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Abstract

In many branches of modern science, researchers first study or mine large data

sets, and then select the parameters they estimate and the data they use and pub-

lish. Such data-based selection complicates formal statistical inference. An example

discussed here for the purpose of illustration, is that of pharmaceutical companies

that typically conduct many experiments but may publish only selected data. The

selection often depends on the outcomes of the experiments since naturally there is

interest in potentially useful drugs, and it is in general unclear how it should affect

inference. Is this effect the same for the company and the public? Does it matter

if they are Bayesian or Frequentist? Should the company reveal all experiments it

conducts, and if so, how should this change the conclusions?

This note discusses these questions in terms of a simple example of a sequence

of binomial experiments conducted by a pharmaceutical company, where results are

published only if the number of ‘failures’ is small. We do not suggest that this example

corresponds to reality in the pharmaceutical industry, nor in science in general; our

goal is to elaborate on the importance and difficulties of taking selection into account

when performing statistical analysis.

KEYWORDS: confidence interval, credible set, Binomial model, decision theory, meta

analysis, publication bias



1 INTRODUCTION

A recent paper by Psaty and Kronmal (2008) summarizes the events that led the pharma-

ceutical company Merck & Co., Inc. to withdraw the drug Rofecoxib (trademark Vioxx)

from the market. The paper provides an extraordinary opportunity to compare the inter-

nal analyses of a pharmaceutical company to the reported analyses, and it exemplifies well

the concerns appearing in Psaty and Kronmal’s abstract that Sponsors have a marketing

interest to represent their products in the best light. This approach conflicts with scientific

standards that require the symmetric and comparable reporting of safety and efficacy data.

Selective reporting of the results of clinical trials can misrepresent the risk-benefit profile of

drugs.

This conflict of interests triggered editors of leading medical journals to announce that

they would refuse to publish drug research sponsored by pharmaceutical companies unless

the studies are registered in a public database from the outset. This initiative was reported

in an article in the Washington Post on Sept 10 2004 (http://www.smh.com.au/articles/2004/09/09/

1094530773888.html). The article explains the logic of this act by pointing out that More

than two-thirds of studies of anti-depressants given to depressed children, for instance, found

the medications were no better than sugar pills, but companies published only the positive

trials. If all the studies had been registered from the start, doctors would have learned that

the positive data were only a fraction of the total. For earlier references that suggest the

creation of registries of research studies in connection with selection and meta analysis, see,

for example, Iyengar and Greenhouse (1988) and references therein.

More generally, it is well known that scientists and scientific journals tend to submit

and publish significant results, while the existence of other results remains unknown. This

problem, known as publication bias (Rothstein, Sutton, and Borenstein 2005), is similar

to problems that arise in models having a large number of parameters (e.g., DNA and

similar data), where inference is published only on a few parameters selected by the data,

usually on those corresponding to the ‘statistically significant’ findings. However, methods

for controlling error probabilities in multiple testing and estimation (e.g., Benjamini and

Yekutieli 2005) require data which due to selection is not published. Iyengar and Green-

house (1988) and Cleary and Casella (1995) provide a truncation model formulation that

has many common features with the present paper, and certain solutions to the publication

bias problem under specific assumptions, as well as numerous references.
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The purpose of this paper is to shed some light on the difficulty of trying to take data

selection or publication bias into account, and the dangers of not doing so, by means of a

very simple binomial example. We formulate our discussion in terms of a conflict between

a pharmaceutical company and a regulator in Phase I studies, only as an illustration of a

conflict of interests that may arise in the presence of selection bias. We do not claim to

know how severe this conflict is in reality. Furthermore, Phase I clinical trials are followed

by Phase II and Phase III studies, which provide certain control over the drugs or doses

selected in Phase I.

In Section 2 we explain why in certain situations, selection bias implies that frequentist

confidence intervals of a given level are constructed differently according to the possibly

conflicting points of view of the company performing the study and the public that uses

them. Section 3 approaches the problem created by this selection bias conflict using the

Bayesian paradigm. Although Bayesian analysis is post-data in nature, it can solve the

difficulties of selection bias appearing in the frequentist paradigm only under rather spe-

cial and questionable assumptions discussed in Section 3. Section 4 extends the selection

criterion of Sections 2 and 3, and Section 5 concludes with a comparative discussion of fre-

quentist and Bayesian analyses under publication bias. It also discusses the ability of the

aforementioned initiative of registering studies in a public database to solve the concerns

that arise by selection of results.

