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Abstract

We consider the development of personalized treatment rules that select treatments based on pa-

tients’ individual covariates. In particular, we study the design of multi-armed parallel group clinical

trials to estimate treatment rules that identify the best treatment for a given patient with given covari-

ates. Assuming that the outcomes in each treatment arm are given by a homoscedastic linear model,

with possibly different variances between treatment arms, and that the trial subjects are a random

sample of an unselected overall population, we optimize the (possibly randomized) treatment alloca-

tion allowing the allocation rates to depend on the covariates. The trial designs minimize the regret

for future patients assuming that they will arrive from the same population as the trial subjects. We

find that, for the case of two treatments, the approximately optimal allocation rule does not depend on

the value of the covariates but only on the variances of the responses. In contrast, for the case of three

treatments or more, the optimal allocation design does depend on the covariates as we show for specific

scenarios. In addition, the optimal allocation rule depends on the true regression coefficients in the case

of three but not in the case of two treatment arms. Furthermore, in the case of three treatments, for

small sample sizes randomized allocations are optimal while for very large studies almost deterministic

allocation rules minimize the regret. The methods are illustrated with a recently published dietary

clinical trial.
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1 Introduction

We consider multi-armed clinical trials for selecting the best among several treatments, where the primary

outcome may depend on patients’ covariates. Modeling the outcome as a function of the covariates does

not only reduce the error variance, but allows one also to estimate “personalized” treatment rules, that is,

rules that assign the treatment with the best estimated outcome for a patient having given values of the

covariates. This work concerns the study of optimal design of clinical trials with the goal of estimating

personalized treatment rules. We assume that a sample of subjects from the relevant population is given,

and we look for an optimal allocation of subjects participating in the trial to treatments as a function of

their covariates, in order to minimize the regret for future patients. The regret is defined as the expected

difference of outcomes under the optimal and the estimated treatment rule.

The development of statistical methods for personalized or precision medicine is a very active area in

statistics. See, e.g., Kosorok and Moodie (2015) and Kosorok et al. (2021), both containing many recent

references. Much of the literature deals with finding, on the basis of a given sample, the best treatment as a

function of personal baseline covariates, which can be, for example, genetic or other biomarkers. Another

common theme is adaptive or dynamic schemes, where treatment depends on the individual patient’s

course of disease. Kosorok and Laber (2019) describe two different settings: single- and multi-decision

problems. Our focus here is on the former, where the treatment is only chosen at a single time point, and

the choice may depend on personal baseline covariates. In this context, Minsker et al. (2016) and Zhao and

LeBlanc (2020) study clinical trials where subjects can be selected in an optimal way in order to obtain an

efficient design. In contrast, we assume that subjects arrive according to the population distribution and

cannot be selected. Lee and Wason (2019) study optimal design for the purpose of comparing treatments,

where treatment effects are estimated, and the design aims at minimizing the variances of the estimators.

The covariates are assumed to be binary, and hence the design has a discrete nature. Zhang et al. (2021)

study a similar regression model to the one considered here with two treatments and aim at finding the

minimax design with respect to the variance of the decision rule. Both Zhang et al. (2021) and Lee and

Wason (2019) differ from the present paper in the target function, formulated in the present paper as

regret, which seems to be most natural, as well as the general approach: theirs is more computational,

while we aim at finding explicit optimal designs, when possible.

In the related context of bandit problems with covariates, Goldenshluger and Zeevi (2013) studied a

sequential allocation scheme where at each stage one out of two treatments needs to be assigned under

a minimax framework. A high-dimensional version of this problem was studied in Bastani and Bayati

(2015). The goal in the bandit formulation is to determine the best treatment while minimizing some

loss or regret function for subjects in the trial sample. This is a different setting than the one considered
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here, since rather than be concerned with optimal treatment for subjects in the trial, we look for designs

that will allocate patients to treatments efficiently for the goal of finding the best treatment for future

patients who may require one of the treatments under study.

Assuming that the outcomes in each treatment arm are given by a homoscedastic linear model (with

possibly different variances between treatment arms) we study the regret via an approximation that as-

sumes “ideal” conditions, such as normality instead of asymptotic normality of linear regression coefficient

estimators. We show that this yields a useful approximation for quite small sample sizes. We also study

an asymptotic regret. However, it turns out that when there are three or more treatments, the optimal

designs for moderate sample sizes may substantially differ from the asymptotically optimal design.

For the case of two treatments, we show that the optimal trial design allocates patients in proportion

to the standard deviations of the response under each treatment, and the optimal allocation probabilities

do not depend on the covariates. This is shown for the case where the outcome in each treatment group

depends on the covariates according to a p-dimensional linear regression model, as well as for the case of

a single covariate and a polynomial regression model. We also formulate a minimax criterion and show

that it is satisfied by designs with allocation probabilities that do not depend on the covariates values.

For parameter spaces with the same bound on the variances of the two treatments, a balanced design

(equal probability) is optimal under the minimax criterion.

For the case of three or more treatments and a linear regression model in a single covariate, we

combine theoretical arguments and numerical calculations to study some examples of optimal designs.

We show that the optimal allocation in general depends on the covariate. For specific cases, we show that

the asymptotically optimal allocation is deterministic, i.e., the range of the covariate is partitioned into

intervals and in each interval the allocation probability to a particular treatment is 1. Such allocation

rules arise typically in very large studies.

We illustrate the optimal design in the setting of a dietary clinical trial where three diets were compared

in a parallel group design (Ebbeling et al., 2018). The primary outcome in the original trial was averaged

total energy expenditure, which is correlated with weight loss. An important patient covariate is insulin

secretion and we consider the objective of determining a treatment rule that assigns for each patient

the best diet based on his or her insulin secretion level measured at baseline. Here the utility of the

diets is defined by the averaged total energy expenditure adjusted by diet costs. We derive the optimal

experimental design, that is, the optimal allocation of subjects to treatments as a function of the measured

insulin level, minimizing a suitable regret function. Based on the data in Ebbeling et al. (2018) we quantify

the improvement in regret of the optimal design compared to designs with optimal allocation rates that

do not depend on the covariate and the design with equal allocation rates that was used in the original
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trial (see Section 6 for details).

The paper is organized as follows. In Section 2 the estimation problem is formalized and the regret

defined. In Section 3 an explicit formula that approximates the regret (dubbed the ideal regret) is

derived. The optimal design for the case of two treatments is discussed in Section 4 after studying the

rate of the approximating ideal regret to the true one. We also compute the asymptotic regret, give a

numerical example, and discuss the case of polynomial regression (Section 4.3). In Section 5 the setting

of K treatments and a single covariate is considered and the corresponding asymptotic regret is derived.

In Section 5.1 we derive formula (14) for the ideal regret, and we compare the regret and ideal regret

asymptotically. Section 5.2 discusses an algorithm based on (14) to obtain an approximate optimal

design, and demonstrates the reduction in regret by such optimization. Furthermore, in Section 5.3 the

computation of a lower bound for the optimal regret is discussed and an example is given where the

optimal allocation rule minimizing the asymptotic regret can be derived. In Section 6 the procedure is

illustrated with an example, and in Section 7 limitations and possible extensions of the approach are

discussed.

2 Problem Statement

Consider K possible treatments T1, . . . , TK . Let Y be a one-dimensional continuous response variable and

let X ∈ Rp be a vector of a subject’s covariates. We assume that the joint distribution of the covariates is

continuous with density denoted by f(x). If some of the covariates are discrete, the density f(x) should

be taken with respect to a suitable measure, and our results apply as long as one of the covariates has

a continuous distribution (conditioned on all other covariates). For simplicity of notation, we assume

X has a density with respect to Lebesgue measure. The expected response is E(Y |X, Tk) = gk(X),

where gk is an unknown function. The optimal treatment for a subject with a covariate vector x is

δ∗(x) = arg maxk∈{1,...,K} gk(x) (assuming that a higher response is better). If the above arg max contains

more than one k, one arbitrary treatment is selected.

Suppose that a clinical trial with n subjects is performed in order to estimate δ∗. Let X1, . . . ,Xn

denote a sample according to f of the covariates of the n subjects. The design we study here consists

of allocating subjects to treatments, taking account of their covariates. Each subject i is allocated

independently to treatment k with probability πk(Xi), where π1(x), . . . , πK(x) are non-negative functions

satisfying for each x,
∑K

k=1 πk(x) = 1. The allocation functions define densities for the covariates in the

K treatment groups. Specifically, in treatment k, X is sampled from the density fk(x) := f(x)πk(x)/νk

where νk :=
∫
f(x)πk(x)dx. Note that using the sampled X1, . . . ,Xn we can estimate the density f using

a parametric or nonparametric estimator. In fact, we may have more observations of the covariates X
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than those n values which will enter the trial. Our purpose is to find the optimal allocation functions

π1(x), . . . , πK(x) that minimize the regret, which is defined next.

