y and 61, with equality if and only
if§=90 or6 =0;.

The condition that 6 lies between 6y and 6; is symmetric in 6y and 61, and so it is also equivalent to
Eg, [¢?11 < 7 (6y) (this equivalence follows from Proposition 3 as well). Assume therefore without loss
of generality that 8y < 0. Proposition 6 says that data under 6; make the expected posterior of 6y lower
than the prior of 6y if and only if 6y < 6 < 61, and make it higher than the prior if and only if either
69,0 <6 or 6y, 0; > 6. Thus 6, being “close” to 6y in the sense that an observation under 6 increases
the expected belief in 6 (i.e., Eq, [qe"] > 1 (6p) holds) is equivalent to 61 being on the same side of 0 as
6p. In fact, this notion of “belief-close” is related to “metric-close” as follows: the shorter the distance
|61 — 6p| between 61 and 6 is, the fewer the priors 7 yielding 6 in the interval [6p, 6] there are, and so
the fewer the priors 7 yielding g, [¢%] > 7 (6p) there are. Finally, when 6; = ), Proposition 6 gives
(6), with strict inequality unless 6 = 6.

Proof. Using P(x = 1) = we have

Bo (Bo) (1 = 6p)7 (6o)

Eg,[g%1= 014" (1) + (1 — 61)g% (0) =0 ———+ (- =
=71(60)V (0), (12)

where
6oty | (1 —6p)(1 —6)
Vy)=—+ —. (13)
y -y

The function V is strictly convex and satisfies V(6p) = V(61) = 1, and so V(@) < 1 if and only if
6y < 6 <0. O

This extends to a sequence x1, x2, ... of iid Bernoulli(f) observations, where we obtain the condition
for the expected posterior to increase after the next observation, given the past data. Indeed, using (12)
for the observation x,| that comes after data s, = (x1, ..., x,) yields

Corollary 7. Let x1,x2, ... be iid Bernoulli(9) observations, let v be the prior probability of 6 for
0 € ® C [0, 1], and denote by 0, :=E[0]s,] = 2966 OP(O|s,) the average parameter conditional on
sn. For any 60y and 01 in © we have

Eo,[q%, Isn] = g%V @4) and Egylq’" 1sa1 =5V @) (14)



Posterior probabilities 11

where the function V is given by (13), and so each one of the inequalities g, [qzo+1 [sn] < qso and
Eq, [qzﬂr] lsn] < qs' holds if and only if 0,, lies between g and 6 .

Thus 6 and ) are “not close together” if they are separated by 6,,, in which case an additional ob-
servation under 6 decreases the expected belief in 6y, and vice versa. The notion of closeness depends,
of course, on n and s,. Since for data generated under 6 (in the support of ) we have 0, — 61, asn
increases 6p and 61 may well fluctuate between being and not being close together given s,. Despite
these fluctuations, we will see a large class of natural setups (Theorem 9 and Corollary 10) where the

overall expectation g, [q,fo] is strictly decreasing from some 7 on.

5. Asymptotic rates and eventual monotonicity

In this section we obtain the precise asymptotic behavior of Eg, [q,g,o] as n — oo in the commonly used
rich class of exponential families of distributions; for clarity we focus on one-dimensional families
(see Appendix A.2 for extensions). The prior is now assumed to be continuous (which allows the use
of analysis tools), while the data may be discrete or continuous. All the results of the previous sections
are clearly seen to extend here, with densities replacing probabilities as needed.

The general setup is as follows. Let X C R be the space of observations, and let v be a o-finite
measure on the Borel sets of X’; for instance, take v to be the counting measure in the discrete case
where X is a finite or countable set, and the Lebesgue measure in the continuous case where X is
a bounded or unbounded interval. Let ® C R be the space of parameters, and let IT, the prior, be a
probability measure on ®; we assume that ® is a convex set and that IT has a density 7 (0) that is
continuous and strictly positive on ®. Finally, the conditional-on-6 probability Pg(-) = P(-|6) on X
has a density py with respect to v, given by*

po(x) =exp(m()T (x) — A(n(0)) — B(x)) 5)

for some functions n, T, A, and B, where 7 is differentiable and n’(9) > 0 for all & € ©. The following
are well known (see, e.g., [5]): the function A(7n) is determined by the functions B and 7' (use the
condition f x Po(x)dv(x) =1 for every 0 € ©), it is infinitely differentiable, A'(n(0)) = Eq[T (x)],
and A”(n(0)) = Varg(T (x)). We assume that A”(n(0)) > 0 (that is, T (x) is not Py-a.s. constant) for
all 6 € ©. Let 1(0) :=Eq[(3/36 log pg(x))*] = —Fg[3>/862log ps(x)] be the Fisher information at
0; for exponential families (15) we have I(0) = A” (n(0)) - (n'(0))* = Vary (T (x)) - (n'(0))*> > 0.

Consider a sequence of iid observations xi, x2, ... and set s, = (x1, ..., x,) € X". The density of
the 6p-posterior (for 6y € ®) isd

Doy (sn)7 (60)
p(sn)

g =g (sy) =

where p denotes the marginal density, i.e., p(s,) = f@ po(sy)m(0)do. The 0;-expectation (for 1 € ®)
of the 6y-posterior is®

Poo (sn)7 (00)

Weo,el(")E]Eﬁ[qgo]:/ n )

Po, (5,) V" (s,). (16)

4F0rmally, pp is the Radon—-Nikodym derivative dPg /dv. In the discrete case where v is the counting measure, pg(x) = Py (x)
for all x, and fY Po(xX)dv(x) =" ey Po(x) =D, cy Po(x) forevery ¥ C X.

SWe use the notation po (+) for the conditional-on-6 density of any variable; thus, pg(s,) = ]_[l’f:l po(xi).

The measure v"* on X" is the n-fold product of the measure v on X'.
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In exponential families there is a simple relation between 4, 9, and g ¢ for an appropriate 6 € ©.

Proposition 8. Let (pg)oco be a family of densities (15), and let w be a positive density on the convex
set ©® CR. Let 6y, 01 € ©. Then

7 (6p) 0
Vo0, () = Té)w@,@ (M) w
for every n > 1, where
6y = n~! (77(90)J2rn(91)> co an
and’
2
= (/X Doy (x) po, (X)dv(x)> <1, (18)

with equality (i.e., w = 1) if and only if 6y = 0.