2 A BINOMIAL MODEL

Pharmaceutical companies perform Phase I toxicity studies on drugs and doses on a regular

basis in order to screen out drugs that have significant adverse effects. Because of compe-

tition, they disclose only the minimum information necessary to get their drugs approved.

The mission of public agencies such as the FDA is to ensure that approved drugs are indeed

safe for use.

Consider such a pharmaceutical company and suppose that for each experiment it con-

ducts, the company statistician computes a confidence interval for θ, the probability of

an adverse reaction to the drug. Each interval is based on the number of toxic cases in

the given experiment, which is a Binomial random variable X ∼ Bin(n, θ), where n is the

number of patients in the experiment, assumed fixed.
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Typically, there is a maximal probability of adverse reaction, θM , corresponding to the

Maximum Tolerated Dose (MTD), which is the maximal value of θ acceptable for a given

disease. A drug would be accepted if all values in a computed confidence interval lie below

θM . For severe diseases, such as certain types of cancer, this value may be up to θM = 0.2

or 0.25.

There are several methods for constructing 1−α level confidence intervals for θ, see, e.g.,

Brown, Cai and DasGupta (2001) for a review. Here we consider the conservative method

of Clopper and Pearson (1934) that, for X = x, solves for θ the equations Pθ(X ≥ x) = α/2

and Pθ(X ≤ x) = α/2 and defines the confidence interval CP (X) = [θ , θ ]. The function

Pθ(X ≤ x) is decreasing in θ so that multiple solutions do not exist. However, for x = 0,

the first equality has no solution and the interval uses 0 as its left limit. Likewise, for

x = n, the right limit of the interval is 1.

For example, for n = 20 and α = 0.05, this yields for X = 7 the interval CP (7) =

[0.1539, 0.5922]. The interval CP (7) includes high toxicity levels that under normal cir-

cumstances are not acceptable, hence the drug will not be approved. Here we consider a

scenario in which drugs or doses associated with experiments resulting in such a high num-

ber of cases of adverse reactions are deemed useless by the company, and therefore such

experiments are not disclosed to the public. Thus, only successful experiments, say with

X ≤ c adverse reactions for some c, and their associated confidence intervals are published

and no information on unsuccessful experiments, including their number and outcomes, is

revealed. For simplicity, we first discuss the case of c = 1 . We elaborate on the choice of

c in Section 4, where it is also shown that the main issues discussed below are not specific

to a particular choice of this parameter.

Continuing the example of n = 20 and α = 0.05, if c = 1 then only X = 0 or 1

would be considered. The Clopper-Pearson intervals are CP (1) = [0.0013, 0.2487] and

CP (0) = [0, 0.1684], possibly suggesting an acceptable level of toxicity.

Suppose a regulator claims that the selection policy of the company distorts the results,

and, however large θ is, the outcomes X = 0 or 1 will occur eventually. And so, the

regulator says, in order to achieve good results, all the company has to do is to perform

sufficiently many experiments. Therefore, he insists that published intervals should be

computed on the basis of the random variable X∗ having the distribution of X|X ≤ 1, i.e.,
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a Bernoulli variable with probability

Pθ(X
∗ = 1) = Pθ(X = 1|X ≤ 1) =

nθ

1 + (n− 1)θ
≡ θ∗(θ) ≡ θ∗. (1)

For α < 1/2, it is easy to verify that a 1− α level confidence interval for θ∗ is

CI∗(X∗) :=





[0, 1− α] X∗ = 0

[α, 1] X∗ = 1 ,
(2)

an interval satisfying Pθ(CI∗(X∗) 3 θ∗) ≥ 1 − α for all possible values of θ. For X∗ = 0

and X∗ = 1, CI∗(X∗) is equivalent to 0 ≤ θ∗(θ) ≤ 1−α, and α ≤ θ∗(θ) ≤ 1, respectively.