Let δ̂ denote the final estimate of the optimal rule δ∗ based on the covariates, responses, and allocations

of the subjects in the trial. Then the regret for a randomly chosen future patient is defined as

R(π1, . . . , πK) := E
[
g
δ∗(X̃)

(X̃)− g
δ̂(X̃)

(X̃)
]
, (1)

where X̃ denotes the covariate vector of the chosen patient and the expectation is over X̃, δ̂, and the

randomizations in the allocations. In words, the regret is the difference between the expected response

to the optimal treatment δ∗ and its estimate δ̂ for any independent future subject arising from the same

population as those in the trial. A similar criterion appears, for examples, in Qian and Murphy (2011);

see also Kosorok and Moodie (2015) and references therein. Our goal is to minimize the regret over all

feasible allocations, that is, nonnegative functions πk(·) that satisfy
∑K

k=1 πk(x) = 1 for every x.

In this study we assume that we have some preliminary knowledge about the parameters of the

problem, such as the functions gk, and the variances of Y given X, Tk and the density f of the covariates.

This approach concurs with existing literature on locally optimal designs; see, e.g., Chernoff (1953) and

Silvey (2013, Chapter 6), where optimality is achieved for a given set of parameters. Sverdlov and

Rosenberger (2013) review several methodological advances in (local) optimal allocation for clinical trials.

Our goal is to find optimal allocation functions relative to the assumed parameter values, and obtain a

treatment rule δ̂ based on an experiment according to our design. Knowledge about the parameters can

arise from previous experience or theory, from a pilot study, or in some situations from earlier phases of

the study.

3 The regret under “ideal” conditions

Let (Y1,X1), . . . , (Yn,Xn) be a sample obtained by certain allocation functions π1, . . . , πn, given along

with the treatment allocated for each Xi. Assume K ≥ 2 and X ∈ Rp, and under treatment Tk we have

Y = gk(X) + ε, where gk(X) = E(Y |X, Tk) = αk + βtkX, and σ2
k := V ar(ε|X, Tk). Let α̂k, β̂k denote the

OLS estimators based on data from treatment Tk, ĝk(X) the corresponding estimated regression functions,

and δ̂(x) = arg maxk ĝk(X) the decision rule. Then,

R(π1, . . . , πK) =

K∑
k=1

∫
Rp

P
(
δ̂(x) = k

) [
gδ∗(x)(x)− gk(x)

]
f(x)dx. (2)
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For k = 1, . . . ,K, let

Qk :=

∫
Rp

(
1

x

)
(1,xt)fk(x)dx, Σk :=

1

νk
σ2
kQ
−1
k , ξ2

k(x) := (1,xt)Σk

(
1

x

)
. (3)

It is well known that under standard conditions (see, e.g., Hansen (2019) Hansen Chapter 7) we have
√
n[(α̂k, β̂k)−(αk,βk)]→ N(0,Σk), and in particular Σk is the asymptotic variance of the OLS estimators.

In order to approximate the probability P
(
δ̂(x) = k

)
, we first impose the “ideal” conditions, namely

that ĝk(x) possess their joint asymptotic distribution. We shall later drop this assumption . In particular,

by considering the regression model Y =
∑K

k=1{αk+βtkX}1k+ε, where 1k is the indicator of treatment k,

we obtain that under the ideal conditions, the OLS estimators are jointly normal with V ar(α̂k, β̂k) = Σk

and hence V ar(ĝk(x)) = ξ2
k(x)/n. Also, under the ideal conditions the estimators ĝk(x) are independent

conditionally on X1, . . .Xn, T1, . . . TK , with constant expectation αk+βtkx. By the law of total covariance,

conditional independence and constant conditional expectations imply that ĝk(x) are uncorrelated, and

by joint normality, they are independent.

Therefore, with PI denoting the probability under the ideal conditions, we have

PI

(
δ̂(x) = k

)
= PI

(
max

`=1,...,K, 6̀=k
ĝ`(x) < ĝk(x)

)

= PI

⋂
6̀=k

{√
n[ĝ`(x)− g`(x)]

ξ`(x)
<

√
n[ĝk(x)− g`(x)]

ξ`(x)

}
= P

⋂
6̀=k

{
Z` <

Zkξk(x) +
√
n[gk(x)− g`(x)]

ξ`(x)

}
=

∫
P

⋂
` 6=k

{
Z` <

zξk(x) +
√
n[gk(x)− g`(x)]

ξ`(x)

} ∣∣∣Zk = z

ϕ(z)dz

=

∫ ∏
`=1,...,K, 6̀=k

Φ

(
zξk(x) +

√
n[gk(x)− g`(x)]

ξ`(x)

)
ϕ(z)dz, (4)

where P is with respect to {Zm}Km=1, which are independent N(0, 1), Zm represents
√
n[ĝm(x)−gm(x)]

ξm(x) ; ϕ

and Φ denote the standard normal density and cumulative distribution function. The product in the last

line was justified above by independence under the ideal conditions, which is also used to compute the

conditional probability. We define the ideal regret, denoted by RI , by

RI(π1, . . . , πK) :=
K∑
k=1

∫
Rp

PI

(
δ̂(x) = k

) [
gδ∗(x)(x)− gk(x)

]
f(x)dx, (5)

where PI

(
δ̂(x) = k

)
is given in (4).
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4 The case of two treatments

4.1 Regret approximations and optimal design

We assume now that K = 2 and Y = gk(X) + ε under treatment Tk for k = 1, 2, where gk(X) denotes

the conditional mean of Y given X, Tk, where X ∈ Rp and

g1(X) = α1 + βt1X, g2(X) = α2 + βt2X, V ar(ε|X, T1) = σ2
1 and V ar(ε|X, T2) = σ2

2. (6)

We do not assume normality of the errors. However, we assume the existence of the moment generating

function of ε when conditioned on X, Tk. This assumption is needed for some large deviation exponential

bounds used below, and could be relaxed to assuming finiteness of some high order moments instead. We

also assume that X is continuous with a bounded density f(x) supported on [0, 1]p.

Under the ideal conditions of Section 3 with K = 2, Equation (4) becomes

PI

(
δ̂(x) = k

)
= Φ

(√
n[gk(x)− gl(x)]√

V (x)

)
,where V (x) := ξ2

1(x) + ξ2
2(x) = (1,xt) (Σ1 + Σ2)

(
1

x

)
(7)

for 1 ≤ k 6= l ≤ 2. The ideal regret (5) is

RI(π1, π2) =

∫
{x:g1(x)>g2(x)}

Φ

(√
n[g2(x)− g1(x)]√

V (x)

)
[g1(x)− g2(x)]f(x)dx

+

∫
{x:g1(x)<g2(x)}

Φ

(√
n[g1(x)− g2(x)]√

V (x)

)
[g2(x)− g1(x)]f(x)dx

=

∫
[0,1]p

Φ

(
−
√
n|g1(x)− g2(x)|√

V (x)

)
|g2(x)− g1(x)|f(x)dx. (8)

Note that RI depends also on the parameters α1, α2,β1,β2, σ
2
1, σ

2
2, which are suppressed. By (8), min-

imization of RI(π1, π2) amounts to finding the allocation functions π1, π2 that minimize V (x). The

following theorem states that this can be done by minimizing V (x) uniformly over x.

Theorem 4.1. The allocation functions π0
1(x) := σ1

σ1+σ2
and π0

2(x) := σ2
σ1+σ2

minimize both V (x) uni-

formly over x, and RI(π1, π2).

Note that in order to implement the allocation functions π0
1(x) and π0

2(x) one only needs to know the

ratio of the variances of the errors of the two treatments, and no other parameters of the model. The

allocation functions also does not require knowledge of the density f(x).

Recalling that V (x) can be written as a quadratic form, see (7), Theorem 4.1 follows immediately

from Lemma 4.2 below whose proof, as all other proofs, is given in the Appendix. Given matrices A and
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B, we write A � B if A − B is positive semi-definite. Let Q :=
∫

[0,1]p

(
1
x

)
(1,xt)f(x)dx, and recall the

notation of (3). We have

Lemma 4.2. With the above definitions,

Σ1 + Σ2 � (σ1 + σ2)2Q−1. (9)

Moreover, the lower bound is attained when π1(x) = π0
1(x) and π2(x) = π0

2(x).

To see the latter statement note that when πk(x) do not depend on x, both matrices Qk are propor-

tional to Q and therefore both matrices Σk are proportional to Q−1.

