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Surgery duration prediction using multi-task
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Abstract— Efficient optimization of operating room (OR)
activity poses a significant challenge for hospital managers
due to the complex and risky nature of the environment. The
traditional “one size fits all” approach to OR scheduling is
no longer practical, and personalized medicine is required
to meet the diverse needs of patients, care providers,
medical procedures, and system constraints within limited
resources. This paper aims to introduce a scientific and
practical tool for predicting surgery durations and improv-
ing OR performance for maximum benefit to patients and
the hospital. Previous works used machine-learning mod-
els for surgery duration prediction based on preoperative
data. The models consider covariates known to the medical
staff at the time of scheduling the surgery. Given a large
number of covariates, model selection becomes crucial,
and the number of covariates used for prediction depends
on the available sample size. Our proposed approach uti-
lizes multi-task regression to select a common subset of
predicting covariates for all tasks with the same sample
size while allowing the model’s coefficients to vary between
them. A regression task can refer to a single surgeon or
operation type or the interaction between them. By consid-
ering these diverse factors, our method provides an overall
more accurate estimation of the surgery durations, and
the selected covariates that enter the model may help to
identify the resources required for a specific surgery. We
found that when the regression tasks were surgeon-based
or based on the pair of operation type and surgeon, our
suggested approach outperformed the compared baseline
suggested in a previous study. However, our approach
failed to reach the baseline for an operation-type-based
task. By accurately estimating surgery durations, hospital
managers can provide care to a greater number of patients,
optimize resource allocation and utilization, and reduce
waste. This research contributes to the advancement of
personalized medicine and provides a valuable tool for
improving operational efficiency in the dynamic world of
medicine.

Index Terms— Electronic Health Records (EHR), Machine
Learning, Operation Room (OR), Prediction Model, Preci-
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I. INTRODUCTION

Hospital managers frequently cope with the challenge of
optimizing operating room (OR) activity. This is a complex
undertaking involving many factors in a risky environment.
From the managers’ perspective, OR activity is not only
costly but also demanding on a professional level, necessitating
the coordination of multidisciplinary staff and highly skilled
surgeons. Still, it encompasses high profitability as well as
the opportunity to achieve professional excellence. Therefore,
managers desire expansion of the variety of procedures as well
as innovative activity, and tend to encourage physicians to
increase their performance.

The complexity of OR activity faces two major challenges:
The first is related to the diversity of the surgeons in terms of
their skills and experience in different procedures. The second
is related to the environmental features, patients’ character-
istics, diversity of staff members, and multiple infrastructure
components, all of which lead to many potential scenarios.
These features increase the uncertainty of achieving maximal
efficiency.

Structured plans based on “one size fits all” are no longer ef-
fective practical solutions. Medical managers look for “person-
alized medicine” to meet the patient’s needs and preferences,
the care provider’s characteristics, the procedure’s require-
ments, and the system’s constraints within scarce resources.
The advantages of personalized medicine are twofold. First, it
enables better resource allocation and utilization and reduces
waste, which in turn enables the provision of care to additional
patients. However, in the current practice, medical managers
lack the ability to consider all relevant elements within the
dynamic world of medicine and may fall short of an accurate
estimation of the resources required for a specific surgery. The
aim of this paper is to introduce a scientific yet practical tool
to predict the duration of surgeries in order to improve OR
performance and maximize the benefit for both patients and
hospitals.

OR scheduling is traditionally based on a staff member’s
estimation of operation duration based on personal or institu-
tional previous experience, yet the accuracy of such estima-
tions is quite low [1]. Solutions to maximize OR performance
have been discussed ( [2]–[7]) and different machine learning
(ML)-based approaches have been developed to pursue an
advanced methodology for managing OR utilization ( [8], [9]).
The ML-based approaches require training data and are based
on the use of statistical models. The advantage of ML-based
approaches vs. rule-based approaches is that the former are
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data-driven as opposed to knowledge-driven. In addition, ML-
based approaches can take into account complex relationships
between data points. The computational models are trained
on large datasets representing past experience and are driven
by algorithms to accurately predict unknown labels or future
events.