Proof. The function 7 is strictly increasing and continuous, and so it attains the value (n(6y) +n(61))/2
at a (unique) point between 6y and 61, and thus in ® (which is a convex set); this is the point 8, given
by (17). From (15) we have

Poo (X) P, () = w pg, ()2, (19)

for every x, where w := exp(2A(n2) — A(no) — A(n1)) and n; :=n(6;) (and so n2 = (o + 11)/2).
Therefore pg, (sn) po, (s1) = W" pg, (sn)2, yielding the result by (16). Formula (18) follows from (19):
Lo v/ Po(¥) o, (x) = [ W pe, (x) = Jw. Since [y /e, (x) po, (x) < [ (pay(x) + po, (x))/2 =1
we get w < 1, with equality if and only if pg,(x) = pg, (x) for all x € X, which occurs if and only if
6o = 6 (because 7 is one-to-one and 7 is not constant). O

Proposition 8 thus reduces the analysis of the 61 # 8y case to that of the 8; = 6y case. The rela-
tion (19), or, equivalently, pg, = c,/peg, ps, (for the constant ¢ =1/ J/w), says that the density pg, is
proportional to the geometric average of the densities pg, and py,; it is their “normalized geometric
average.” The exponential family (15) is closed under this averaging operation by the convexity of ®.
For further discussions and extensions, see Appendix A.2.

When 6 = 6 the sequence g, [qgo] is monotonically increasing (by Corollary 5), whereas when
01 # 6p the sequence [Ey, [q,‘i"] converges to 0 (by Doob’s theorem). Theorem 9 strengthens these results
by providing the precise asymptotic rates.

The standard notation “f(n) ~ g(n) as n — o00” means “asymptotic equivalence,” i.e.,
lim, o0 f(n)/g(n) =1.

Theorem 9. Let x1, x3, ... be iid observations distributed according to an exponential family with
density py given by (15), and let 6 be distributed according to a prior having a continuous strictly
positive density w on a convex set ® C R.

7The constant /w is known as the Bhattacharrya coefficient, and also as the Chernoff 1/2-coefficient (see [6] and [8], or [19]
for a convenient reference).
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(1) Let 6y be an interior point of ©; then

~1(60)

Eg, [qgo] N Jn asn — oo. (20)
(i1) Let 01 # 69 be in ©; then
o7 7 (60) 0 7 (60) V1(62) n
Eq, [¢,°]1 = —n(QZ)Eez[qnz] n(e ) v Jrw" asn — oo, 21

where 6, and w are given by (17)—(18).
Corollary 10. When 01 # 6y the sequence Eg, [q,‘f‘)] is eventually strictly decreasing.

Proof. Asn — oo we have Ey, [qz(jrl]/IEg1 [q,fo] ~Wn+1/y/nw—w<1. |

Note that the prior 7 does not appear in (20); as in the Bernstein—von Mises theorem (which is used
in the proof below), the prior is “overwhelmed” by the data as the number of observations increases;
this is however not the case in (21) when 6 # 6.

Before proving the theorem, we apply it to a number of classical examples:

e Bernoulli(9) for 6 € ® = (0, 1). Here X = {0, 1}, n(6) =1log(d/(1 —0)), and T (x) = x, and so
Varg(T (x)) =6(1 —0) and n'(9) = 1/(0(1 — 0)), yielding I (0) = 1/(6(1 — 6)) and

Eg,[g0] ~ «/% (for0 <6y < 1),
Eg,[g501 ~ 70)/nw (for 6y # 61),

27 (62) v 62(1 — 62)

where
. 0001
/0001 + /(1 —60)(1 —61)

e Normal(9, 62) for 6 € ® =R and fixed o > 0. Here ¥ =R, () =6, and T (x) = x /o2, and so
1(0) =Vary(T (x)) = 1/0?, yielding

2
and w:( 000, + (1—90)(1—91)) .

601 ~ —\/ﬁ
]E90 [qn ] Zo’ﬁ’

P GO (_n(90 - 91)2>
B la~ S oo P 402 )

where 6y = (g + 601)/2.
o Exponential(0) for 6 € ® = (0, 00) (i.e., py(x) = 0e~0* for x > 0). Here X = (0, 00), n@) =20,
and T'(x) = —x, and so 1 (0) = Varg(T (x)) = 1/62, yielding

i

Eg,[¢%] ~ ,
90[qn] 290ﬁ
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o @) (0001
Eolgf 1~ oo f( ) , 22)

where 6, = (6p + 601)/2.
e Poisson(f) for 6 € ® = (0, 00). Here X =N, n(0) =log#6, and T (x) = x, and so Varg(T (x)) =
0 and n’'(9) = 1/6, yielding 1(6) = 1/6 and

Jn
NI

7 (60)/n
27 (62)A/TO;

Eg,[g20] ~

Eg, [g20] ~ exp (—n (6o + 61 — 262)),

where 6, = /6p0;.

Proof of Theorem 9. Part (ii) follows from part (i) by Proposition 8 (when 6; # 6y the point 6; lies
strictly between 6y and 6y, and so is an interior point of ®). We will thus prove (i). It is convenient to
assume without loss of generality that n(6) = 6 (this is called the “canonical” representation); indeed,
since i’ > 0, the transformation 6 := (f) (which preserves the convexity of the parameter space
and maps interior points to interior points) yields: pz(x) = exp(@~ -T(x) — A(é) — B(x)); ﬁ(é) =

7(0)/7 (0); ‘Zn =q, % /' (0); and [(6) = 1(0)/(n' (0))%; hence G / 1(6) q,‘f/«/[(@), and so (20) for
0 is equivalent to (20) for 6. From now on we thus have

po(x) =exp(0 T (x) — A(0) — B(x)) (23)

for all x € X and 6 € ®, and so I(0) = A”(9). For s, = (x1,...,x,) € X", let Qn = Qn(s,,) =
argmaxgee Y .+ i—110og po(x;) denote the maximum likelihood estimator (MLE); thus 9 mlnlmlzes the
strictly convex function #,, ©):=A@®) -0 - tn, where 7, = 7,,(sy) := (1/n) >_j_; T (x;); if 6 is an
interior point of © then A, (9 )=0,1ie., A’ (9 ) =1p. Put Po =Py,, po = py,, and Eg = Eg,, respec-
tively, for the probability, den51ty, and expectation under 8y. Given iid observations x1, x3, ..., under

Py, we have (see, e.g., [20], Theorem 7.57 or [10], Theorem 18)8 «/n1(90)(§n — 6o) i) N, 1),
~ P
which implies 6, SN 0o (the “consistency” of the MLE).