Instead of assuming that the regression parameters are known, consider now a minimax criterion for

the ideal regret. Let γ denote the regression parameters, i.e., γ := (α1, α2,β1,β2, σ
2
1, σ

2
2) and consider the

parameter space Γ, where for some constant S, σ2
1, σ

2
2 ≤ S and the rest of the parameters are unrestricted.

The bound on the variances is required to make the problem nondegenerate. The allocation functions

π∗1, π
∗
2 are said to be minimax if

sup
γ∈Γ

RI(π
∗
1, π
∗
2) ≤ sup

γ∈Γ
RI(π1, π2) for all allocation functions π1, π2. (10)

By (8) and the definition of V (x) in (7) it is easy to see that the regret is maximized for γ ∈ Γ when

σ2
1 = σ2

2 = S, in which case Theorem 4.1 implies that the optimal design is π∗1(x) = π∗2(x) = 1/2. This

statement is true regardless of the value of the other parameters in γ. It follows that the balanced design

satisfies (10) and is therefore minimax. The same argument shows that if the bound σ2
1, σ

2
2 ≤ S is replaced

by σ2
1 ≤ S1, σ

2
2 ≤ S2, then the minimax design is π∗1(x) =

√
S1√

S1+
√
S2
, π∗2(x) =

√
S2√

S1+
√
S2

.

We now discuss the regret (2). In Theorem 4.3 we approximate the regret by the ideal regret, and

then we use the above results for the ideal regret to find an asymptotically optimal design for the regret

itself. We later demonstrate numerically that the latter design provides a good approximation for finite

sample sizes. The regret is given by

R(π1, π2) =

∫
{x:g1(x)>g2(x)}

P (ĝ2(x) > ĝ1(x))(g1(x)− g2(x))f(x)dx

+

∫
{x:g2(x)>g1(x)}

P (ĝ1(x) > ĝ2(x))(g2(x)− g1(x))f(x)dx. (11)

Theorem 4.3. Under model (6) with ν1, ν2 > 0, we have for any ε > 0

n3/2−ε |R(π1, π2)−RI(π1, π2)| → 0 as n→∞.
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To facilitate the representation, we state the next result in the one-dimensional case first. In this

case g1 and g2 are functions of a single continuous variable, and we assume that their intersection point

θ := α1−α2
β2−β1 is in [0, 1]. Assume without loss of generality, that β2 > β1. It follows that for x < θ,

g1(x) > g2(x), that is, T1 is the better treatment, and when x > θ, T2 is better. In the case p = 1 the

limit of the regret is simple, given by the following theorem.

Theorem 4.4. Under model (6) with p = 1, if ν1, ν2 > 0, then lim
n→∞

nR(π1, π2) =
V (θ)f(θ)

2(β2 − β1)
I{θ ∈ [0, 1]}.

It follows that in order to minimize limn→∞ nR(π1, π2) we have to minimize V (θ), which by Theorem

4.1 is achieved by taking π1(x) = π0
1(x) and π2(x) = π0

2(x). We remark that by a delta method calculation,

the asymptotic variance of θ̂ = α̂1−α̂2

β̂2−β̂1
is V (θ)

(β2−β1)2
, which is proportional to the limit of nR(π1, π2). Thus,

minimizing the latter limit is equivalent to minimizing the asymptotic variance of the estimator of the

intersection point θ.

We return to general dimension p. Set βtk := (βk,1, . . . , βk,p), k = 1, 2, βtk,−1 := (βk,2, . . . , βk,p) and

without loss of generality assume that X1 is a continuous variable given the rest of the covariates, and that

β2,1 > β1,1. For given x−1 = (x2, . . . , xp) define θ1 := θ1(x−1) :=
α1−α2+(β1,−1−β2,−1)tx−1

β2,1−β1,1 . If θ1 ∈ [0, 1],

treatment T1 is better for a covariate vector x satisfying x1 < θ1 = θ1(x−1), and otherwise T2 is better.

The limit of the regret is given in the following theorem.

Theorem 4.5. Assume model (6) and ν1, ν2 > 0, then

lim
n→∞

nR(π1, π2) =
1

2(β2,1 − β1,1)

∫
[0,1]p−1

V (θ1,x−1)f(θ1,x−1)I{θ1 ∈ [0, 1]}dx−1. (12)

Thus, asymptotically, nR(π1, π2) is proportional to the integral of the variance of the estimate of

the intersection curve θ1(x−1), with weights proportional to the density at the intersection points, and

by (12) limn→∞ nR(π1, π2) is minimized by the allocation π0
1(x), π0

2(x) since this allocation minimizes V

uniformly. By Theorems 4.3 and 4.4 we thus have

Theorem 4.6. The allocation π0
1(x), π0

2(x) is optimal in the sense of minimizing limn→∞ nR(π1, π2) for

any number of covariates p.

Moreover, for any ε > 0 there exists C > 0 such that for any allocation functions π1, π2 with ν1, ν2 > 0

R(π1, π2) ≥ R(π0
1, π

0
2)− C

n3/2−ε .

In particular, the optimal design that minimizes R(π1, π2) can improve the allocation π0
1, π

0
2 by at most

C/n3/2−ε.
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The error term is meaningful as it is of smaller order than the regret, which is 1/n according to

Theorem 4.5.

In model (6) separate regressions models are considered for each of the treatments and we used the

optimal (best linear unbiased estimators) estimators for each model, which are the least squares estimators,

to compute δ̂. Alternatively, one can consider a joint regression model Y =
∑2

k=1{αk+βtkX}1k+ε, where

1k is the indicator of treatment k. Since we did not assume a common variance among the treatments, the

variance of ε in this model depends on 1k. If the variances σ2
1, σ

2
2 are known or can be estimated accurately

enough, the weighted-least squares estimator with weights proportional to 1/σ2
1, 1/σ

2
2 is optimal. This

amounts to making the variances equal, and then the above results imply that a balanced design (i.e.,

π1(x) = 1/2) is asymptotically optimal.

4.2 A numerical example

To illustrate the asymptotic approximations of the regret and the optimal allocations derived in Section

4.1 consider an example of model (6) with p = 1, α1 = 0.2, α2 = 0, β1 = 0.5, β2 = 1, σ2
1 = 0.1, σ2

2 = 0.2,

and X ∼ U [0, 1]. The optimal allocation is π1(x) = ν1 = 0.414. The σ’s are chosen such that R2 in both

regressions is about 0.2. Figure 1(a) shows the regression lines. For x smaller than θ = 0.4, treatment

1 is better and otherwise treatment 2 is preferred. The regret (11) is evaluated using simulations (with

105 replications) and is compared to the ideal regret (8). Two scenarios are considered for the residuals

in the regression model: normal and centered exponential. Figures (b) and (c) show the regret and ideal

regret for n = 100 under the allocation function π1(x) = ν1 where ν1 vary from 0.2 to 0.6. The allocation

optimizing the ideal regret is marked with a vertical line. While there is a slight deviation between

the ideal and actual regret, it seems that the optimal allocations, with respect to both, are very close.

Thus, the approximation of Theorem 4.3 works well also for small n in this example. Figure 1 (d) shows

nRI(π1, π2) of the balanced design (π1 = π2 = 1/2) for large n and its limit, see Theorem 4.4. It is shown

that the regret slowly converges to its limit, and it is close to the limit only when n is quite large.
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(a) The regression lines (b) Actual and ideal regret - normal residual

(c) Actual and ideal regret - exponential residual (d) Ideal regret and asymptotic regret

Figure 1: Figure (a): the regression lines. Figures (b) and (c) show the regret (computed by a simulation with 95%

confidence intervals), and the ideal regret for n = 100 and different allocation ratios, where in (b) the residual is normal and

in (c) it is exponential (centered). The regret is calculated for the allocation function π1(x) = ν1 where ν1 varies from 0.2 to

0.6. The optimal allocation is marked by the vertical line. Figure (d) shows n times the ideal regret (blue line) and its limit

(gray line).
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4.3 Polynomial Regression

We now consider the model of (6) where the functions gk(x) are assumed to be polynomials of a single

continuous covariate X with density f , i.e., gk(X) = αk +
∑J

j=1 βjkX
j , where J denotes the degree of the

polynomial. We will show that π0
1(x), π0

2(x) are asymptotically optimal also in this setting.

Let θ1 < · · · < θL, where L ≤ J , be the crossing points of g1(x) and g2(x), and define θ0 = 0 and

θL+1 = 1. Assume without loss of generality that g1(x) > g2(x) for x ∈ (θ`, θ`+1) if ` is odd, and the

reverse inequality holds when ` is even. Therefore, the regret is

R(π1, π2) =
∑

` is odd

∫ θ`+1

θ`

P (ĝ2(x) > ĝ1(x))(g1(x)− g2(x))f(x)dx

+
∑

` is even

∫ θ`+1

θ`

P (ĝ1(x) > ĝ2(x))(g2(x)− g1(x))f(x)dx.