In a previous paper ( [9]) we developed an ML method
for predicting surgery duration using preoperative data of the
planned operations based on the eXtreme Gradient Boosting
(XGB) model. We trained and evaluated our method using data
from a large general public hospital in Israel. The method uses
only covariates that are known to the medical staff at the time
of scheduling the surgery, which is the day before the surgery
starts, and fits a single large model for the entire dataset.
Here we study a different approach that considers a multi-task
regression prediction and is based on the work of [10]. The
idea is to choose a common subset of predicting covariates
for all tasks having the same sample size but allowing the
model’s coefficients to vary between tasks. A regression task
can refer to a single surgeon, to operation type, or to the
interaction between them. Using a model selection procedure
that accounts for the number of observations is natural as a
large sample size allows a larger subset of covariates to be
used for prediction. In order to obtain a good prediction, a few
covariates should be used with a small sample size, and a more
complex model with more covariates can be fitted when the
sample size is large, provided, of course, that a suitable method
is employed to verify that the additional variables improve the
prediction.

In general, the aim of feature selection is to remove noisy
relatively non-informative features in order to avoid overfitting
of the statistical model, and guarantee generalizability. In order
to place our data analysis in the machine learning literature we
briefly discuss three feature selection approaches: 1) filters; 2)
wrappers; and 3) embedded methods. We limit the number of
references provided here; many further references related to
this brief review can be found in [11] and [12].

Filter methods consist of feature selection based on the
correlation, or other measures and tests of association between
each feature to be selected or removed and the variable to be
predicted. This selection method is independent of the pre-
diction model being used. Our multi-task approach starts with
preprocessing filtering aimed at identifying the key features of
a given prediction problem. We use univariate feature filtering
based on correlation, with the purpose of removing variables
that are clearly irrelevant to our prediction purpose, thus
reducing the complexity of the multivariate model selection
method that follows this first stage.

The second stage of our multi-task approach can be seen
as a special case of the wrapper methods, in which the
performance of subsets of features is compared relative to
a given prediction model, and the best subset is chosen. In
the multi-task approach, we estimate the performance of each
subset of the features that passed the first-stage filter using a
linear regression model based on the features contained in the
subset. We then choose the best-performing subset. This is a
multivariate approach as we compare whole subsets of features
rather than individual ones. In the presence of a large number

of features, this approach is computationally demanding; in
our case, we were left with a manageable number of features
after the first-stage filtering.

The XGB approach of [9], which was mentioned above, is
an example of the embedded methods, where the tree (and
more generally, the model) is constructed along with the fea-
ture selection. In general, these methods are computationally
less demanding than wrapper methods. We found that for
most of the prediction undertakings, the multi-task approach
performs better than the XGB model.

II. METHODS

A. Data

The dataset is extracted from the electronic health records of
a large (891-bed) public hospital (Shamir Medical Center). The
data were accessed through the Kineret platform of the Israeli
Ministry of Health. The Kineret platform made de-identified
data from the Israeli medical centers accessible for research in
the format of the Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM). The dataset contains
all surgeries that occurred from December 2009 to May 2020.
In this work, we focus on data from two general surgery
departments comprising a total of 23,183 surgeries, 146 lead
surgeons, and 2,381 types of operations. As in [9], the data was
split into training and test sets such that surgeries from 2018
and on were used only for testing. Our focus in this paper is on
models that allow different coefficients for each lead surgeon
or operation type. Therefore, we consider a subset of the data
which contains 32 lead surgeons with more than 100 surgeries
and 123 types of operations with more than 15 observations
in the training data. This subset contains 13,359 and 3,028
observations in the training and test data, respectively.

In this study, we aim to scrutinize models that predict
surgery duration. Since the distribution of surgery duration
has a long right tail, we consider the natural log of durations
instead of the durations. When the difference between log
durations (multiplied by 100) is small, the difference is ap-
proximately the difference in terms of percentage; see Chapter
2.4 in [13]. Thus, in the present study, the prediction errors
are interpreted as the difference in percentage between the
predicted duration of the task and its actual duration.