Rearrangement as intervals for θ yields confidence intervals denoted by CI(X∗), which for

X∗ = 0 and 1 are

CI(0) =
[
0,

1− α

αn + 1− α

]
, CI(1) =

[ α

(1− α)n + α
, 1

]
. (3)

Thus, the resulting regulator’s confidence intervals are (for n = 20, α = 0.05): CI(0) =

[0, 0.4872] and CI(1) = [0.0026, 1]; they are strikingly different from those of the company

statistician. The regulator can claim that the data prove nothing, since for X∗ = 1, the

confidence interval covers almost the whole range [0, 1], and for X∗ = 0 the probability

of adverse reaction could be almost as high as 0.5, a level that could never be tolerated.

Thus the company may claim that all published experiments indicate an acceptable level of

toxicity, whereas the regulator claims that the published data lead to no such conclusions.

In general, as n increases, the interval CI(1) includes large values of θ and becomes

wider, eventually approaching [0, 1]. This may surprise a reader who expects that one

success out of n indicates a small θ. However, taking the selection criterion X ≤ 1 into

account, the result is not surprising: for θ > 0 and increasing n, an outcome of X∗ = 1

occurs with probability approaching 1, and hence it is hardly informative, resulting in a

large confidence interval that contains 1, rather than proving a small θ. The interval CI(0)

equals [0, 1 − α] for n = 1 and its upper limit decreases with n, as expected. Thus, for

large n, an experiment that results in 0 adverse reactions may indeed prove the safety of

the treatment even to the regulator. However, under commonly acceptable values of θ, the

probability of 0 adverse reactions, that by (1) is bounded by 1−θ
nθ

, becomes small rather fast

as n increases.

In order to better understand the differences and the conflict between the company

and the regulator, we consider the following probabilistic model. Let θ = (θ1, θ2, . . .) be a
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sequence of probabilities 0 < θi < 1, and let Xi ∼ Bin(n, θi), i = 1, 2, . . ., be independent

binomial experiments. Let T0 = 0 and define successively Tj = min {i > Tj−1 : Xi ≤ 1},
j = 1, 2, . . ., the indices of ‘successful’ experiments; we assume that θ is such that Pθ(Tj <

∞) = 1 for all j.

The company statistician computes a confidence interval for each θi such that,

Pθ(CP (Xi) 3 θi) ≥ 1− α for all θ ∈ (0, 1)∞. (4)

This guarantees (see Berger 1985 pp 22-23) lim infN→∞ N−1
∑N

i=1 I{CP (Xi) 3 θi} ≥ 1−α

with probability 1, for all θ ∈ (0, 1)∞, where I{E} is the indicator of the event E. For

α = 0.05, for example, it can be loosely interpreted as a rule that in the long run allows

5% of all intervals, published or not, to miss the target parameters. Thus, the company

uses a criterion that concerns all intervals, but discloses only selected ones.

The regulator is aware only of the experiments that are published, namely, the successful

ones, and suggests the criterion

Pθ(CI(XTj
) 3 θTj

) ≥ 1− α for all θ ∈ (0, 1)∞, (5)

that takes into account the distribution of the observations XTj
. The regulator’s view is

that the confidence intervals must reflect the selection made by the company.

The conflict becomes very apparent if one imagines a dishonest company that repeats the

same experiment with the very same dose (and hence the same θ) until a success (X ≤ 1)

is obtained, and calculates confidence intervals ignoring the fact that the probability θ

is the same in all experiments. For example, suppose that the true probability of a toxic

reaction is θ = 0.25 so that the number of toxic cases follows a Bin(20, 0.25) law. Under this

model, the probability of a successful experiment is 0.7520 + 20 × 0.25 × 0.7519 ≈ 0.0243,

so that on average, for every 40 experiments performed, the company will achieve one

successful experiment and publish its corresponding confidence interval. This published

interval includes only θ values below 0.25 as we saw above.

3 A BAYESIAN PERSPECTIVE

Failing to agree on a frequentist confidence measure, the company and the regulator may

consult the Bayesian school. The two sides of the conflict hope for a useful advice from a

Bayesian, knowing that Bayesians, unlike frequentists, analyze the observed data regardless
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of the design (see Ferguson 1967 Chapter 7.2, and Berger 1985 Chapter 7.7 for a compre-

hensive discussion). A relevant example in our context is the Stopping Rule Principle in

sequential analysis: the stopping rule [terminating the data collection] should have no effect

on the final reported evidence about θ obtained from the data (Berger 1985 p. 502). This

principle is espoused by Bayesians, but not necessarily by frequentists. A simple instance

would be a sequence of N Bernoulli experiments which ends with one failure (see Lindley

and Phillips 1976 for a similar example). A frequentist must know the experimental design:

was N fixed in advance, or is it a Geometric random variable, whereas in Bayesian analysis

the nature of N turns out to have no effect on the calculations.