Notice that Theorems 4.3 and 4.5, which provide results for multivariate X, do not apply in this

case because the random vector X = (X,X2, . . . , XJ) does not have a joint density. However, using

the arguments of Theorem 4.3 (under similar notation and regularity conditions) it can be shown that

n3/2−ε|R(π1, π2)−RI(π1, π2)| → 0, for any ε > 0, where

RI(π1, π2) =

∫ 1

0
Φ

(
−
√
n|g2(x)− g1(x)|√

V (x)

)
|g2(x)− g1(x)|f(x)dx, (13)

and now xt = (1, x, . . . , xJ), Qk =
∫
Rp xxtfk(x)dx and Σk = 1

νk
σ2
kQ
−1
k , k = 1, 2, and V (x) =

xt (Σ1 + Σ2) x, which is the asymptotic variance of ĝ1(x)− ĝ2(x).

Theorem 4.6 implies that the design where π1(x) = π0
1(x) minimizes V (x) uniformly over all x’s. It

follows that this design is asymptotically optimal also for this problem.

By Proposition 8.1 (in the appendix) we have

lim
n→∞

nR(π1, π2) =
L∑
`=1

f(θ`)V (θ`)

2|(β2 − β1)tζ`|
,

where ζ` := (1, 2θ`, ..., Jθ
J−1
` )t.

A careful inspection of the proofs of the above results shows that the optimality of the design with

π1(x) = π0
1(x) generalizes to regression functions of the form gk(X) =

∑
j βjkhj(X) for any functions hj

having bounded derivatives.
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5 K Treatments and one Covariate

5.1 Regret and ideal regret

We consider the case p = 1 and gk(X) = αk + βkX, V ar(Y |X,Tk) = σ2
k, k = 1, . . . ,K. As in Section

4, we assume the existence of the moment generating function of ε when conditioned on (X,Tk). We

also assume that X is continuous with density f(x) and is supported on [0, 1]. Let θk, k = 0, . . . ,K be

in increasing order, and such that treatment k is best in the interval (θk−1, θk); we assume that each

treatment is best in some open interval, or equivalently that the intervals are nonempty.

Equations (2) and (5) for the regret and ideal regret imply immediately

R(π1, . . . , πK) =
K∑
k=1

K∑
m=1

∫ θm

θm−1

P

(
ĝk(x) > max

` 6=k
ĝ`(x)

)
[gm(x)− gk(x)] f(x)dx

and the ideal regret is

RI(π1, . . . , πK)

=
K∑
k=1

K∑
m=1

∫ θm

θm−1

∫ ∏
`=1,...,K, 6̀=k

Φ

(
zξk(x) +

√
n[gk(x)− g`(x)]

ξ`(x)

)
ϕ(z)dz

 [gm(x)− gk(x)] f(x)dx. (14)

Similar to the results in Section 4, we give asymptotic results on the rate of convergence of the regret

to the ideal regret RI as well as the limit of the regret. Given allocation functions πk(x), we have by (3)

that the distribution of the estimated regression coefficients (α̂k, β̂k) is approximately bivariate normal

with means (αk, βk) and covariance

Σk =
σ2
k

νk

 τ2k+µ2k
τ2k

−µk
τ2k

−µk
τ2k

1
τ2k

 , (15)

where we assume positivity of νk :=
∫
f(x)πk(x)dx, and denote the mean and variance of the covariate

in group k by µk :=
∫ 1

0 xfk(x) dx and τ2
k :=

∫ 1
0 (x − µk)2fk(x) dx, respectively, k = 1, . . . ,K. Parallel to

Theorems 4.3 and 4.4 we have

Theorem 5.1. Under the assumptions in the beginning of Section 5.1 we have for any ε > 0

lim
n→∞

n3/2−ε |R(π1, . . . , πK)−RI(π1, . . . , πK)| = 0.

13



Theorem 5.2. Under the assumptions in the beginning of Section 5.1, we have

n lim
n→∞

R(π1, . . . , πK) =
K−1∑
m=1

Vm(θm)f(θm)

2|βm+1 − βm|
, (16)

where Vm(x) = (1, x) (Σm + Σm+1)
(

1
x

)
.

Using (15) it is possible to write Vm(θm) explicitly as follows

Vm(θm) =
σ2
m

νm

[
1 +

(θm − µm)2

τ2
m

]
+
σ2
m+1

νm+1

[
1 +

(θm − µm+1)2

τ2
m+1

]
.

Theorem 5.2 implies that asymptotically the optimal allocation problem reduces to minimize a weighted

average of the variances of θ̂1, . . . , θ̂K−1 (see the discussion after Theorem 4.4), which are the estimates

of the intersection points. The weights depend on the β’s and on the density f at the intersection points.

Note also that Vm(θm) is the sum of the asymptotic variances of α̂m+β̂mθm and α̂m+1+β̂m+1θm. Theorem

4.6 continues to hold for K treatments and thus, optimizing the ideal regret approximately optimizes the

regret itself.

5.2 Approximate numeric optimization of allocation rules

In this section we demonstrate the utility of (14) in computing optimal designs when K > 2, and the

reduction in the regret that can be achieved. The focus here is on the ideal regret. By Theorem 5.1

and the numerical results of Section 4.2, a reduction in the ideal regret implies a similar reduction in the

regret itself.

To numerically find allocation rules minimizing the regret (14), we can use a finite dimensional

parametrization of the set of allocation probability functions πk(x), k = 1, . . . ,K. One option is to

use suitably rescaled polynomials of degree M ≥ 0: Let A = (ak,m) denote a (K − 1) × (M + 1) matrix

and set hk(x) = exp(
∑M

m=0 ak,mx
m) for k = 1, . . . ,K − 1. Then, the allocation probabilities are defined

by πk(x) = hk(x)

1+
∑K−1

j=1 hj(x)
, k = 1, . . . ,K − 1 and πK(x) = 1−

∑K−1
j=1 πj(x). Note that A = 0 corresponds

to equal allocation πk(x) = 1/K, k = 1, . . . ,K. Now, we can optimize the ideal regret by plugging πk(x)

into (14) and numerically minimizing with respect to A (e.g., by using the algorithms provided with the

R function optim).

For M = 0 we obtain (approximately) optimal fixed allocation probabilities that do not depend on x.

The larger M the more flexible allocation functions in x are fitted. However, because the target function

(14) is not necessarily convex, we cannot guarantee that the numerical optimization will converge to the

global minimum regret. Because the spaces of allocation probability functions are nested for increasing M ,
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a heuristic optimization strategy is to iteratively optimize (14) starting with M = 0 and then subsequently

increase M using the solution of the last iteration step as starting values for the next iteration (adding a

column of zeroes to A). Note that this approach can also be used to optimize allocation rules minimizing

the asymptotic regret (16) instead of the ideal regret (14).

To illustrate this approach we consider a specific setting where n = 200, K = 3, (α1, α2, α3) =

(0.0,−0.1,−1.2) and (β1, β2, β3) = (0.2, 0.5, 2.0); the left panel of Figure 2 plots the regression lines. We

looked at two options for the variances: heteroscedastic - where (σ1, σ2, σ3) = 1√
12

(β1, β2, β3) (so that

σ2
k = V ar(βkX) when X is uniform for each k, i.e., R2 ≈ 1/2 for each regression) and homoscedastic -

where σ1 = σ2 = σ3 = β2√
12

. We consider four settings for the distribution of X: Uniform(0,1) = Beta(1,1),

Beta(0.5,0.5) (U-shaped), Beta(2,2) (symmetric, unimodal), Beta(2,5) (asymmetric).

Starting with the balanced design, Table 1 shows the percentage of regret reduced by using the

optimized fixed allocation design (M = 0) and by the optimized design with M = 4. The allocation

probabilities when M = 0 are also given. It is clear from the table that the regret depends heavily on

the distribution of X and on the σ’s. The table demonstrates that the reduction of the regret is quite

significant. Furthermore, the optimal design where the allocation depends on x improves significantly

over the fixed design (M = 0). An exception is the homoscedastic case and X ∼ Beta(2, 5), in which

the density function is small when g3(x) is maximal (see the left panel of Figure 2) and additionally σ3

is small compared to β3. This makes this case close to K = 2 where fixed allocation designs are optimal.