Table I provides summary statistics for the training and test
data, and Figure 1 plots the histogram and density estimates in
the training data of the surgerys’ durations. It is demonstrated
that under the log transformation, the distribution of the
observations is close to a normal distribution. The summary
statistics of the training and test data are generally similar,
except for the surgeon’s experience, which is higher in the test
data as the experience increases with time; also, the duration
is slightly higher in the test data.

In the dataset, there are 972 covariates that could be used
to predict surgery duration. A description of the covariates
is given in [9] and a full list of the covariates can be
found in the supplementary table of the latter paper. Most
of the covariates have little or no prediction power. As a
preprocessing step, only a small number of them were selected.
First, a linear regression model was considered with the two
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Fig. 1. Histogram and density estimates of the duration and log duration in the training data.

TABLE I
SUMMARY STATISTICS OF THE TRAINING AND TESTING DATA. N :

NUMBER OF SURGERIES. IQR: INTERQUARTILE RANGE.

Training (N=13,359) Test (N=3,028)
Demographics:
Age (median, IQR) 53 (37–66) 54 (39–68)
Female (%) 47.4 % 51.5%
Preoperative:
# Drugs (median, IQR) 6 (3–13) 5 (3–11)
# Diagnosis (median, IQR) 7 (3–13) 8 (3–16)
Surgeon’s experience:
# Previous surgeries (median, IQR) 437 (198–817) 1382 (573–1676)
Previous hours (median, IQR) 559.5 (260.4–1134.2) 1990 (891–2495)
Surgery:
Duration in minutes (median, IQR) 68.1 (49.1–94.1) 75.0 (56.4,99.4)
Log duration (median, IQR) 4.22 (3.89–4.54) 4.32 (4.03–4.60)

categorical variables, lead surgeon and operation type. Then,
the six most correlated variables with the residuals of the
model were considered. These variables were (ordered by
the magnitude of the correlation): patient’s age, number of
anesthesiologists, hypertension, Ot.compl.bir (a CCS category
of diagnosis codes for Other complications when the patient
is a mother during puerperium), diabetes mellitus (without
complications), and surgeon’s experience (total number of
past surgeries). Histograms of the variables “patient age” and
“lead surgeon’s total number of past surgeries” in the training
data are plotted in Figure 2 and the distribution of the other
variables in the training data are presented in Table II.

Another variable that is highly correlated with the residuals
is the number of nurses. However, it turns out that when
adding it to the model, the predictions are highly biased in
the test set. This may be due to policy changes in the years
of the test data (2018-2020) that are aimed at reducing the

number of nurses assigned to uncomplicated operations due
to a shortage of qualified nurses. Thus, our models are based
on external facts such as hospital policy and could perform
poorly if changes occur. However, it is clear that prediction
must always be based on the past, and assume some stationary
behavior.

B. Methodology
Our predictions are computed by a multi-task regression

model. Since variable selection for prediction is challenging
as it requires a large sample size, the approach of [10] is to
choose, on the basis of the training dataset, a common set of
covariates for each sample size. On the other hand, estimation
for each prediction task is based on a relatively small subset
of the dataset; for example, for prediction of future surgery
durations of each particular surgeon, only data pertaining to
this surgeon is used in estimating the prediction model.

More specifically, [10] consider a dataset consisting of J
regression tasks. For each regression task j ∈ {1, . . . , J},
let Rj(n, p) denote the prediction error of the linear model
p when the sample size is n. The quantity of interest is
R(n, p) = 1

J

∑J
j=1 Rj(n, p), which is the average prediction

error of model p over the J tasks if they had a common sample
size n. Azriel and Rinott define a statistic C(p)(n) (see Eq.
(3.4) in that paper), which is a generalization of Mallows’s
Cp and it is approximately unbiased and consistent for the
average prediction error under certain conditions. The C(p)(n)
statistic is composed from the residual sum of squares plus a
“penalty term”, which depends in particular on the number
of predictors as well as the sample size. This penalty term is
needed to avoid bias in the estimation of R(n, p) and also to
prevent overfitting. For each sample-size n, one can estimate
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Fig. 2. Histogram of the variables “patient’s age” and “surgeon’s experience” (total number of past surgeries) in the training data.