Returning to the sequence of toxicity experiments, let X denote the whole data and let

Tj(x) = t be the index of the j-th successful experiment. For any prior Π of the sequence

θ, it is easy to see that the posterior distribution of θTj
|X = x is equal to the posterior of

θt|X = x, and as above, the reason for stopping is irrelevant. Therefore, if the regulator and

the company were to use the same data and agree on the prior model, then their inference

for θTj
would be the same in spite of the selection.

However, in the situation considered here, the regulator and the company do not have

the same data, hence their inferences may be different as they condition on different events.

Indeed, here the regulator observes Xt only for those t such that Tj = t, whereas the

company has the values of Xi for all i. Thus, the company should base its inference on

θt|X = x, while the regulator should base his inference on θt|{XT1 , XT2 , . . .} .

In what follows, we consider two extreme models for the joint distribution of θ, a

model of independence and a model of strong dependence, in order to demonstrate how the

implications of Bayesian inference on the company vs. regulator conflict may be sensitive

to the choice of a prior.

Independent Parameters. With the lack of better information on the dependence

structure, a convenient though arguable assumption on the prior which we consider first is

that θ1, θ2, . . . are independent identically distributed with a (marginal) prior law Π and

density π. We also use the standard assumption that the experiments are designed so that

X1, X2, . . . |θ are independent and Xi|θ ∼ Bin(n, θi).

Under this model, Xi is sufficient for θi in the sense that P (θi ∈ I|X1 = x1, X2 =

x2, . . .) = P (θi ∈ I|Xi = xi) for any interval I, and therefore the posterior of θt|X = x

is equal to that of θt|Xt = xt. Hence, Bayesian inference of the regulator ought to be the
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same as that of the company (if they agree on the marginal prior Π), and it is unaffected

by the selection of data and parameters.

For example, for the widely used flat prior U(0, 1), the posterior is Beta(x+1, n−x+1)

and the 95% equal-tails credible intervals for n = 20, are [0.0012, 0.1611] and [0.0117,

0.2382] for X = 0 and X = 1, respectively. These intervals are quite similar to those

obtained and published by the company statistician using the frequentist procedure above.

Therefore, the company may be indifferent to whether the Frequentist or the Bayesian

paradigm is adopted, and may prefer the latter simply because it solves the conflict with

the regulator.

Strong Dependence. The results of the previous model rely on the prior Π which

assumes independence of the θi’s. Next we contrast the independence assumption with the

extreme case in which θi ≡ θ for all i and θ ∼ Π. Such a model may be of interest to a

suspicious regulator who aims to protect against a dishonest company that repeats the very

same experiment until obtaining a successful result (this model is similar to that discussed

at the end of Section 2).

When θi ≡ θ for all i, there is exactly one draw from the prior distribution Π that

determines the parameters of all the binomial experiments. For simplicity consider now

inference based on X∗ ≡ XT1 whose conditional probability P (X∗ = 1|θ) is given in (1).

The Bayesian 1 − α credible interval for θ is an interval I whose posterior probability

P (θ ∈ I|X∗ = x) =
∫

I
π(θ|X∗ = x)dθ = 1− α.

For Π = U(0, 1), the posterior distribution functions for X∗ = 0 and X∗ = 1 are

Π(θ|X∗ = 0) =

∫ θ

0

(1− u)
/

[1 + (n− 1)u]du

∫ 1

0
(1− v)

/
[1 + (n− 1)v]dv

=
n log{1 + (n− 1)θ} − (n− 1)θ

n log(n)− (n− 1)
,

and

Π(θ|X∗ = 1) =

∫ θ

0

nu
/

[1 + (n− 1)u]du

∫ 1

0
nv

/
[1 + (n− 1)v]dv

=
(n− 1)θ − log(1 + (n− 1)θ)

n− 1− log(n)
,

(using
∫

v/(a + bv)dv = b−2{bv − a log(a + bv)}+ const). These distributions are depicted

in Figure 1 together with the prior distribution. The limits of the 1 − α level equal-tails

credible intervals are the solutions for θ of Π(θ|X∗ = x) = α/2 and Π(θ|X∗ = x) = 1−α/2,

see Figure 1. For α = 0.05 and n = 20, these are [0.0029, 0.6982] and [0.0620, 0.9778] for