Another finding, which is not given in the table, is that the difference, in terms of the regret, between

M = 1 and M = 4 is small; it is at most 2.3% in the eight scenarios we considered.

heteroscedastic homoscedastic

% reduction fixed alloc. (M = 0) % reduction fixed alloc. (M = 0)

distribution M = 0 M=4 π1 π2 π3 M = 0 M=4 π1 π2 π3

U(0,1) 24.0 40.9 0.12 0.33 0.55 11.7 25.4 0.40 0.43 0.17
Beta(0.5,0.5) 25.1 41.9 0.13 0.34 0.53 16.5 29.6 0.41 0.44 0.15

Beta(2,2) 20.5 34.2 0.11 0.32 0.57 7.0 18.8 0.38 0.43 0.19
Beta(2,5) 11.5 22.8 0.18 0.45 0.37 21.3 25.8 0.45 0.46 0.09

Table 1: Results for the setting mentioned in the text under different distributions of X and for the
heteroscedastic and homoscedastic models: the percentage of reduction achieved by the optimized designs
with M = 0 and M = 4 relative to a balanced design, and the fixed allocation probabilities for M = 0.

5.3 A lower bound for the asymptotic regret (16)

By (14), (15), and (16) (see also (3)) both the ideal and the asymptotic regret depend on the functions

πk(x) only via the quantities νk, µk, τ
2
k , k = 1, . . . ,K. Therefore, we can minimize (14) and (16) in these

parameters to obtain a lower bound for the regret. Let µ :=
∫ 1

0 xf(x) dx, τ2 :=
∫ 1

0 (x − µ)2f(x) dx and
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recall that f(x) =
∑K

k=1 νkfk(x). Then, by the relations for central moments of mixture distributions we

have
K∑
k=1

νk = 1,
K∑
k=1

νkµk = µ,
K∑
k=1

νk(τ
2
k + µ2

k) = τ2 + µ2. (17)

Minimizing (14) or (16) in νk, µk, τk, k = 1, . . . ,K subject to the constraints (17) and νk, τk ≥ 0, k =

1, . . . ,K yields a lower bound for the achievable regret. To obtain the minimum regret (instead of a lower

bound) one needs to add additional constraints on µk, τk, k = 1, . . . ,K to restrict optimization to values

for which there exist mixture components fk with weighted sum f that assume these moments.

We now consider an example with a uniform f and K = 3, and minimize the asymptotic regret (16).

Since now f(x) ≤ 1 the constraint f(x) =
∑3

k=1 νkfk(x) implies that νkfk(x) ≤ 1, k = 1, 2, 3, x ∈ [0, 1].

By Lemma 1 below this implies that the variance of fk(x), k = 1, 2, 3 is bounded from below by ν2
k/12.

As an example consider the setting of Section 5.2 where (α1, α2, α3) = (0.0,−0.1,−1.2), (β1, β2, β3) =

(0.2, 0.5, 2.0), and the residual variances σ2
k, k = 1, 2, 3 are equal across treatment groups. Figure 2 shows

the resulting scenario and optimal allocation probabilities (whose computation is explained below). Then,

numerically (see details below) minimizing (16) in νk, µk, τk, k = 1, . . . ,K subject to the constraints

(17) as well as τ2
k ≥ ν2

k/12, k = 1, 2, 3 gives νk = 0.346, 0.444, 0.210, µk = 0.342, 0.512, 0.735, τ2
k =

0.00997, 0.132, 0.00369, respectively, and the minimized value of (16) is 12.128. At this point we know it

is a lower bound to (16) since only part of the constraints were applied. However, we now demonstrate a

design which achieves this lower bound.

We note that τ2
k = ν2

k/12, for k = 1, 3. Applying Lemma 1 for c = 1/νk for k = 1, 3, the only density

fk(x) with mean µk and variance τ2
k and satisfying the constraint fk(x) ≤ 1/νk, x ∈ [0, 1] is the uniform

distributions on [µk − νk/2, µk + νk/2] with densities fk(x) = 1[µk−νk/2, µk+νk/2](x)/νk. Furthermore, we

set

f2(x) =
1− ν1f1(x)− ν3f3(x)

ν2
.

Because the supports of f1, f3 are disjoint and fk(x) ≤ 1/νk, k = 1, 3, f2(x) is a valid density. By con-

struction, the mean and variance of f2(x) are µ2, τ
2
2 and the three densities satisfy f(x) =

∑3
k=1 νkfk(x).

The resulting allocation probabilities πk(x) = fk(x)/νk achieve the lower bound computed above, and

hence, assuming the above minimization algorithm yielded the correct minimum (which we verified in

several ways, including the fact that it is unique, see below), it is an optimal allocation (see Figure 2 for

a plot). It follows that in this case the above constraints suffice. Furthermore, as f1, f3 are unique, they

are a unique optimal allocation (under the assumption that the minimization in νk, µk, τk, k = 1, . . . ,K

gives a unique solution). It also follows that the optimal solution leads to a deterministic allocation.

Some comments: (1) To implement the numerical optimization of (16) subject to the constraints, we
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Figure 2: The functions gk for the three treatments (left) and the asymptotically optimal allocation
probabilities minimizing (16) (as a stacked area chart, right) for the example in Section 5.3. For instance,
for x’s under the black area, treatment 1 is assigned with probability π1(x) = 1.

use the R command optim with the following reparametrization, which allows one to apply optimization

algorithms for unrestricted optimization. Let Ai = (ai,1, ai,2) ∈ R2, i = 1, 2, 3. First we transform the

vectors Ai into proportions setting a′ik = exp(ai,k)/
∑3

m=1 exp(ai,m), i, k = 1, 2, 3 where ai,3 ≡ 0, and set

νk = a′1k, µk = a′2kµ/νk, and

τ2
k =

ν2
k

12
+
a′3,k

(
µ2 + τ2 −

∑3
m=1(νmµ

2
m + ν3

m/12)
)

νk
, k = 1, 2, 3.

As long as the second summand remains positive, this parametrization ensures that τ2
k ≥ ν2

k/12 and that

the constraints of (17) hold. To confirm the robustness of the solution, the optimization was performed

repeatedly with randomly chosen initial conditions. (2) If the intersection points θk,k+1 of the lines gk

are moved closer together by a different specification of the parameters, so will the intervals of x’s where

all patients are allocated to Treatment 1 or Treatment 3 (the blue and black regions in Figure 2). For

scenarios where they overlap, we can no longer use the above approach to obtain an optimal solution and

the solutions seem to become more complex. This is the case, for example, for αk = 0.0, −0.1, −.8, βk =

0.2, 0.5, 2.0, k = 1, 2, 3.

Lemma 1 Let c > 0. Among all continuous distributions f with (i) mean µ such that (ii) f(x) ≤ c for

all x ∈ R, the uniform distribution on [µ − 1/(2c), µ + 1/(2c)] has the smallest variance. This minimum

variance is 1/(c212).
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6 A clinical trial to determine personalized diets

To demonstrate our approach, we consider a study by Ebbeling et al. (2018) in which three diets were

compared in a parallel group design. We fitted a model to the data of that trial and derived an alternative

optimal design based on the estimated model parameters.

Subjects were randomly assigned to three diet groups. The diets differ in their carbohydrate content,

high (60%), moderate (40%) or low (20%) and were followed for 20 weeks. The total number of subjects

allocated to these three treatment groups was 54, 53 and 57, respectively, so the design is (almost)

balanced. The main covariate is insulin secretion (insulin concentration 30 minutes after oral glucose).

The primary outcome in the original trial was averaged total energy expenditure over two measurements,

in the middle and the end of the trial. Total energy expenditure is measured by doubly labeled water; for

details on this measure see Hills et al. (2014).

Of the 1685 subjects initially screened, 234 participated in a run-in phase which preceded the trial

itself. Of these, 164 achieved a target of 12% (± 2%) weight loss and were qualified for the trial; they

were randomly assigned to one of the three diets.

To account for the cost of the diets, either in terms of money or in terms of inconvenience to the dieter,

we consider the utility of the diets as an outcome variable which is defined as the energy expenditure minus

the diet cost. We assume that the lower the carbon content of the diet, the higher the cost (see Hagberg

et al. (2019) for a similar definition) but otherwise our choice of the cost for this example is arbitrary. On

the basis of Figure 4 in Ebbeling et al. (2018), we assume that under treatment Tk, k = 1, 2, 3,

utility = αk + βkX + εk − costk, (18)

where costk= 0, 150, 300 for k = 1, 2, 3, respectively, X is insulin secretion and its distribution is

Gamma(3.12, 0.02), and the standard deviations of ε1, ε2, ε3 are 190, 150, 130, respectively. The de-

sign we propose is based on the assumed values of αk, which are 40, -80, -240, and of βk, which are -0.8,

0.1, and 0.8 for k = 1, 2, 3, respectively. These values and the parameters of the gamma distribution of

X and the standard deviation of ε’s are all based on Figure 4 of Ebbeling et al. (2018), which plots the

energy expenditure as a function of the insulin secretion for the three diets in the data, and roughly shows

the distribution of insulin secretion. In particular, the parameters of the Gamma distribution are chosen

to match empirical quantiles of the X’s.