TABLE II
THE DISTRIBUTIONS OF THE VARIABLES IN THE TRAINING DATA; FREQUENCY (IN PERCENTAGE) IS IN PARENTHESES.

Variable
∖

Value 0 1 2 3 4
# Anesthesiologists 5112 (38.3%) 5679 (42.5%) 2455 (18.4%) 110 (0.8%) 3 (0.02%)
Diabetes Mellitus 11579 (86.8 %) 1762 (13.2 %)

Hypertension 9451 (70.7%) 3908 (29.3 %)
Ot.compl.bir 12365 (92.6 %) 994 (7.4 %)

the best model for n by argminp C
(p)(n); for the asymptotic

properties of this estimator see Sections 3.2 and 3.3 in [10].

Thus, the training data is divided into subsets, where each
subset is considered a different regression task. For each task,
a separate linear regression model is estimated, but the variable
selection is common across different tasks, in the sense that
two tasks with the same sample size use the same set of
covariates (but different coefficients).

We consider two ways of making data subsets and corre-
sponding regressions – either estimating regression coefficients
separately for each lead surgeon or for each combination of
the lead surgeon and the operation type – and compare them
to a single global regression model. We also compare these
models’ predictions to predictions given by a complex model
based on the XGB model as described in [9]. A third way
of making subsets was considered, namely, by the operation
type, but this led to higher prediction errors and will not be
described here.

Global regression model: A single linear regression model
was considered using the whole training set, where the re-
sponse variable was the log duration, and the covariates were:
lead surgeon and operation type, which are categorical vari-
ables, and the six covariates mentioned above. The parameters
of the model were estimated using least squares.

Surgeon-based models: For every lead surgeon a different
regression model was considered. As a first step, the response
variable for the i-th observation was defined to be Yi − Ȳi,
where Yi is the log duration, and Ȳi is the average of the log
durations of the operation type of the i-th observation, where
the average is over all the observations in the training set of
this operation type. For each surgeon, a separate regression
model was considered, where the covariates are: operation type
(if there are more than 10 observations from the same type)
and the six covariates mentioned above. The variable selection
procedure was based on the model selection procedure of [10].
Interaction-based models: Here, a task is defined by a pair
consisting of a certain lead surgeon and an operation type. In
these models the response variable is the log duration, i.e.,
Yi, and not the difference. This is because in the interaction
models, each task is associated with one operation type and
therefore the operation type is implicitly included in the
intercept of the model. There are 193 such tasks each having
at least 15 observations in the training data. Out of the 13,359
observations of the training data, the total number of observa-
tions in these tasks is 9,129. That is, about 4,000 observations
are excluded from the analysis under these models.
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TABLE III
THE COVARIATE SELECTION PROCEDURE AS A FUNCTION OF THE

SAMPLE SIZE OF THE TASK (n).

Task sample size Covariates
52 ≤ n ≤ 192 # Anesthesiologists, patient age

surgeon’s experience
193 ≤ n ≤ 1052 # Anesthesiologists, patient age

surgeon’s experience, Ot.compl.bir

C. Evaluation metrics

The prediction square error was defined to be the square of
the difference between the log of the predicted duration and
the log of the actual duration. The mean prediction error for
each sample size was estimated by the C(p) statistic that is
defined in Eq. (3.4) in [10]. For each task, the mean squared
prediction error was evaluated in the training data by 10-fold
cross-validation repeated 500 times. For each repetition, 90%
of the data was used for the estimation of the parameters and
10% for estimating the prediction error. An average over the
500 repetitions was computed. For the test data, the actual
prediction error was used. Some tasks appear only in the
training data and not in the test data, and for such tasks, the
actual prediction error is missing. We report the root mean
squared prediction error of the log of the durations, denoted
by RMSE, which represents an approximation to the percent
deviations from the actual durations, as explained above.