X∗ = 0 and 1, respectively. The intervals are considerably different from those obtained

7



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta

C
D

F

Figure 1: Distribution functions under the model θi ≡ θ for all i; n = 20: solid line - the prior U(0,1),

dashed line - the posterior for X∗ = 1, dotted line - the posterior for X∗ = 0. The 95% equal-tails credible

intervals are defined by the points where the posterior distributions cross the horizontal y = 0.025 and y =

0.975 lines.

under the independence model above, and are much more similar to the confidence intervals

of the frequentist regulator given after (3).

If the company insists on a prior consisting of independent θi’s while the regulator

assumes the same θ in all experiments, then the regulator and the company are in con-

flict. In fact, from the discussion in the previous section it is seen that the company and

the regulator will have the same posterior distribution only when Xt is sufficient for θt.

Thus, the Bayesian paradigm appears to solve the conflict only by imposing rather strict

and questionable assumptions. Without such assumptions the conflict that arose under

the frequentist paradigm remains unresolved. A similar phenomenon has been recently

demonstrated by Senn (2008) for a normal model.

It is shown in the Appendix that when θi ≡ θ the posterior distribution of θ given X∗ is

stochastically decreasing in n when observing either one or zero successes. This implies that

smaller values of θ would be predicted as n increases. It is interesting to note that when the

experiment results in one success, the posterior distribution is stochastically larger than

the prior (see Figure 1), and converges to it; thus observing one success indicates to the

Bayesian that θ is larger than initially believed. This is somewhat similar to the behavior

of the confidence intervals of (3), whose limits decrease with n. The limiting behavior of
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the posterior, discussed in details in the Appendix, is somewhat similar to that observed

by Cleary and Casella (1995), who study p-values under a Bayesian publication bias model

with a flat prior.

4 The General Binomial Case

So far, we have examined the publication bias problem for general n, and the case c = 1,

and gave numerical examples for n = 20. The following discussion is aimed at showing

that the selected example of n = 20 and the selection criterion of X ≤ c = 1 is not a case

of selection bias on our part. Indeed, the nature of the results does not depend on c or n.

In this section we consider the regulator-company conflict only in frequentist terms; some

Bayesian examples are given in the Appendix.

Let us consider how a company might choose its selection criterion c. Suppose that

a toxicity level of at most θM = 0.25 is acceptable, as may be the case in drugs for

cancer in progressive stages, and the company decides to publish only those treatments

that are considered safe, that is, experiments whose right limit of the associated Clopper-

Pearson confidence interval is smaller than 0.25. For a fixed n, the selection criterion of

X ≤ c is determined by c = max{x : P0.25(X ≤ x) ≤ α/2}, i.e., the largest integer

such that observing any X ≤ c gives rise to a confidence interval with right limit smaller

than 0.25. For example, for α = 0.05 and n = 100, a simple calculation shows that

CP (16) = [0.094, 0.247] and CP (17) = [0.102, 0.258], hence results are published by the

company only if X ≤ c = 16. For the case of n = 20 mentioned above, this criterion gives

c = 1.

Being aware of the company’s policy, the regulator considers a published experiment

X∗
c as having the distribution of X | X ≤ c, and calculates a frequentist confidence interval

by

CIc(x) = {θ : α/2 ≤ Pθ(X
∗
c ≤ x)} ∩ {θ : α/2 ≤ Pθ(X

∗
c ≥ x)}. (6)

For a fixed n, this is indeed an interval as Pθ(X
∗
c ≤ x) can be shown to be non-increasing

in θ (see Appendix A), and for X∗
c = x, the left and right limits are the solutions for θ

of the equations Pθ(X
∗
c ≥ x) = α/2 and Pθ(X

∗
c ≤ x) = α/2, respectively. As in the

Clopper-Pearson intervals, the left limit for X∗
c = 0 is 0 and the right limit for X∗

c = c is 1.