In order to numerically find the optimal allocation probabilities πk(x) that minimize the ideal regret

(14), we use the approach outlined in subsection 5.2 setting M = 4 and using the R function optim with

the Nelder-Mead method.
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Figure 3(a) plots the regression lines (18) for the three diets and the assumed distribution of the

covariate x. The high, moderate, and low carbohydrate diets are optimal when x belongs to the intervals

(0, 133), (133, 229), (229,∞), respectively. The difference between the treatments is more pronounced for

extreme values of x. Hence, people with very small or very large x would benefit more from a personalized

treatment choice compared to those with medium values of x.

Figures 3(b)-(d) present the optimal allocation probabilities, as a stacked area chart, when n =

164, 1000, and ∞. When the sample size is larger, the optimal allocation rule is closer to being deter-

ministic. For n = 164, which was the actual trial size, the optimal trial allocation rule tends to allocate

subjects to T3 (respectively, T2) for large (respectively, small) values of x. Compared to equal allocation,

which was the actual design used, there is a reduction of about 11% of the regret. A saving of 11% may

be quite significant if the treatments are applied to a large number of future patients. Furthermore, the

regret of the balanced design with n = 164 can be achieved under the optimal design with n = 143,

which represents a reduction of 13% of the sample size. Taking into account that in this experiment only

about 10% of recruited patients passed the screening process, a saving of about 20 subjects amounts to a

reduction of about 200 subjects that would have to be recruited and pretested. Also, the duration of 20

weeks, and the cost involved in the experiment, imply that an optimal design is desirable.

To investigate if the reduction in the regret is due to unbalanced allocation or the covariate dependent

allocation, we also computed the regret for the optimal fixed allocation that is restricted to allocation

probabilities that do not depend on the covariate. This can be achieved as above by setting M = 0. We

found numerically the optimal fixed design for n = 164 leads to reduction of the regret by about 8%,

whereas optimizing with allocation functions that depend on the covariate, leads to a reduction by an

additional 3%. For larger sample sizes, it appears that the gain by optimal covariate dependent allocation

probabilities increases (see Table 2). As the algorithm only gives an approximate optimal solution, we also

used the approach in Section 5.3 to compute a lower bound for the limit nRI for n→∞. The obtained

lower bound of 735.1 is close to 738.2, the corresponding regret obtained by the derived allocation function

depicted in Figure 3d.

It should be noticed that all these designs are based on the true values of the parameters and therefore

require a preliminary study, or an adaptive design.

% reduction fixed allocation (M = 0)

n nRI M=4 M = 0 high moderate low

164 842.8 10.9 7.9 0.45 0.37 0.18
1000 829.6 13.1 4.4 0.37 0.40 0.23
∞ 738.2 17.1 3.2 0.35 0.40 0.25

Table 2: Diets example: nRI , the percentage of reduction achieved by the optimized design with M = 0
and M = 4 relative to a balanced design, and the fixed allocation probabilities for M = 0.
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(a) the regression models (b) optimal allocation for n = 164

(c) optimal allocation for n = 1000 (d) optimal allocation for n→ ∞

Figure 3: Figure (a) plots the regression models (18) and the assumed density of the covariate. Figures
(b)-(d) present the optimal allocation probabilities (as a stacked area chart) when n = 164, 1000,∞.

7 Discussion

In this paper we derived optimal trial designs to determine treatment rules that are based on patients’

individual covariates, assuming that the outcomes in each treatment arm are given by a linear model. For

two treatments the optimal allocation rule depends only on the variances of the error terms in the linear

models and does not depend on other model parameters, nor on the covariates. In contrast, for three or
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more treatments the optimal rule depends on all the linear model parameters, and the covariates. In the

latter case one faces locally optimal designs whose computation requires prior knowledge on the model

parameters. If such information is not available, extensions of the framework can be considered. For

example, sequential designs that start with equal allocation and then compute optimal allocation rules

for further stages based on interim estimates of the model parameters can be used. Another option are

Bayesian designs, where a prior distribution for the model parameters is specified and the regret, averaged

over this prior is minimized. Furthermore, the sequential and Bayesian approaches can be combined

by computing posterior distributions of the model parameters in interim analyses and optimizing the

allocation ratios based on the regret averaged over these posterior distributions. Alternatively, a minimax

approach can be used and the maximal regret across a range of plausible scenarios can be minimized.

The (approximate) optimal minimax design was computed in Section 4.1 for two treatments. The case of

more than two treatment is deferred for future work.

A trial of the kind we study ends with recommendations on treatments, amounting to a claim of

causality. Here we allow the allocation to treatments to be a function of the covariate vector X only, and

in particular there are no other confounding variables which affects both the allocation and the response,

and causality can be deduced; see, e.g., Hernán and Robins (2020) and Stock and Watson (2012). This

remains true even if the allocation functions are “deterministic”, taking only the values 0 and 1. We

assume that a linear model holds true (see Section 3) rather than taking the approach that “all models

are wrong.” This allows us to make consistent estimation of the model parameters for any allocation,

barring a degenerate design which concentrates on a single X. Assuming a model is necessary if one

wants to avoid a separate trial for each level of X, which seems inefficient. A linear model assumption

may be reasonable if the range of values of X is restricted, which is often very natural. As usual, linear

models include a polynomial regression of some degree rather than a simple linear model (see Section

4.3), and interaction terms may be included.
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8 Appendix: Proofs

Proof of Lemma 4.2

We use the convexity relation λA−1 + (1−λ)B−1 � [λA+ (1−λ)B]−1 (Moore, 1973) where A and B are

positive definite matrices. We have

Σ1 + Σ2 = σ1

(
ν1Q1

σ1

)−1

+ σ2

(
ν2Q2

σ2

)−1

= (σ1 + σ2)
[ σ1

σ1 + σ2

(
ν1Q1

σ1

)−1

+
σ2

σ1 + σ2

(
ν2Q2

σ2

)−1 ]
� (σ1 + σ2)

[ σ1

σ1 + σ2

(
ν1Q1

σ1

)
+

σ2

σ1 + σ2

(
ν2Q2

σ2

)]−1
= (σ1 + σ2)2Q−1,

where in the last equality we used the fact that ν1Q1 + ν2Q2 = Q. Equality holds when the two matrices

to the right of the � sign are equal, which happens when π1(x) = σ1
σ1+σ2

and π2(x) = σ2
σ1+σ2

.

Proof of Theorem 4.3

We start with the case of p = 1. It is enough to show (as the other part of the integral, from θ to 1, is

symmetric) that

n3/2−ε
∫ θ

0

∣∣∣∣∣P (ĝ2(x) > ĝ1(x))− Φ

(
−
√
n[g1(x)− g2(x)]√

V (x)

)∣∣∣∣∣ [g1(x)− g2(x)]f(x)dx→ 0. (19)

The idea of the proof is quite simple. For x ∈ θ ± 1/
√
n the quantity in absolute value converges to zero

at rate 1/
√
n, and both the range of the integral and g1(x)− g2(x) are of order 1/

√
n each. For other x’s

both the probability and Φ in the integrand are exponentially small in n.

We will prove (19) by showing that

n3/2−ε
∫ θ

0

∣∣∣∣P (ĝ2(x) > ĝ1(x))− EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)∣∣∣∣ [g1(x)− g2(x)]f(x)dx→ 0 and (20)

n3/2−ε
∫ θ

0

∣∣∣∣∣EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
− Φ

(
−
√
n[g1(x)− g2(x)]√

V (x)

)∣∣∣∣∣ [g1(x)− g2(x)]f(x)dx→ 0, (21)

where

S2(x) = n(1, x)

σ2
1

∑
i∈T1

(
1

Xi

)
(1, Xi)

−1

+ σ2
2

∑
i∈T2

(
1

Xi

)
(1, Xi)

−1
(

1

x

)
, (22)

and the expectation in (20) and (21) is with respect to X1, . . . , Xn which appear in S2(x) and the

random sets Tk. We start with (21). Since θ is the intersection point, α1 + β1θ = α2 + β2θ; therefore,
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g1(x)− g2(x) = α1 + β1x− (α2 + β2x) = (β2 − β1)(θ − x). Hence, (21) can be written as

n3/2−ε
∫ θ

0

∣∣∣∣∣EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
− Φ

(
−
√
n(β2 − β1)(θ − x)√

V (x)

)∣∣∣∣∣ (β2 − β1)(θ − x)f(x)dx→ 0.

Fix cn = nε/5. We will show that

n3/2−ε
∫ θ−cn/

√
n

0

∣∣∣∣∣EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
− Φ

(
−
√
n(β2 − β1)(θ − x)√

V (x)

)∣∣∣∣∣ (β2−β1)(θ−x)f(x)dx→ 0,

(23)

and that

n3/2−ε
∫ θ

θ−cn/
√
n

∣∣∣∣∣EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
− Φ

(
−
√
n(β2 − β1)(θ − x)√

V (x)

)∣∣∣∣∣ (β2−β1)(θ−x)f(x)dx→ 0.