III. RESULTS

A. Global regression model

We estimated the coefficients of the model based on the
training data. The fraction of the variance explained by the
model (R2) is 0.62, indicating a relatively large variance
of the response explained by the model. However, most of
the explained variance comes from the (categorical) variable
“operation type”. The R2 statistic of a linear regression model
with this single variable is 0.55. The RMSE in the training
data, based on a 10-fold cross-validation, is 30.1% and in the
test data, the corresponding number is 30.0%.

B. Surgeon-based models

There there are 32 tasks corresponding to 32 lead surgeons.
As usual in the present methodology, the variable selection
criterion is sample size-dependent. For all tasks, the categor-
ical variable “operation type” (for types with more than 10
observations) is included and among the six covariates, the
variable selection is given in Table III.

Figure 3 plots the prediction errors in the training and test
data as a function of the sample size. Recall that in the training
data, the prediction error is estimated by a 10-fold cross-
validation. Only 17 tasks out of 32 appear in the test data.
Also plotted is the C(p) estimate of the average prediction
error of [10] and a kernel smoothing of the prediction errors.
As a benchmark, the prediction error of 30.0% of the global
regression model is also given.

It is demonstrated that the different estimates of the predic-
tion errors as well as the actual prediction errors are generally

TABLE IV
THE COVARIATE SELECTION PROCEDURE AS A FUNCTION OF THE

SAMPLE SIZE OF THE TASK (N).

Task sample size Covariates
15 ≤ n ≤ 27 surgeon’s experience
28 ≤ n ≤ 63 surgeon’s experience, patient age
64 ≤ n ≤ 445 surgeon’s experience, patient age, # Anesthesiologists

in agreement. In particular, the black dashed line, which is
a kernel smoothing of the prediction errors, is close to the
red line, which is the C(p) estimate of the average prediction
error. One can also observe that on average the surgeon-based
models yield slightly smaller prediction errors than the global
regression model, and this is especially true for tasks with a
large sample size. Interestingly, there seems to be no clear
connection between the mean duration of the task and the
prediction error.

C. Interaction-based models

Recall that in these models, a task is defined by a lead
surgeon and an operation type that together have 15 observa-
tions or more in the training data; there are 193 such tasks.
Here, since for each task the operation type and lead surgeon
are the same, the only covariates of the model are the six
covariates mentioned above. The variable selection procedure
as a function of the sample size is given in Table IV.

Figure 4 parallels Figure 3 for the interaction-based models.
In the test data, we considered only tasks with 10 or more
observations and there are 42 out of 193 such tasks. Notice
that for the small samples (small n), some of the errors
were very large. Similar to the surgeon-based models, for the
training data the C(p) estimate of the mean prediction error
and the kernel smoothing of the prediction errors generally
agree. The average prediction error is less than the 30% of the
global regression model. However, in the test data, the average
prediction error was 30.1%, and is slightly higher than the C(p)

and cross-validation estimates. One possible explanation is that
the C(p) and cross-validation estimates require a large sample
size, whereas in these models the sample sizes are relatively
small, and therefore the estimates may be highly variable or
biased.

D. Comparisons to other models and methods

We compared the prediction errors of the surgeon-based
models to the eXtreme Gradient Boosting (XGB) model
previously used in [9] for this dataset as well as to three other
feature selection methods: LASSO ( [14]), mutual information
( [15]), abbreviated MI, and forward selection, abbreviated
FS. Notice that the XGB model was trained on the entire
dataset of all hospital departments and here we evaluate its
performance only for the two general surgeries departments
we considered in this work. For LASSO, MI, and FS we
used the two categorical variables lead surgeon and operation
type, which amounts to 153 dummy variables and all other
numerical variables in the dataset with no missing values.
The total number of covariates is 495. We computed the
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Fig. 3. The prediction errors in the training data (left panel) and in the test data (right panel) as a function of the sample size for the surgeon-based
models. Each mark in the plot represents prediction errors of surgeries performed by the same surgeon. For the training data, the prediction errors
are based on the 10-fold cross-validation. The size of the circles and the crosses is proportional to the mean of the log duration. The red line is
the C(p) estimate of the mean prediction error. The green line is the prediction error of the global regression model and the black dashed line is a
kernel smoothing of the prediction errors.