For convenience we divide the proof of (20) (for 8y € int®) into a number of steps, as follows. First,
we show that with high Py-probability the posterior qgf at 0, converges to the appropriate limit by the
Bernstein—von Mises theorem (Step 1). Second, since 6, — 6 is approximately normal (as seen above),
we show that replacing 6, with 6y requires a factor of 1/+/2 on expectation (Steps 2 and 3). We then

prove that the 6p-posterior qgo is O(y/n) (Step 4), and so sets of small Py-probability can be ignored
(Step 5); this completes the proof.

o Step 1: Let J(0) :=+/1(0)/(2m); then

9. P
7" (s4) —> J (8p) as n — oo.

NG

Proof. Let ¢ :=+/nl(6,)(6 — @1); the Bernstein—von Mises theorem says that under 6 the posterior
density of ¥ converges as n — oo to the standard normal density ¢; specifically, Theorem 7.89 in [20]

. L . e P . . .
8Notation: —> means convergence in law (or distribution), and —% means convergence in probability with respect to the
probability Py.
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(in Appendix A.2.3 we show that all the “general regularity conditions” of the theorem hold) applied at

-~ 7 P ~ P
¥ =0,1i.e., 0 =6,,yields q,f” (sp)/v/nl(6y) - ¢(0) = 1/+/2m. Now use 6, SN 6p and the continuity
of I. U

Given 0 < & < 1, let ! = Q! (¢) be the event that ((1 /NG (sn)/J (B0) — 1] < &; thus Po(R)) —
1 (as n — oco) by Step 1. Let Q% = Q%(e) be the event that @:, is an interior point of ® and

—~ ~ P
| (60)/m(6,) — 1] < ¢; since 6, LN 0p € int® and 7 is continuous and positive, ]P’O(Q%) — 1. Put
Q, = Q! N Q2Z; then Py(2,) — 1.
o Step 2:

Eg, Po(sn) 1o | — L asn — oo
1 pgGa) | V2

Proof. Recall that /,,(0) := A(0) — 0 - 1,,; then

P()(Sn)

s (sn) =exp (—nlh(60) — h(O)]) 1o

In 2, C Qﬁ the point @, is an interior point of ® and so the Taylor series of & around 6,, where
h'(6,) =0and h"(6,) = A”(8,), yields an intermediate point 6, between 6y and 6, such that

1 ~
Y, = exp (—EnA”(e,z)(eo - en)2> 1o

~ P P P P
Now 6, —> 6 implies 6, —> 6y and thus A”(6,) —> A”(6p) = I (6p); also, 1g, —> 1 (because
Po(£2,) — 1). Under po we have «/n[(@o)(a1 — 6p) i) Z = N(0, 1), as mentioned before Step 1;
altogether, Y, i) exp(—Z2 /2). The Y, are uniformly bounded (0 < Y, < I, because A” > 0), and so

Eo[Y,] = E[exp(—Z2%/2)] = 1/+/2. O
e Step 3:
1 J (6o) ,
limsup | —E fo1 <ég,
’Hoop NG 001a," 1,1 — «/5 <

where &' := (3J (6p) /v/2)¢.

Proof. For every s,, we have

Lqeo(s) Qn " (sn) 77(90) Po(sn)
ST w1 @ pa, )

In 52}1 the first factor is at most (1 4+ €)J(6p), and in Q% the second factor is at most 1 + ¢; hence

Ppo(sn)
3, (5n)

1q,

%q,, (sn)lg, < (1+¢)*J (6o )
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Taking expectation under Py yields by Step 2

1 J (6 J (6
limsup —[Eg,[q 5019,,] < —1—5)2 ©) < ©)

oo N/ V2 T V2
Similarly,
1 J(6o) _ J(6o)
I ( _ 220 o
lkrg%gf\/_]Eeo[qn 1o, 1> —¢) NG > NG g,
completing the proof. (]

e Step 4: There is a constant C < oo such that

g% (sy) < C/n

forall s, and all n > 1.

Proof. We will show that there is a constant ¢ > 0 such that

7(6p) p(sn) c

P Pl
for all n > 1. Take § > O such that [y — §, 6y + §] C int®; then

0p+5

=f exp(—=nlh,(0) — hn(0o) 7 (0)do > ,Of H, (6)do,
o)

0p—3§

p(sn)
Po(sn)

where H, (0) := exp(—n[h,(0) —h,(00)]) and p := minge[g,—s,6,+5] 7 () > O (recall that the density 7
is continuous and strictly positive on ®). The strictly convex function %, (§) = A(6) —6 -t, has a unique
minimizer in [0y — &, Oy + §]; call it £. Without loss of generality assume that £ > 6y. When & > 6y + §
the function 4,, is decreasing for 6 < &, and thus for all 8 € [0y, 6y + 6] we have h,, (6) < h, (6p), and
hence H,(8) > 1, which gives p(s,)/po(sy) > p8 > p8//n for alln > 1. When 6y <& < 6y + & we
have’ h (§) =0and so hy (0) — hy(00) < hy(0) — hp(§) = h1(£)(O — 5)2/2 for every 6 in the interval
[6p — 8, 6p + 8] (by the second-order Taylor expansion), where { = ¢y is an intermediate point between
6 and &, and so ¢ € [0y — 8,60 + 8]. Since k), = A” we get 0 < h)/({) < o := maxge[gy—s.00+5] A" (0),
and so £, (0) — h,, (8p) < (9 — £)%/2 and

90+5 ‘i: no p\/ﬁ
H(0)do —— O —-§)?%)do = <——c1> F) )
pfeo_s ®) Z/’fé_ae"p( 3 @ —9?) a0 =" (=83/na)

(because [§ — 6,&] C [6g — 8,60 + &]; here © denotes the cumulative standard normal distribution).
Since ®(—8+/na) — 0 as n — oo, the final expression is ~ ¢/+/n for some ¢ > 0, which completes
the proof. ]

o Step 5: Let Qf, denote the complement of €2,,; we have

1
—Ego[qz"lgz] — 0 asn — oo.

i

9In this case, where £ is an interior point, £ is the minimum over all ®, and thus & = 5,1. The argument here is an instance of the
Laplace method.
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Proof. Use the uniform boundedness of (1/ ﬁ)qﬁ" by Step 4 and Py(2,,) — 1. O

Adding the results of Steps 3 and 5 and noting that ¢ > 0 is arbitrary yields (20), and thus completes
the proof of Theorem 9. |

See Appendix A.2 for additional comments, extensions, and technical details.