(24)

We show (23) by arguing that the probabilities in (23) are exponentially small. With notation defined in

Section 3 we have that

V (x) ≤ (1 + x2)

(
σ2

1

ν1λmin(Q1)
+

σ2
2

ν2λmin(Q2)

)
≤ C,

for a constant C > 0 (since x is bounded). With the bound Φ(−t) ≤ exp(−t2/2) for t > 1 and (θ−x)
√
n ≤

cn we have

Φ

(
−(β2 − β1)(θ − x)

√
n√

V (x)

)
≤ exp

(
−(β2 − β1)2c2

n

2C

)
,

which shows that the second normal probability Φ(·) in (23) is exponentially small. We now argue that

the expectation in (23) is also exponentially small. Consider the event

An :=

λmin
 1

n

∑
i∈T1

(
1

Xi

)
(1, Xi)

 ≤ ν1
λmin(Q1)

2


⋃λmin

 1

n

∑
i∈T2

(
1

Xi

)
(1, Xi)

 ≤ ν2
λmin(Q2)

2

 . (25)

Writing 1
n

∑
i∈T1

(
1
Xi

)
(1, Xi) = 1

n

∑n
i=1

(
1
Xi

)
(1, Xi)I(i ∈ T1), a sum of iid terms, we can apply Theorem 5.1

of Tropp (2012) and the union bound to conclude that P (An) ≤ C exp(−Cn) for some constant C > 0.
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Going back to (23), write

EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
= EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
I(An) + EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
I(Acn)

≤ P (An) + EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)
I(Acn).

When Acn occurs, the denominator S2(x) is bounded and the same argument as above shows that this

probability is exponentially small. We conclude that both probabilities in (23) are exponentially small,

which implies that (23) is correct.

We now prove (24). By the mean value theorem, for x ∈ (θ − cn/
√
n, θ) and for some V ∗(x) between

S2(x) and V (x), we have for some C > 0

∣∣∣∣∣Φ
(
−
√
n(β2 − β1)(θ − x)√

S2(x)

)
− Φ

(
−
√
n(β2 − β1)(θ − x)√

V (x)

)∣∣∣∣∣
= |S2(x)− V (x)|ϕ

(
−
√
n(β2 − β1)(θ − x)√

V ∗(x)

) √
n(β2 − β1)(θ − x)

2
(V ∗(x))−3/2

≤ C|S2(x)− V (x)|cn(min{S2(x), V (x)})−3/2, and

{S2(x)− V (x)} = (1, x)

{
σ2

1

ν1

(
M−1

1 −Q
−1
1

)
+
σ2

2

ν2

(
M−1

2 −Q
−1
2

)}(1

x

)
, (26)

where Mk = 1
nνk

∑
i∈Tk

(
1
Xi

)
(1, Xi), k = 1, 2. We have that M−1

1 −Q
−1
1 = M−1

1 (Q1 −M1)Q−1
1 , implying

that the difference of the inverses is small when the difference of the matrices is small and the inverse is

bounded. Define the event

Ãn := {max{‖Q1 −M1‖∞, ‖Q2 −M2‖∞} ≥ cn/
√
n},

where ‖ · ‖∞ denotes the maximum (entry-wise) norm. By Hoeffding’s inequality (since the random

variables are bounded), P (Ãn) ≤ C exp(−Cc2n) (which is exponentially small). Therefore, as before, this

event can be ignored. On the complement of Ãn, M−1
1 , M−1

2 , S2(x) are all bounded, and by similar

arguments S2(x) and V (x) are bounded below. Hence, when Ãcn occurs,∣∣∣∣∣Φ
(
−
√
n(β2 − β1)(θ − x)

S(x)

)
− Φ

(
−
√
n(β2 − β1)(θ − x)√

V (x)

)∣∣∣∣∣ ≤ C c2
n√
n
.
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Therefore the integral in (24) is bounded by

Cn1−εc2
n

∫ θ

θ−cn/
√
n
(θ − x)f(x)dx ≤ Cn1/2−εc3

n

∫ θ

θ−cn/
√
n
f(x)dx ≤ Cc4n/nε = n−ε/5 → 0,

which completes the proof of (24) and hence of (21).

We now show (20) by dividing the integral into two ranges: (a) [θ− cn/
√
n, θ], and (b) [0, θ− cn/

√
n].

We have that

P (ĝ2(x) > ĝ1(x)) = P

([(
α̂1 − α1

β̂1 − β1

)
−
(
α̂2 − α2

β̂2 − β2

)]t(1

x

)
> (β2 − β1)(x− θ)

)

= P

M−1
1

nν1

∑
i∈T1

(
εi
Xiεi

)
− M−1

2

nν2

∑
i∈T2

(
εi
Xiεi

)t(1

x

)
> (β2 − β1)(x− θ)


= P

(
n∑
i=1

aiεi > (β2 − β1)(x− θ)

)
,

where ai =

 (1, Xi)
M−1

1
nν1

(
1
x

)
i ∈ T1

−(1, Xi)
M−1

2
nν2

(
1
x

)
i ∈ T2

, M1,M2 are defined in (26) and εi are the regression error terms.

Notice that V ar(εi) is equal to σ2
1 if i ∈ T1 and to σ2

2 if i ∈ T2. We are going to condition on X1, . . . , Xn

obtained in the experiment and their allocation, denoted together by D. Then V ar(
∑n

i=1 aiεi|D) =

S2(x)/n, where S2(x) is defined in (22).

We aim to apply the Berry Esseen Theorem, for which we need some bounds. The values nai are

bounded below since the matrices Mk are bounded above. In order to obtain upper bounds, recall

the event An defined in (25). On the set Acn we have that nai are bounded above. Since P (An) is

exponentially small, we can ignore it, and assume that nai are bounded with probability one. We can

apply the Berry-Esseen Theorem for the non-identically distributed case (for a convenient reference see

Chen et al. (2010) (3.27)) to
∑n

i=1

√
nai

S(x) εi ≡
∑n

i=1 Vi where
∑n

i=1 V ar(Vi|D) = 1 and E(|Vi|3 | D) ≤

max{nai/S(x)E(|εi|3|D) : 1 ≤ i ≤ n}n−3/2 to obtain by unconditioning on D∣∣∣∣∣P
(

n∑
i=1

aiεi > (β2 − β1)(x− θ)

)
− EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)∣∣∣∣∣ ≤ C/√n.
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Therefore,

n3/2−ε
∫ θ

θ−cn/
√
n

∣∣∣∣P (ĝ2(x) > ĝ1(x))− EΦ

(
−
√
n(β2 − β1)(θ − x)

S(x)

)∣∣∣∣ (β2 − β1)(θ − x)f(x)dx

≤ n3/2−ε C√
n

∫ θ

θ−cn/
√
n
(β2 − β1)(θ − x)f(x)dx ≤ n3/2−ε C√

n
· cn√

n

∫ θ

θ−cn/
√
n
f(x)dx

≤ C c
2
n

nε
= C

n2ε/5

nε
→ 0. (27)

By a standard large deviation bound, the integral of (20) from 0 to θ − cn/
√
n multiplied by n3/2−ε is

easily shown to be of order n3/2−εO(exp(−cn
√
n)) → 0. This proves the theorem for covariates in R

(p=1).

We now consider the case of covariates in Rp for p ≥ 2. Suppose, without loss of generality, that

β2,1 > β1,1. For given x−1 = (x2, . . . , xp) define θ1(x−1) :=
α1−α2+(β1,−1−β2,−1)tx−1

β2,1−β1,1 . For x such that

θ1(x−1) /∈ [0, 1] the probability of making a mistake (i.e., ĝ2(x)−ĝ1(x) has the wrong sign) is exponentially

small. Therefore,

R(π1, π2) =

∫
[0,1]p−1

∫ θ1

0
P (ĝ2(x) > ĝ1(x))(g1(x)− g2(x))f(x)dx1I(θ1 ∈ [0, 1])dx−1

+

∫
[0,1]p−1

∫ 1

θ1

P (ĝ2(x) > ĝ1(x))(g1(x)− g2(x))f(x)dx1I(θ1 ∈ [0, 1])dx−1 + an,

where an is exponentially small. By a slight variation on the above one-dimensional case, the inner integral

equals ∫ 1

0
Φ

(
−
√
n|g2(x)− g1(x)|√

V (x)

)
|g2(x)− g1(x)|f(x)dx1I(θ1 ∈ [0, 1]) + o(1/n3/2−ε), (28)

where the error term o is uniform in x−1. Taking the outer integral, the theorem follows.