Fig. 4. The prediction errors in the training data (left panel) and in the test data (right panel) as a function of the sample size for the interaction-
based models. Each mark in the plot represents prediction errors of surgeries performed by the same surgeon. For the training data, the prediction
errors are based on the 10-fold cross-validation. The size of the circles and the crosses is proportional to the mean of the log duration. The red line
is the C(p) estimate of the mean prediction error. The green line is the prediction error of the global regression model and the black dashed line is
a kernel smoothing of the prediction errors.

LASSO coefficients using the glmnet package in R, which also
calculates the the tuning parameter by cross-validation. For MI

and FS we selected 200 variables out of 495 and estimated the
parameters of the global linear model with respect to these
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covariates. The same split of the training and test sets as
described in Section II-A was considered.

Figure 5 plots the prediction errors in the test data of the
surgeon-based models (red) compared to the XGB, LASSO,
MI and FS (blue). The prediction errors in the test set of the
surgeon-based models, XGB, LASSO, MI and FS are 29.4,
32.4, 30.1, 33.5 and 30.0, respectively. Thus, the surgeon-
based models have smaller prediction error than the other
methods we compared and the relative improvement varies
from 2% to 10%. It is interesting to note that the smoothing
line of the surgeon-based models in Figure 5 is consistently
below the other methods for all sample sizes. Another im-
portant advantage of the surgeon-based models is that they
use much smaller numbers of covariates allowing for simpler
models, better interpretability, and possibly reducing the work
required by recording and using more variables.

IV. DISCUSSION

Looking closer at the prediction errors we observe that there
are two tasks with a relatively high prediction error; one of
these tasks corresponds to a particular surgeon, and one to the
interaction of a particular surgeon and operation type.

The first task with high prediction error appears in the
surgeon-based models, where each task corresponds to a
surgeon. Looking at the left panel of Figure 3 one can find
a task (a surgeon) with a prediction error of 37.5% in the
training data and sample size of 371 operations. This predic-
tion error is extreme for the surgeon-based models. There are
no observations for this surgeon in the test data. Focusing on
the surgeon of this task, we observe that his/her surgeries are
longer compared to those of the other surgeons (second largest)
and the average age of his/her patients is high (fourth largest).
Considering the other covariates in the data, we see that the
average number of surgeons participating in his/her surgeries
(excluding the lead surgeon) is the highest, and also his/her
surgeries have the highest number of different diagnoses on
average. These findings indicate that the surgeries of this lead
surgeon were highly complicated or utilized a new technique
or device and therefore were prone to complications, resulting
in longer performance duration on average. Yet, academic
(teaching) hospitals take into account and even encourage such
events as part of the strategy to implement innovation or gain
trainees’ experience. Thus, for this surgeon there seems to be
a combination of circumstances that causes high prediction
errors: his/her surgeries were carried out during a relatively
short period, the patients had a variety of medical conditions
and many surgeons participated in those operations.

The second task with a relatively high prediction error
can be found in the interaction-based models, where each
task corresponds to a combination of a lead surgeon and
an operation type. This task has a sample size of 266. The
prediction error in the training data was 29.6%, which is close
to the expected error for a task with this sample size, but in
the testing data the prediction error was 45.0%, which is quite
high; see the right panel of Figure 4. Looking closer at the
errors, one observes that most of them arise from bias. The
average actual duration was 106.7 minutes but the average

predicted duration was 72.1 minutes. The reason for this bias is
that the test data for this task is quite different from the training
data, in which the average duration was 60.9 minutes. Looking
at the covariates for this task in the training data versus the
test data we observe significant differences: the patients are
older in the test set (average of 61 years versus 45), their drug
count is higher (average of 11.9 versus 6.6) and the number
of anesthesiologists is higher (average of 1.12 versus 0.76).
This implies that the surgeries in the test set, while being of
the same type and carried out by the same surgeon, are more
complicated and hence their length is harder to predict. It
seems that no statistical method can prevent prediction errors
due to such differences between the training and the test data.