6. Log-concavity

In this section we discuss setups in which the sequence Eg, [q,?o] is log-concave in n. A sequence of
positive numbers ¥ (n) for n > 1 is (strictly) log-concave if log 1 (n) is a (strictly) concave function of
n; this is equivalent to Iﬂ(n)2 > Y — DyY(n+ 1) for every n > 2, with > for the strict version. The
sequence Y (n) is unimodal if there exists 0 < ng < oo (possibly equal to 0 or co) such that ¥ (n) is
increasing for n < ng and decreasing for n > ngy. Log-concavity clearly implies unimodality (with ng
that maximizes ¥ (n)).

In Corollary 10 we saw that for 8y # 6y the sequence Vg, 6, (n) = Eg, [q,fo] is eventually strictly
decreasing. We will now show that in certain natural setups, with conjugate priors, this can be strength-
ened to unimodality, and, in fact, to log-concavity, with respect to the time period n. We do this in
three setups. The first one consists of iid Bernoulli observations with a uniform prior; the second, of iid
normal observations with a normal prior; and the third, of iid exponential observations with an expo-
nential prior. In the normal case log-concavity is obtained only from some rng on, where ng may be 1
or arbitrarily large, depending on the parameters; Figure 3 in Section 4 is typical of the latter case. The
analysis suggests that general log-concavity results may be hard to obtain, as indicated by the different
proofs in the three cases, as well as by the dependence of the result on the specific prior (see the normal
case, or take a Beta prior in the Bernoulli case).

In Proposition 8 of Section 5 we get a log-linear relation between g, ¢, (n) and v, g, (n), and so it
suffices to consider only the case where 67 = 6.

Corollary 11. Under the assumptions of Proposition 8, the sequence Vg, o, (n) is log-concave/convex
in n if and only if the sequence Vg, g, (n) is log-concave/convex in n.

6.1. Bernoulli observations with uniform prior

This section deals with sequences of iid Bernoulli observations with a parameter 6 that is uniformly
distributed in (0, 1). We show that in this case ¥y, 6, (n) = Eqg, [qso] is a log-concave function of the
time period 7, and so unimodal in n. We obtain this result by proving in Section 6.2 a “reversal” of the
reverse Turdn inequality for Legendre polynomials, which may be of independent interest.

Theorem 12. Let x1, x2, ... be iid Bernoulli(9) observations, and let the prior distribution of 6 be
the uniform distribution on © = (0, 1). For every 0y and 6 in © the sequence g, ¢, (n) = Eq, [q,?‘)] is
log-concave for n > 1 (and strictly log-concave for n > 2), and hence unimodal.

Proof. As in Section 4, we work with the sufficient statistic u,, := Z;’:l Xi, whose distribution given
0 is Binomial(n, ). The marginal distribution of u, when the prior is uniform on (0, 1) is then the
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uniform distribution on the set {0, 1, ...,n}; i.e., P(u, =k) =1/(n + 1) for 0 < k < n (this is a well-
known result; see, e.g., [15], Section 6.10.1, and in particular page 285). Therefore

n

o Polun =k))? _ " (n) 2% 2n—k)
W@,@(”)—gm—m-}-l)g(l{)Q (1-20) .

The log-concavity of the last expression follows from Corollary 15 in the next section, with y = 62 and
z = (1 —6)2. Finally, for 6; # 6 apply Corollary 11. ]

It is natural to try to generalize from the uniform prior to other priors, such as Beta distributions (the
class of conjugate priors here). However, numerical calculations show that g, [q,f“] need not be log-
concave: take, for example, the Beta(7, 1) prior, 6y = 3/4, 01 = 9/10, and n = 2, 3, 4 (this is clearly
robust to small changes in the parameters).

6.2. Reversing the reverse Turan inequality for Legendre polynomials

This section proves an interesting reversal of the reverse Turdn inequality for Legendre polynomials
for |x| > 1; it yields in particular the log-concavity of the previous section.
The Legendre polynomial of degree n > 0 is defined as

n

1 2
Pa(x):= = > (Z) = D"+ DN

k=0

see, e.g., [24] and the references therein. The well-known Turan inequality for Legendre polynomials,
first published in [23], states that

P}(x) = Pye1 (x) Pag1 (x) forall x| <1 (24)
holds for every n > 1, with equality if and only if'? |x| = 1. Its reverse version,
Pnz(x) < P_1(x)Pyy1(x) forall |x| > 1, 25)

holds for every n > 1; see, e.g., [24], Theorem 1.
We next show that multiplying P, by n + 1 reverses (25) for all'! |x| > 1.

Theorem 13. The inequality

Pa1(9) Poyi (x) _ (n41)°
P2(x) “nn+2)

forall |x| > 1 (26)

holds for every n > 2, with equality if and only if n =2 and |x| = /3.

Proof. Putting

Pn—l Pn+l

(n+1)?
and a, :=
p?

Rn = = —_—
nn—+2)

10pyt 00 = 1; then Py(1) =1 and P, (—1) = (= D)".

11Starting with Pp rather than Py (which is what is needed for our Theorem 12).
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we will prove that
1<R,(x)<a,

for all |x| > 1 and n > 2; the first inequality (which also holds for n = 1) is the reverse Turan inequal-
ity (25), for which we provide a simple proof as well. Because P,(—x) = (—1)" P,(x) it suffices to
consider the range x > 1, where P,(x) > 0 for all n > 1. Let b, be the leading coefficient of P,, i.e.,
the coefficient of its highest power, x”; then

1L /n\> 1 (2
=52 (1) =3 ():

and thus
bu—1bn11 _ n2n+1)
b2 (m+DQ2n—1)

R, (c0) := xll)rgo R,(x) = 27)

It is straightforward to verify that

1 < R, (00) < ay (28)

for every n > 2 (the first inequality is equivalent to (2n% + n)/(2n> +n — 1) > 1, and the second to

n? —n — 1> 0). Next, differentiating log R,, (x) with respect to x yields

R, P P 2P,
(10an)’:_":"_—1+"_+1__".
Ry Pu—1 Pn+1 Py
Using the following well-known formula (see, e.g., [2], Equation (12.26) for a convenient reference)