Since Pθ(X
∗
c ≤ x) = Pθ(X ≤ x)/Pθ(X ≤ c) > Pθ(X ≤ x) for all θ and c < n, the right
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limit of the confidence interval CIc(x) is always larger than the right limit of the Clopper-

Pearson interval CP (x) that does not take selection into account. Thus, it may well happen

that the company’s intervals are below θM = 0.25, say, whereas the regulator’s intervals

contain values larger than θM . The disagreement on the right limit of the confidence

interval is clear-cut when x = c. In this case, by the choice of c, the company’s confidence

interval has a right limit < θM = 0.25, whereas the regulator’s interval’s right limit is 1. On

the other hand, the disagreement is often negligible for small values of x, as the example

below shows. It is also interesting to note that the left limit of CIc(x) is larger than the

corresponding left limit of CP (x) since Pθ(X
∗
c ≥ x) = Pθ(X ≥ x|X ≤ c) ≤ Pθ(X ≥ x).

Figure 2 compares the confidence intervals CP (x) and CIc(x) for 5 ≤ x ≤ 16, where

α = 0.05, n = 100, and c = 16. For x < 5 the intervals are practically identical. The

figure shows the dramatic effect of selection on the intervals for values close to c. The

company may claim that all the experiments it publishes prove acceptable toxicity, while

the regulator would approve only those experiments that result in x ≤ 11 adverse reactions,

because only these intervals lie below θM = 0.25. Here, the conflict between the company

and the regulator is in the range 12 ≤ x ≤ 16 adverse reactions.

0.0 0.2 0.4 0.6 0.8 1.0

5
6

7
8

9
10

11
12

13
14

15
16

p

x

Figure 2: Comparison of confidence intervals with (gray) and without (black) taking selection into account

for the model n = 100 and c=16.
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Does this conflict arise frequently? Are experiments with fewer than 12 adverse reactions

common or rare? The answer, of course, depends on the real unknown probability of an

adverse reaction, θ. If θ is rather small compared to θM = 0.25 of the current example, then

the conflict arises rarely: in the above example, if θ = 0.05, then Pθ(X
∗
c ≤ 11) = 0.996,

and therefore almost all experiments will indicate low toxicity of the treatment regardless

of whether selection is taken into account or ignored. However, if the true probability of an

adverse effect is close to the accepted probability, then the conflict arises for most published

experiments: in the above example, if θ = 0.2, then Pθ(X
∗
c ≤ 11) = 0.065, hence the conflict

arises for almost 95% of the published experiments. Since efficacy of a treatment is most

often inversely related to safety, one may expect that effective drugs tend to have doses

with a probability of an adverse reaction close to the maximal tolerable one θM . Therefore,

here θ = 0.2 is much more relevant than θ = 0.05, and the conflict is expected to arise

often.

5 Concluding Remarks

For any given research area, one cannot tell how many studies have been conducted but

never reported. The extreme view of the “file drawer problem” is that journals are filled

with the 5% of the studies that show Type I errors, while the file drawers are filled with the

95% of the studies that show nonsignificant results. This citation is taken from the abstract

of a well-known article by Rosenthal (1979) on publication bias. In this note, we consider

the extreme version of the “file drawer problem”, as defined by Rosenthal, and highlight

the difficulties in constructing confidence measures for parameters that are selected on the

basis of the observed data.

In the binomial example described here, the frequentist confidence intervals that take

selection into account almost always contain both low and high probabilities of toxicity

and are hardly informative, indicating the difficulties involved in the analysis of selected

data. The most popular frequentist approach for dealing with selection is a correction for

multiple tests, which requires knowledge of the total number of experiments performed.

Such methods are useless when the number of experiments is unknown. Furthermore, even

if it were known, it would be very large in the situations considered here, and a correction

would necessarily lead to very wide confidence intervals under any multiple comparison
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method.

Bayesians assume a prior distribution for the parameters (probabilities of an adverse

reaction to the drug) and their inference on these parameters is sensitive to the choice of

the prior. The most common criticism of the Bayesian paradigm concerns the subjective

choice of the prior and the way it affects inference (see Berger, 1985 for a discussion). The

claim that for large sample size the effect of the prior diminishes may not be true when

selection is involved, and the role of the prior is much more important, as demonstrated

in Section 3 (see also Dawid 1994, Mandel and Rinott 2007, Senn 2008, and the last

paragraph of the Appendix). In particular, Bayesian inference can ignore selection (of data

and parameters) only when observed data are sufficient for the observed parameters, e.g.,

when the parameters are independent. This is a very strong assumption that should not

be overlooked.