Proof of Theorem 4.4

As computed two lines below (22), g1(x)− g2(x) = (β2 − β1)(θ − x). We will show that for continuous t

lim
t→∞

t

∫ θ

0
Φ

(
−
√
t(β2 − β1)(θ − x)√

V (x)

)
(β2 − β1)(θ − x)f(x)dx =

V (θ)f(θ)

4(β2 − β1)
. (29)

The integral from θ to 1 is similar, yielding the desired limit. By L’Hôpital’s rule the limit in (29) equals

lim
t→∞

t2

2

∫ θ

0
ϕ

(√
t(β2 − β1)(θ − x)√

V (x)

)
(β2 − β1)(θ − x)√

V (x)

1√
t
(β2 − β1)(θ − x)f(x)dx.

28



Substitution of x by y = (θ − x)
√
t in the integral yields

lim
t→∞

1

2

∫ θ
√
t

0
ϕ

 (β2 − β1)y√
V (θ − y/

√
t)

 (β2 − β1)2√
V (θ − y/

√
t)
y2f(θ − y/

√
t)dy.

The limit is
1

2

∫ ∞
0

ϕ

(
(β2 − β1)y√

V (θ)

)
(β2 − β1)2√

V (θ)
y2f(θ)dy.

Substitution of y with z = (β2−β1)y√
V (θ)

in the integral yields the claimed limit f(θ)V (θ)
2(β2−β1)

∫∞
0 ϕ (z) z2dz =

f(θ)V (θ)
4(β2−β1) .

Proof of Theorem 4.5

Consider the inner integral in (28). By Theorem 4.4, the limit of the inner integral times n is

V (θ1,x−1)f(θ1,x−1)

2(β2,1 − β1,1)
.

By taking the outer integral the result follows.

The limit of the regret for polynomial regression

Suppose that g1(x) = α1 +(x, . . . , xJ)tβ1 and g2(x) = α2 +(x, . . . , xJ)tβ2. Let θ be an intersection point,

i.e., g1(θ) = g2(θ). We have

g2(x)− g1(x) = g2(x)− g2(θ)− [g1(x)− g1(θ)] = ηt(β2 − β1),

where η := (x − θ, x2 − θ2, . . . , xJ − θJ)t. The following proposition is parallel to Theorem 4.4 (in the

one-dimensional case) and provides the limit of the regret; see (13). The proof is similar, although some

modifications are required.

Proposition 8.1. For a continuous argument s

lim
s→∞

s

∫ θ

0
Φ

(
−
√
t(β2 − β1)tη√

V (x)

)
(β2 − β1)tηf(x)dx =

f(θ)V (θ)

4|(β2 − β1)tζ|
, (30)

where ζ := (1, 2θ, ..., JθJ−1)t.
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Proof. By L’Hôpital’s rule the limit in (30) equals

lim
s→∞

s2

2

∫ θ

0
ϕ

(√
t(β2 − β1)tη√

V (x)

)
(β2 − β1)tη√

V (x)

1√
t
(β2 − β1)tηf(x)dx.

Substituting y = (θ − x)
√
s we get

√
sη =

√
s


x− θ

x2 − θ2

...

xJ − θJ

 =
√
s


x− θ

(x− θ)(x+ θ)
...

(x− θ)(xJ−1 + xJ−2θ + . . .+ θJ−1)

 = yη̃,

where

η̃ := (1, x+ θ, . . . , xJ−1 + xJ−2θ + . . .+ θJ−1)t

= (1, 2θ − y/
√
s, . . . , (θ − y/

√
s)J−1 + (θ − y/

√
s)J−2θ + . . .+ θJ−1)t.

The integral reads

lim
s→∞

1

2

∫ θ
√
s

0
ϕ

(
y

(β2 − β1)tη̃√
V (θ − y/

√
s)

)
y2[(β2 − β1)tη̃]2√
V (θ − y/

√
s)
f(θ − y/

√
t)dy.

The limit is
1

2

∫ ∞
0

ϕ

(
y(β2 − β1)tζ√

V (θ)

)
[y(β2 − β1)tζ]2√

V (θ)
f(θ)dy.

Substitution of y with z = y(β2−β1)tζ√
V (θ)

yields

f(θ)V (θ)

2|(β2 − β1)tζ|

∫ ∞
0

ϕ (z) z2dz =
f(θ)V (θ)

4|(β2 − β1)tζ|
,

which completes the proof.

For the proofs of Theorems 5.1 and 5.2 we need the lemma below and some notation. For every m

and k, let Im,k :=
∫ θm
θm−1

P (ĝk(x) > max 6̀=k ĝ`(x)) [gm(x)− gk(x)] f(x)dx. We then have R(π1, . . . , πK) =∑K
k=1

∑K
m=1 Im,k.

Lemma 8.2. Under the assumptions in the beginning of Section 5.1, the integral Im,k is exponentially
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small for k 6= m− 1,m+ 1, and for every ε > 0

limn→∞ n
3/2−ε

∣∣∣∣Im,m−1 −
∫ θm−1+ cn√

n

θm−1
Φ

(
−
√
n{gm(x)−gm−1(x)}√

Vm−1(x)

)
[gm(x)− gm−1(x)] f(x)dx

∣∣∣∣ = 0, (31)

limn→∞ n
3/2−ε

∣∣∣∣Im,m+1 −
∫ θm
θm− cn√

n
Φ

(
−
√
n{gm(x)−gm+1(x)}√

Vm(x)

)
[gm(x)− gm+1(x)] f(x)dx

∣∣∣∣ = 0,

where cn = nε/5 and Vm(x) = (1, x) (Σm + Σm+1)
(

1
x

)
. Moreover, for every m and k

n3/2−ε

∣∣∣∣∣∣Im,k −
∫ θm

θm−1

∫ ∏
`=1,...,K,l 6=k

Φ

(
zξk(x) +

√
n[gk(x)− g`(x)]

ξ`(x)

)
ϕ(z)dz

 [gm(x)− gk(x)] f(x)dx

∣∣∣∣∣∣→ 0,

as n→∞.

Proof of Lemma 8.2

The proof of the first claim in Lemma 8.2 is similar to that of Theorem 4.3. Here is a sketch. For x ∈ Im,k
and bounded away from θm−1 and θm, and k 6= m both the quantities

P

(
ĝk(x) > max

6̀=k
ĝ`(x)

)
and

∫ ∏
`=1,...,K,l 6=k

Φ

(
zξk(x) +

√
n[gk(x)− g`(x)]

ξ`(x)

)
ϕ(z)dz

are exponentially small (for k = m the regret is zero). The same holds true for every x and when

k 6= m− 1,m+ 1.

We now prove (31) concerning Im,m−1 (where m > 1). The other relation for Im,m+1 is similar. Fix

cn = nε/5 and consider x such that x ∈ (θm−1, θm−1 + cn/
√
n) . For such x we have by a standard large

deviations argument that

P

(
ĝm−1(x) > max

6̀=m−1
ĝ`(x)

)
= P (ĝm−1(x) > ĝm(x)) + an, and∫ ∏

`=1,...,K,l 6=m−1

Φ

(
zξm−1(x) +

√
n[gm−1(x)− g`(x)]

ξ`(x)

)
ϕ(z)dz = Φ

(
−
√
n[gm(x)− gm−1(x)]√

Vm−1(x)

)
+ bn,

(32)

where an and bn are exponentially small (uniformly in x). By a Berry-Esseen type bound applied to the

first part of the integrand, and the smallness of the other part for x is the given range of the integral, and

the smallness of the range itself , as in (27), we obtain

∫ θm−1+ cn√
n

θm−1

[
P (ĝm−1(x) > ĝm(x))− Φ

(
−
√
n[gm(x)− gm−1(x)]√

Vm(x)

)]
[gm(x)− gm−1(x)] f(x)dx = o(1/n3/2−ε),
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and (31) follows. This, together with (32), implies the last part of the theorem when k = m− 1.

Proof of Theorem 5.1

This follows directly from the last part of Lemma 8.2 and the fact that R(π1, . . . , πK) =
∑K

k,m=1 Im,k. Note

that we can replace that latter sum by
∑K

m=1 Im,m−1 since Im,k is exponentially small for k 6= m−1,m+1.

Proof of Theorem 5.2

The first part of Lemma 8.2 implies that

K∑
k=1

K∑
m=1

Im,k =
K−1∑
m=1

∫ θm+ cn√
n

θm− cn√
n

Φ

(
−
√
n|gm(x)− gm−1(x)|√

Vm−1(x)

)
|gm(x)− gm−1(x)| f(x)dx+ o(1/n).

The limit of the latter integrals can be calculated using Theorem 4.4 implying the result.
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