(x? = ) PL(x) = nx P, (x) —nPy_1(x)

for every n > 1 and every x we then obtain

(x2—1)R—’/1:(n—1)x—(n—1)Pn_2 0t Dx — (1 D= 4 2n D1
Rn Pn—l Pn—H Pn

P, P,_» P, P, 2n n—1 1
=2n —(n—-1) —(n+1) =mn+1) — Ri-1—— ). (29
P, P, P, P, n+l n+1 R,

The proof of (26) is by induction on n, separately for each one of the two inequalities. For the first
inequality, assume by induction that R, _1(x) > 1 for every x > 1. If R,(x) <1 for some x > 1, then,
since R,(1) =1 and R,(c0) > 1 (see (27)), there is x, > 1 where R, attains its minimum, and so

R, (x) <1 and R}, (x,) = 0. Using (29) and then R,,_;(x,) > 1 (by the induction hypothesis) yields

1 2n n—1 2n n—1
= R < — =
R,(xy) n+1 n+1 n+1 n+1

)

in contradiction to R, (x4) < 1. The induction starts with n = 1, where we have
1 1
PPy — P2 =1- 5(3x2— D—(x)?= E(x2 —1)>0forx>1,

and so Ry (x) > 1 for every x > 1. For the second inequality, assume by induction that R,_1(x) < a,—1
for every x > 1. If R, (x) > a, for some x > 1, then, because R,(c0) < a, (see (27) and (28)), there
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is x* > 1 where R, attains its maximum, and so R,(x*) > a, and R}, (x*) = 0. Using (29) whose
left-hand side vanishes at x*, and then R, (x*) < a,,—1 (by the induction hypothesis) yields

1 2n n—1 N 2n n—1
= - Ry—1(x™) > - an—1

R,(x*) n+1 n+1 n+1 n+1
2n n—1 n? _nn+2) 1

s

a1l a4l—Dh+D n+12 a

in contradiction to R, (x*) > a,. The induction now starts with n = 2, where we have

9 1 9 /1 2 2 _3)2
PPy ——Pi=x--(5x°=3x)— - [=(3x* - 1) :—MEOforx>1,
8 2 g \2 32

and so Ry(x) < ap for every x > 1, with equality only for x = \/§; for n = 3 we have R3 (\/5) =
19/18 < 16/15 = a3, and so x™* cannot be +/3, and thus Ry(x*) < ap and the induction argument
above gives R3(x) < a3 for every x > 1, and then R, (x) < a, for every x > 1 and n > 4. O

Corollary 14. For fixed x > 1, the sequence Q,(x) := (n+ 1) P,(x) is log-concave in n for n > 1, and
strictly log-concave for n > 2.

Thus, Qﬁ (x) = On—1(x)Qn+1(x) holds for every n > 2, with strict inequality for n > 3. The result
holds for x = 1 as well, where P,(1) = 1 for all n.

The sequence P, (x), for fixed x > 1, is log-convex in n by the reverse Turdn inequality (25); The-
orem 13 says that multiplying P,(x) by n + 1 makes the sequence log-concave instead. Moreover,

(n + 1) Py(x) is the “right” multiple for which this reversal occurs: taking any smaller multiple, such
2
as n P, (x), also reverses the inequality (by (26) and ,(,'Enﬂ%) < (n—f;?n y ), whereas any larger multiple,

such as (n + 2) P, (x), does not (consider n =2 and x = \/§).

Corollary 15. For fixed y, z > 0 and not both 0, the sequence

n 2
i) =+ DY <Z> Sk
k=0

is log-concave in n for n > 1, and strictly log-concave for n > 2.

Proof. When y # z,say y > z, put x = (y +2)/(y — 2), and then x > 1 and

S0, 2= ="+ DPy(x) =y —2)" Qn(x),
and we use Corollary 14 for x > 1, and P,(1) =1 for x = 1. When y = z > 0 we have S,(y,y) =
yin+1) (2:), and then S2 > S,,_1 5,4 is obtained from (27)—(28) or by direct calculation. O

6.3. Normal observations with normal prior

We now consider normal observations whose mean is normally distributed; specifically, x1, x2, ... are
iid V' (6, 02) observations (with o > 0 fixed), and the prior on 6 is the standard normal distribution
N (0, 1). We show that the expected posterior g, g, (n) = Ey, [qs(’] is either a log-concave function of
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n, or a log-convex function up to some point and a log-concave function thereafter (as in Figure 3);
which case it is depends on 6y, 61, and 0.

Theorem 16. Let x1,x2, ... be iid N'(9, 02) observations (with o > 0 fixed), and let the prior distri-
bution of 0 be the normal standard distribution N'(0,1) on ® =R.

(i) Forevery real 0 and n > 1 we have

A 0+/2n(2n + 02) 4n+202)"’
and thus
0% —02 6o — 01)?
Vp.6, (n) = exp ( 5 °> Vo,0(n) exp (—"((;T‘)) (31)

for every real 6y and 61 with (6 + 601)/2=26.

(i1) There is ng > 0 that depends on o and 6 such that the sequence Y g(n) is strictly log-convex
for n < ng and strictly log-concave for n > ng, and thus so are the sequences Vg, g, (n) for
every 6y, 01 with (6p+61)/2=26.

(iii) When 0% < /2 or || > 1/2 the sequence Yo.0(n) is strictly log-concave for n > 1.

(iv) For every 01 # 0y the sequence Vg, 9,(n) has at most two critical points, and so it is of one
of three types: always decreasing; increasing and then decreasing; decreasing, increasing, and
then decreasing.

Proof. (i) Take the sufficient statistic u, := Z:’I 1 Xi. The distribution of u, given 6 is N6, no?),
and the marginal distribution of u,, is N'(0, n> + no?) (express u, as the sum of n6 and u,, — n6). The
result (30) is then obtained by a standard computation, which we relegate to Appendix A.3; as for (31),
it then follows from Proposition 8.

(ii) Let £(n) :=log ¥ ¢ (n). Taking derivatives with respect to n (which we view as a continuous
variable in (30)) yields £”(n) = y (n)/(2n + o), where

(0% —2n?) (2n + 02)

> —40%2.
(n+02)

y(n) =

The function y (n) is strictly decreasing for n > 0 (because y’(n) = —2n(2n? + 6no? + 304)/(11 +
02)3 < 0), and is negative for large enough n (for sure when 2n? > o*). Thus either £” is always
negative, or it changes sign once from positive to negative, which means that either £ is always concave,
or it is first convex and then concave.