It is interesting to ask if and how the initiative mentioned in Section 1, of registering

experimental data from the outset, can help in dealing with the problem of publication

bias. There is definitely a need to prevent misrepresentation of results by selecting and

reporting only the successful ones. A purely scientific approach is to avoid selection and

publish all experiments, regardless of their outcome, in a unified manner. But then, who

is going to publish or read the Annals of Insignificant Results?

Perhaps the good news is that the worst case assumption that all drugs have an un-

acceptable toxicity level is most likely not true, and there exist effective and relatively

non-toxic drugs. Both the frequentist and the Bayesian will in general rank drugs from less

to more toxic in a similar order, and the disagreement is on the criteria for the final decision

of which drugs to accept, rather than their relative quality. A frequentist who applies a

reasonable multiple comparison criterion and a Bayesian whose prior assumes that good

drugs do exist, are likely to discover them in real life situations, when the samples are large

enough.

Appendix

A. Monotonicity of Pθ(X
∗
c ≤ x)

Here we prove Monotonicity of Pθ(X
∗
c ≤ x) which assures that the confidence intervals of

(6), based on X∗
c , are indeed intervals. This monotonicity property will also be used in
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part B of the Appendix.

Lemma .1. Let X∗
c be a random variable having the conditional distribution of X|X ≤ c.

Then Pθ(X
∗
c ≤ x) is non-increasing in θ, that is, X∗

c is stochastically increasing in θ.

Proof. Let Y and X be random variables having a common support and probability func-

tions (or densities) g and f . Y is said to be larger than X in the likelihood ratio order,

denoted Y ≥lr X, if g/f is nondecreasing on the common support. It is well known that

Y ≥lr X implies Y ≥st X, that is, Y is stochastically larger than X (see, e.g., Lehmann

1991, p. 85).

It is easy to see that Y ≥lr X implies Y |{Y ∈ A} ≥lr X|{X ∈ A} and hence Y |{Y ∈
A} ≥st X|{X ∈ A} for any subset A of the support. Thus, in order to prove that Pθ(X

∗
c ≤

x) = Pθ(X ≤ x|X ≤ c) is non-increasing in θ, it is enough to show that if θ1 < θ2, X ∼
Bin(n, θ1) and Y ∼ Bin(n, θ2), then Y ≥lr X. This simple fact is left as an exercise.

B. On posterior distributions

The following propositions describe several simple but interesting properties of the posterior

distributions under the model θi = θ for all i.

Let X|θ ∼ Bin(n, θ) and θ ∼ Π, any prior, and for x = 0, . . . , c let Πn(·|x) be the

posterior cdf of θ|X∗
c = x, where X∗

c has the distribution of X|X ≤ c, for some fixed c.

Proposition .1. The sequence of distributions {Πn(·|x)}n>c is stochastically decreasing in

n for 0 ≤ x ≤ c, that is, Πn−1(θ|x) ≤ Πn(θ|x) for all 0 < θ < 1 and all n > c.

Also, for any n > c, Πn(·|x) is stochastically larger than Π for x = c, and smaller for

x = 0.

Proof. We prove the stronger likelihood ratio order. The posterior density associated with

Πn(θ|x) is

πn(θ|x) =

(
n
x

)
θx(1− θ)n−x/Fθ(c; n)∫ 1

0
[
(

n
x

)
tx(1− t)n−x/Ft(c; n)]π(t)dt

π(θ), (7)

where Fθ(c; n) = Pθ(X ≤ c) denotes the Bin(n, θ) distribution function at c. Direct cal-

culations show that πn(θ|x)/πn−1(θ|x) ∝ (1 − θ)Fθ(c; n − 1)/Fθ(c; n), and the first part

of the proposition will be proved if we show that the last expression is non-increasing in

θ. Writing (1 − θ)Fθ(c; n − 1) =
∑c

x=0

(
n
x

)
θx(1 − θ)n−x(n − x)/n, it is readily seen that

13



(1 − θ)Fθ(c; n − 1)/Fθ(c; n) = Eθ {(n−X∗
c )/n}. The problem reduces to showing that

Eθ(X
∗
c ) increases in θ, which follows from Lemma .1.