The multi-task approach allows one to identify tasks with
high prediction errors like the surgeon-based task having a
prediction error of 37.5% mentioned above. For such tasks,
one can consider a further division of the task, or use a
different prediction method, or just provide a warning that for
this task the prediction error is high. This is another advantage
of the multi-task approach since the prediction error can be
estimated for each task separately rather than providing one
prediction error as in the global models.

Considering the six covariates that were mentioned in
Section II-A we see that under the global regression model,
all six are statistically significantly different from zero. For #
Anesthesiologists and patient age the value of the t-statistic is
larger than 10, for surgeon’s experience and Ot.compl.bir it is
between 5 and 8 and for Diabetes Mellitus and Hypertension
it is about 3. Correspondingly, we see that for the surgeon-
based models the covariates # Anesthesiologists, patient age
and surgeon’s experience are selected for tasks with sample
size smaller than 192 and Ot.compl.bir is added for larger tasks
(see Table III). For the interaction-based models, the order
by which the covariates are selected is surgeon’s experience,
patient age and # Anesthesiologists (see Table IV).

In the multi-task models, i.e, the surgeon-based and
interaction-based, it is of interest to compare our model
selection procedure to a model that selects all six covariates
and uses different coefficients in each task. In the surgeon-
based models where the sample size of the tasks is relatively
large (it varies from 52 to 1052), the difference between the
predictions of the model with six covariates and the suggested
one is quite small. The relative prediction improvement of our
model, as estimated by cross-validation estimates is smaller
than 0.5%. By the C(p) statistic, one can evaluate the relative
improvement for different sample sizes and it turns out that
for sample sizes of around 50 the relative improvement is
about 2%. In the interaction models, the sample size of the
tasks is smaller (about 90% of the tasks have fewer than 100
observations) and the relative improvement is more significant;
it is about 7% for the entire training set and about 10% for
tasks with sample sizes of 15.

We now make a few general comments comparing our
method to other available options. A common approach in ML
methods is to train a single model on the entire dataset, under
the assumption that a larger sample size will lead to lower
prediction error. Regularization methods are used to reduce
the generalization error of models. Here, we used a different
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Fig. 5. The prediction errors as a function of the sample size in the test data for the surgeon-based models (red) compared to the XGB model,
LASSO, MI and FS (blue). The size of the crosses is proportional to the mean of the log duration. The green line in the prediction error of the
global regression model and the red (respectively, blue) dashed line is a kernel smoothing of the prediction errors for the surgeon-based models
(respectively, XGB, LASSO, MI and FS).

approach described by [10] where different model parameters
were estimated for different tasks, but the covariate selection is
such that all tasks having the same sample size were modeled
with the same set of covariates. We showed that when the
tasks correspond to the lead surgeon, the models that use a
handful of features perform better than a global linear model
and even better than a complex XGB model that is trained
using hundreds of features. The model achieved an average
prediction error of 28.9% in the training data (based on 10-

fold cross-validation estimates) and 29.2% in the test data.
However, when the tasks correspond to both the operation type
and the surgeon, the prediction error in the test data was about
the same as in the global linear model. For these models the
average prediction error was 27.8% in the training data (based
on 10-fold cross-validation estimates) and 30.1% in the test
data.

In general, ML and statistical methods can be used in
healthcare systems to analyze large data and to help managers
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understand the operation activity and improve it. The use of
such methods in healthcare is evolving and researchers as well
as managers still learn how to use and implement those meth-
ods. In the present work, we considered a feature selection
procedure that was suggested for multi-task regression and
studied its prediction performance. Further research is required
to fully understand the potential of this method.
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