(iii) If 02 < +/2 then o* < 2n? for all n > 1, and so y(n) <O for all n > 1. If |9] > 1/2 then
y(0) <0% —46%6% <0, and so y(n) < 0 for all n > 0.

(iv) Let & (n) := log ¥rgy,0, (n) and &(n) := log ¥y ¢ (n) for 6 = (6p + 01)/2; then 5/ =& +logw (for
the appropriate w) and £” = &”. Since £” = £” changes sign at most once by (ii), £ can vanish at most
twice, and so & has at most two critical points; the last one must be a maximum since E(n) > —o0 as
n — 00. The same then holds for ¥y, ¢, = exp§ . g

Figure 3 provides an example with two critical points, a minimum followed by a maximum, which
is thus the most that one may get in this normal setup.
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General normal prior: When the prior on 6 is a general N (i, crg)) distribution, and the observations
x; given 0 are iid N (0, 0)2() (where u, a(%, 0)2( are fixed), the linear transformation x — (x — w)/oe
reduces it to the above case with 2 = 0)2( /oé. Thus, o2 is now the ratio of the variance of the obser-
vations to the variance of the prior. The above result (iii), for instance, says that when the variance of
the observations is not too large relative to the variance of the prior (specifically, when 0)2( < ﬁaé),

the sequence of expected posteriors is log-concave, and thus unimodal, for n > 1.

6.4. Exponential observations with exponential prior

In this section we consider exponential observations whose parameter is also exponentially distributed;
specifically, x1, xp, ... are iid Exp(6) observations, and the prior distribution of 8 is Exp(1). Thus
po(x) =6 exp(—0x) and 7w (0) = exp(—6) for x > 0 and 6 > 0 (with ® = (0, c0)). Working again with
the sufficient statistic u,, := Z?:l x;, whose distribution conditional on 6 is the I'(n, ) distribution
(the n-fold convolution of Exp(6) = I'(1, 0)), we have py(u,) = H”MZ’I exp(—6u,)/(n — 1)!, and
p(un) = [o° poun)m(®) do = nu =" (u, + 1)~V and thus'?

00 2 —60n2n 00
W@ﬂ(l’l):f[(@)/ potin)” g, i/ W4 D exp(—20u) du. (32)
o plun) n—Dn! Jo

Our result is

Theorem 17. Let x1, x2, ... be iid Exp(0) observations, and let the prior distribution of 6 be the
Exp(1) distribution on ® = (0, 00).

(i) Forevery 0 > 0andn > 1 we have

n—1/2

0
Yo,0(n) = m[(n + ) Kyy1200) + 0K, 1,200)],

where K, denotes the modified Bessel function of the second kind,'> and by (22) we have for
every 6y, 01 > 0 with (6 +61)/2 =10

Vg6, (1) = exp(6 — o) Yo,6 (n) (%)n :
(ii) For every 6y, 61 > 0 the sequence g, g, (n) is strictly log-concave for n > 1.
We start with two preliminary results. Put
kn == Knt1/2(0)
and

o0
Inm :=/ u(u+1)"e 20" du.
0

12This can be obtained also from the known fact that in this setup the posterior distribution on ® is a gamma distribution,
specifically, I'(n + 1, u, + 1), and so qso = (up + 1)""'166' exp(—(un + 16g)/n!.
13See, e.g., [1], Chapter 9.6.
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Lemma 18. For every n > 0 we have

éef n!

Ii‘l,n = ﬁmkn.

Proof. The change of variable v = 2u + 1 and Equation (9.6.23) of [1] give

oo 6 00
Iny= / u" (u+1)" exp(—20u) du = ﬁ / (Qu+ 12 -1 exp(—62u +1))d2u+1)
0 0

89 [e¢] ) 89 n! 2 n+1/2
_ n _ i et
= 5ot ,/1 (v"—1D)"exp(—0v)dv = il <9) Kn11200). 0
Lemma 19. For every n > 1 we have
n—+6 1
Infl,n+1 = —In,n + = n—1,n—1-
n 2

Proof. First, the identity W Tu+ D) =u"w+ D" w4 ! gives
Infl,n = In,nfl + Infl,nfl- (33)

Second, integration by parts yields
o0
201, = / u" (u+1)"260 exp(—20u) du = [u" (u + )" (- exp(—29u))]§°
0

- /Ooonunl (u+1)" exp(—20u) du — /(;00 nu(u +1)"" exp(—26u) du
=[0—-01+nlp—1n+nlyn-
(we used n > 0 for the value of the integrand at u = 0). By (33) we get
20y n=m+n)Iyn—1+nl—1n-1,
and thus
1

0
In,nfl = _In,n - _Infl,nfl- (34)
n 2

Finally, the identity u”~'(u + D" = u"u + D" + "' + )" + " (u + 1)*~" and (34) yield
0 1
In—l,n—H = 1pn,n + In—l,n—l + In,n—l =(1+- In,n +(1—= In—l,n—l- 0
n 2

Proof of Theorem 17. (i) By the previous two lemmas and (32), and setting ¥ (n) := g g (n), we have

n o (20)nt1/2 n Tt 2 (20)n—1/2

Y= T T A= !

which simplifies to the claimed formula.

e 902" I, 1 py1 1 o2 (n+9 n! 1 (n—=1)! )
n—1 1,
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>ii) Let ¢, := (n + 0)k,, + Ok,,—1 and p,, := k,—1/ k. Using the recursion
2n+1

kn+1 = kn +kn—l (35)

(by Kyi1(u) = 2v/u)K, () + Ky—1 (1), which is (9.6.26) in [1]) we have

2n+1
Gnr1 =0+ 1+0)ky1 +0ky=mn+1+0) <Tkn +kn—1) + 0k,
_(2n*+3n+1
B 0

[<2n2+3n+1
)

On = (n+0)kn +0ky—1 =[n+6 + Opn] kn,

~|—2n~|—1+9>kn+(n+1+9)kn_1

+2n+1+9>+(n+1—|—9)pn:|k,,,

2n —1
pp1=m—1=-0)ky 1 +0ky 2=n—-1-0k,_1+0 (kn - Tkn—l)
=0kn — (n — 0)kp—1 = 1[0 — (n — 0) pu] kn.

Therefore
Y(n—Dm+1)

R, =
¥ (n)?