For the second part of the proposition note that by (7), πn(θ|0)/π(θ) ∝ Pθ(X
∗
c ≤ 0),

which by Lemma .1 is non-increasing in θ, proving likelihood ratio order. Similarly, for

x = c we use the relation πn(θ|c)/π(θ) ∝ 1− Pθ(X
∗
c ≤ c− 1).

Proposition .2. For 0 ≤ x ≤ c we have:

(i) If EΠ(1
θ
)c−x = ∞, then limn→∞ Πn(θ | x) = I{θ ≥ 0}, the cdf of a r.v. degenerate at 0.

(ii) If EΠ(1
θ
)c−x < ∞, then limn→∞ Πn(θ | x) ∝ ∫ θ

0
(1−t

t
)c−xπ(t)dt.

Proof. For θ > 0 we obtain by writing Ft(c; n) in (7) explicitly and straightforward cancel-

lations

1− Πn(θ|x) =

∫ 1

θ

πn(t|x)dt =

∫ 1

θ

( ∑c
k=0(

1−t
t

)x−k[
(

n
k

)
/
(

n
c

)
]
)−1

π(t)dt

∫ 1

0

( ∑c
k=0(

1−t
t

)x−k[
(

n
k

)
/
(

n
c

)
]
)−1

π(t)dt
.

For k < c,
(

n
k

)
/
(

n
c

) → 0 monotonically as n → ∞. Therefore, each of the integrands

(with respect to π) above, converges to (1−t
t

)c−x. By monotone convergence, the integral

in the numerator converges to
∫ 1

θ
(1−t

t
)c−xπ(t)dt which is always finite. The integral in the

denominator converges to
∫ 1

0
(1−t

t
)c−xπ(t)dt. If the latter integral diverges, the resulting

distribution Πn(θ|x) is clearly degenerate at 0, and (i) follows. Otherwise, (ii) obtains.

We conclude by discussing some interesting implications of Proposition .2. For x = c the

condition in (ii) holds trivially, and we have convergence to the prior, that is, limn→∞ Πn(θ |
c) = Π(θ) for all θ. Focusing for simplicity on the case of c = 1, we see that observing

X∗ = 1 for large n, leads a Bayesian to stick to his prior. The frequentist also sees this

observations as almost non informative, as reflected by the interval (3), which converges to

[0, 1].

By (3) again, the confidence intervals of a frequentist who observes X∗ = 0 will converge

to [0, 0]. A Bayesian with a prior satisfying the expectation condition in (i) will have a

posterior that converges to a distribution concentrated at zero, thus agreeing with the

frequentist on the confidence interval for large n. This joint conclusion makes a lot of

sense. For arbitrarily large n, one may expect to observe X∗ = 0 only for correspondingly

small θ’s.

On the other hand, consider a Bayesian whose prior assigns small enough measure

to small values of θ, so that the expectation condition in (ii) holds, e.g. Beta(2,1). By
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Proposition .1, the posterior πn satisfies πn(t) ≥st C(1−t
t

)c−xπ(t), where C is a normalizing

constant. Obviously, the latter density is not concentrated at 0 and this Bayesian may

not exclude the possibility of positive values of θ. Thus, observing X∗ = 0 even for huge

values of n, he will always consider some positive θ’s plausible. For example, for c = 1, a

prior of Beta(2,1) implies Π(.25) = 0.06, making small values of θ seem quite unlikely. The

posterior, given X∗ = 0, for any n, is stochastically larger than the Beta(1,2) distribution

by Propositions .1 and .2. It turns out that this posterior satisfies Πn(0.25 | X∗ = 0) < 0.5

for all n, and a Bayesian who observes X∗ = 0 would not reject the possibility that θ > 0.25

for any n. The limiting 0.95 equal tails Bayesian credible interval is [0.0126, 0.8419] and

the shortest credible interval in this case is [0, 0.7764]. Both intervals are in contrast to the

frequentist’s confidence intervals of (3), whose left and right limits converges to 0 with n.

Finally, we remark on the sensitivity of Bayesian credible intervals to the choice of prior

in the present setup. These intervals can be arbitrarily different in cases (i) and (ii) of

Proposition .2. However, if π1 satisfies (i) and π2 satisfies (ii) then the ε-contaminated

prior (see Berger 1985 Section 4.7) επ1 + (1 − ε)π2 is arbitrarily close as a distribution to

π2 for small ε, but it always satisfies (i).
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