= On(pon),

where
n[(znz"'e#+2n+1+9)+(n+1+9),0:|[9—(n—9),0]

(n+1)(n+6 +6p)?
The proof that O, (p,,) < 1 foralln > 2 and 6 > 0 is quite technical and is relegated to Appendix A.4. [J

On(p) = (36)

General exponential prior: If the prior on € is a general Exp(}) distribution for some A > 0 not
necessarily equal to 1, then the linear transformation x — x /A reduces it to the case of Theorem 17,
and so the sequence of expected posteriors is log-concave, and thus unimodal, for n > 1.

Appendix

The appendix is devoted to extensions of the results and to the relegated technical proofs.

A.1. General probability models

The results in Sections 1-3 are stated for discrete models. We now discuss the changes needed for
general models, as in Sections 5 and 6.

The general setup (see, e.g., [20]) consists of a space of observations X endowed with a measure
v and a space of parameters ® endowed with a measure . The measures v and p are o -finite; for
example, the counting measure in the discrete case, and the Lebesgue measure in the continuous case.
The prior probability IT on ® has a density function (6) with respect to p, and for every 6 in ®
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the conditional-on-6 probability Py on X has a density function pg(x) with respect to'* v. Let P =
JoPom(8)du(d) be the marginal probability on X, with density p(x) = [ pe(x)7(0)du(8) (for

x € X). Conditional on a sequence of observations s, = (x, ..., x,) in X" (endowed with the measure
V'), the posterior density (with respect to ) on ® is given at a point 6 in ® by
0 Po(sn)7(0)
Gn(Sn) = ————
n p(sn)

the denominator is positive and finite for P-a.e. s, ; see [20], Theorem 1.31. All the formulas and results
in the discrete case carry over to densities in a straightforward manner; for example, the left-hand side
of (1) is now
P(Sn+1)

p(sn)

E[qﬁ”sn] Z/quil(sn+l) dv(xp+1)s

where 5,41 = (S, Xn41).
The likelihood ratio order given in Section 2 is defined for general random variables x and y as
follows: y >y, x if

P(x € A)P(y € B) > P(x € B)P(y € A) (35)

for any two sets A and B in R such that A < B, which means that a < b for all a € A and b € B; see
[22], (1.C.3). Everything that is stated about this order relation in Section 2, including its relation to
the stochastic order (whose definition in terms of expectations of increasing functions f remains the
same) continues to hold.

Part (i) of Proposition 1 is now stated as follows. Let P; << P> be two probability measures on a
space S with corresponding densities p; and p; with respect to the underlying measure v on S. Put
r(s) := p1(s)/pa(s) for every s (again, when the ratio is 0/0, which has probability O under both P;
and P, define r(s) arbitrarily); then

£P1 (I") ZIr EPz(r)s

ie., Plor !>, Pyor L.

Proof. Let A, B C [0, o0) be such that A < B; i.e., there is ¢ such that sup A < ¢ <inf B. We need to
show that
P~ (B)P2(r 1 (A) = Pi1(r (A) Po(r 7 (B)). (36)

If ¢ =0 then A = {0}, and so for every s € r~1(A) we have r(s) =0, and thus p1(s) = 0; therefore
Pi(r~1(A)) = fr—l(A) p1(s)dv(s) =0, and (36) holds since its right-hand side is O.

Let thus ¢ > 0. For every s € r~1(A) we have r(s) < ¢, and thus p;(s) < cpa(s); integrating over
r~1(A) gives

Pi(r~1(A)) < cP(r~1(A)).

Similarly, for every s € r~1(B) we have r(s) > c, and thus p2(s) < (1/c)pi1(s), which, integrating
over r—1(B), gives

1
P(r '(B)) < ;Pl(r”(B».

14These densities (which may be discrete or continuous) are the corresponding Radon—Nikodym derivatives.
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Multiplying the two inequalities yields (36). ]

Part (ii) of Proposition 1, i.e.,

L6(q%) =1 L(g?),

follows now from part (i) when Py < P (see [7], (34.15)), which clearly holds in our setup where
® C R is an interval, the prior 7 is positive on ®, and the densities pg are continuous in 6.

Finally, we note that while posterior probabilites are always bounded from above by 1 when the space
of parameters © is discrete, posterior densities need not be bounded in general (as seen in Sections 5-6
and Appendix A.2 below).

A.2. Asymptotic analysis

Section 5 deals with one-dimensional exponential families of distributions. We expect the analysis to
extend to more general setups, in particular, to multidimensional exponential families. Such a family is
given by densities pg(x) =exp(n(@) - T (x) — A(n(0)) — B(x)) (for 6 € ® and x € X), where d > 1,
n:0— R, T: X — Rd, A:R! >R, and B: X > R (in the “canonical” representation, 7 is the
identity and ® C Rd).

A.2.1. Generalizing Proposition 8

Consider first the useful reduction to the ) = 8y case. Given two densities pg and p; on the space X’
(with respect to a positive o -finite measure v), define their normalized geometric average (NGA) to be
the density  on X’ given by

e PO 1)
Jx v/ Po®) pr(x) dv(x)

for every x € X. Using (16), Proposition 8 readily generalizes to

Proposition 20. Let (py)gco be a family of densities and let & be a prior density on ® with w(0) > 0
forall 6 € ©. Let 0y, 01 € © and let r be the normalized geometric average of pg, and pe,. If r = pe,
for some 65 € O then

7 (6o)

Vey.0, () = @Wz,ez (myw", (37)

where w is given by (18).

For multidimensional exponential families, closure under normalized geometric averages (NGA-
closure for short) is easily seen to amount to the convexity of the set of “natural parameters” 1(®)
(because 7(6,) must equal (17(6p) + 17(01))/2). In the one-dimensional case with @ C R and n’ > 0 the
convexity of n(®) follows from the convexity of ©.

For families of distributions that are not NGA-closed, one may consider for each pg, and py, that
member of the family, pg, with 6> € ©, that is closest to their normalized geometric average r in terms
of the Kullback-Leibler distance. Indeed, this py, yields the “leading exponential term” in (16) as
n — oo (cf. the Laplace method, which is used in the Bernstein—von Mises result as well; this explains
why pg, must belong to the family and 7 (6>) > 0). The simplicity of the relation (37) is however lost
when py, #r.



Posterior probabilities 27

Interestingly, for single-parameter families of densities F = {pg : 6 € [a, b]} (for a < b) where the
dependence on 6 is continuous and there is identifiability (p, # pp suffices), F is NGA-closed if
and only if F is a one-dimensional exponential family (15) on [a, b]. Indeed, NGA-closure implies by
continuity closure with respect to all normalized geometric weighted averages; i.e., for every pg,, pg, €
F and every A € [0, 1] there is T(A) € [a, b] such that C(A)(pgo)l_)‘(pgl Y= Pz, for the appropriate
normalization constant ¢(1). Take 6yp = a and 61 = b; then 7(0) = a and 7(1) = b; the function 7 is
easily seen to be continuous and one-to-one (because p, # p, and so all the p.(,) are distinct), and
thus 7 is strictly increasing and its range is the whole interval [a, b]. From log p; ) = logc(A) +
(1 — M) log pa(x) + Alog pp(x) we thus get

log pp(x) = 7~ 1(8)(log pp(x) — log pa(x)) +log pa(x) +loge(r ™ (9))

for every 0 € [a, b] and x € X, which yields the one-dimensional family (15) with n = L Tx) =
log py(x) —log pa(x), A(n) = —log(c(n)), and B(x) = —1log pa(x).

A.2.2. Generalizing Theorem 9

Consider the asymptotic result of Theorem 9 (i) when 67 = 6y, but now for a multivariate d-dimensional
exponential family as above. We expect the rate /n to become n?/? (with appropriate constants).
Indeed, in Step 1 the change of variable ¥ = (nl (@1))1/ 20 — @l) in the Bernstein—von Mises theorem
(where nl is now a d x d matrix) involves a Jacobian, and so yields a factor of n4/2: in Step 4, the
bound on q,f‘) becomes Cn/2, as it involves a d-dimensional Gaussian integral (cf. the d-dimensional
Laplace method).

We conjecture that the analysis extends beyond exponential families (for instance, in setups where
the Bernstein—von Mises result applies).

A.2.3. Proof of Theorem 9: Details for Step 1

We provide here technical details for Step 1 of the proof of Theorem 9.
First, we show that all 7 regularity conditions of Theorem 7.89 in [20] (the Bernstein—von Mises
result that we use) hold for an exponential family (23). Indeed, this is immediate for conditions 1-4

~ P
(see the discussion in Section 5). Condition 5: in our setup A, = 1/(nA”(6,)), and so A, —% 0 follows

~ P
from A”(6,) NS (6p) > 0. Condition 6 is equivalent to the existence, for each § > 0, of a positive
K (8) such that

> "og pe (xi) — log e, (x1)] < —K(a)> =1.

lim Py sup =
n=00 \ogloo—s. bo+51 A" (0n) i

To see this note that (1/n) > 7_[log pe(x;) — log pg,(xi)]1 = A(6p) — A() + (8 — 6p)i,, and since

_ P
Tn—> A (B0), it suffices to show that A(8y) — A(0) + (8 — 6p) A’ (8p) < 0. The latter inequality follows
readily from the strict convexity of A. Finally, condition 7 requires that for each & > 0 there exist § > 0

such that

= lim Py sup 1—nr,A"@®)| <e ) =1.
n—00 0€[00—38,60+3]

n 2

. d
lim Py ( sup 14+ A, Z 2 log po (xi)
i=1

n—0o0 0e[60—8,60+3]
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We have ni, Do /1(60) = 1/A" (6p) implying, together with the continuity of A”, that there exists
8 such that n,, A”(0) = A" (0)/A”(0,) € [1 —e, 1 +¢] for 6 € [0y — 8, Oy + 8] holds with probability
converging to 1 as n — oo.

Second, to translate the density fy|s, of ¢ =/n/ (én)(Q — én) given s, to that of 6 given s,,—which
is the posterior qg (sp)—we need to divide the latter by y/n/ (é,,).

A.3. The normal case
We provide here technical details for the proof of Theorem 16 (i) in Section 6.3.

Proof of Theorem 16 (i). Recall that the distribution pg(u,) of the sufficient statistic u,, = Z:’l:l X
given 6 is N (né, no?), and its marginal distribution p(u,) is A(0, n? + no?). Therefore ¥ (n) =
Yo.0n) = [ p3(un)/p(un) duy = anly, where I, = [°2 exp (—hy,(u)) du for

(u — no)? u?
2no? 2(n? +no?)’

B (u) =2

and a,, is the constant

"= <mlfa>2<¢z—wﬁ)l :%

The function 4, (u) is a quadratic in u, namely, h, (1) = (byu — c,,)2 —d, for

2n+o02 6%n
b,=,/]——— and d,=——
2no2(n +o0?) 2n + o2

(the value of ¢, will not matter), which yields I, = (v/T/b,) exp(d,). Substituting in ¥ (n) = a, 1,
gives (30). O

A.4. The exponential case

We prove here the final inequality in the proof of Theorem 17 (ii) in Section 6.4, namely Q, (p,) < 1 for
alln > 2, and 6 > 0; the function Q,,(p) is defined in (36) and p, =k, —1/ky = K;—1/2(0)/ Ku11/2(9).

Proof. We will use the following bounds on p,:

0
Nn = < pn <0, (38)

1 3 2 2
ntday(n-3) +o

see [21]: the lower bound is from (34), and the upper bound from (33). Taking the derivative of Q,
yields

0,,(p)
2n% 4 (20 +3)n* + (202 + 0 4 1 +20%p — 6p) n’ + (262 + 202 p — Op) n* + (0% +6%p)n_
m+1D)(n+60+60p)%0 ’
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in the range 0 < p < 6 the coefficients of all powers of n in the numerator are positive (use Op < 262),
and so Q, is strictly decreasing in p there. Since 0 < 5, < p, <6 by (38), it follows that R, =
0, (pn) < On(ny), and so it suffices to show that Q,(n,) < 1 for all n > 2. Computing Q,(1,) by
substituting (38) in (36) yields

A+ BJC

1= 0nlm) =—7

where we put n =m + 2 (and so m > 0 when n > 2),
A=8m*+72m® + (492 — 166 +230) m? + (893 +46% —566 + 302)m
+(80% +200° +26% — 486 + 132),
B =4m® +30m + (=407 +74) m + (—46° = 106> +60), C=dm’ +4m + (407 + ),

and the denominator D is positive. We claim that in the range m > 0 and 6 > 0 we have A > 0 and
E := A2 — B2C > 0, and thus A + B+/C > 0 (immediate when B > 0; when B < 0, use A + By/C =
E/(A — B+/C)). Indeed, the coefficients of the powers of m in A and E are positive for all 6 > 0, as
shown by direct calculations that we omit.’> Thus 1 — Q,,(n,) > 0 forall n > 2 and 6 > 0. O
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