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A Proofs

A.1 Proof of Theorem 1

We start by showing that {A∗
j , X

∗
j } are independence if and only if (N∗

1 , . . . , N
∗
K) | M∗ has

a multinomial distribution. Any permutation of the ages is equally likely since the indices of
individuals in the sample are non-informative, and therefore

pr({A∗
j = a∗j}M

∗

j=1 | M∗ = m∗) =

∏K
k=1 n

∗
k!

m∗!
P
(
N∗

1 = n∗
1, . . . , N

∗
K = n∗

K | M∗ = m∗), (A.1)

where n∗
k =

∑m∗

j=1 I(a
∗
j = ak). Under our model, and conditionally on {A∗

j}, the sojourn

times {X∗
j } are independent having the distribution pr(X∗

j ≤ x | A∗
j = a) = G(x)/Ḡ(a−) for

a ≤ x. Thus, the joint density of ({A∗
j}, {X∗

j }) conditionally on {M∗ = m∗} at points satisfying
{a∗j ≤ x∗

j} is∏K
k=1 n

∗
k!

m∗!
P
(
N∗

1 = n∗
1, . . . , N

∗
K = n∗

K | M∗ = m∗) m∗∏
j=1

dG(x∗
j)Ḡ(a∗j−)

=

∏K
k=1 n

∗
k!

m∗!
P
(
N∗

1 = n∗
1, . . . , N

∗
K = n∗

K | M∗ = m∗) m∗∏
j=1

dG(x∗
j)

K∏
k=1

{Ḡ(ak−)}−n∗
k . (A.2)

Independence means that the above density can be written as a product of the joint
probabilities of (A∗

j , X
∗
j ), and by Equation (2) of the paper, this product is proportional to∏m∗

j=1 dG(x∗
j)
∏K

k=1{pr(Aj = ak)}n
∗
k . By equating the latter product to (A.2) we see that

(N∗
1 , . . . , N

∗
K) | M∗ = m∗ has the distribution Mult(m∗, p∗1, . . . , p

∗
K), where p∗k ∝ P (A =

ak)Ḡ(ak−). On the other hand, if (N∗
1 , . . . , N

∗
K) | M∗ has a multinomial distribution, it is

readily seen that (A.2) is a product of terms depending on j, hence the pairs are independent.
This completes the first step of the proof.

The main part of the theorem now follows from the following lemma that is of interest of
its own

Lemma 1. Let (N1, . . . , NK) be a vector of random variables taking values in NK, where N
denotes the non-negative integers, and assume that

N∗
1 , . . . N

∗
K | N1, . . . , NK ∼⊥⊥K

k=1 Bin(Nk, πk), (A.3)
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that is, (N∗
1 , . . . , N

∗
K) are obtained by coordinate-wise thinning as follows: conditioned on

(N1, . . . , NK) the variables N∗
1 , . . . , N

∗
K are independent with N∗

k | N1, . . . , NK ∼ Bin (Nk, πk)
for some parameters πk ∈ [0, 1], k = 1, . . . , K.

The following two conditions are equivalent
Condition A: (N∗

1 , . . . , N
∗
K |

∑K
k=1N

∗
k = m∗) ∼ Mult(m∗, p∗ = (p∗1, . . . , p

∗
K)) for each m∗, for

some probability vector p∗.
Condition B: (N1, . . . , NK |

∑K
k=1Nk = m) ∼ Mult(m, p = (p1, . . . , pK)) for each m for some

probability vector p.

Remark 1. Let M =
∑K

k=1Nk, and Let M∗ =
∑K

k=1N
∗
k . If µk = E(Nk) then E(N∗

k ) = µkπk.
Now if Condition A holds then E(N∗

k | M∗) = M∗p∗k and therefore E(N∗
k ) = E(M∗)p∗k, and it

follows that p∗k = µkπk/
∑

i µiπi. Also, µk = E(M)pk, and we conclude that

p∗k = pkπk/
∑
i

piπi. (A.4)

Proof of Lemma 1. We first prove that Condition B ⇒ Condition A. Let (N1, . . . , NK) ∼ P0

be some vector that satisfies Condition B. Given M =
∑K

k=1Nk, construct new variables
on a common probability space, (N1i, . . . , NKi) ∼ Mult(1, (p1, . . . , pK)) independent for i =
1, . . . ,M . Obviously,

∑M
i=1(N1i, . . . , NKi) ∼ P0. Further, construct (N

∗
1i, . . . , N

∗
Ki) | (N1i, . . . , NKi)

independently such that N∗
ki | (N1i, . . . , NKi) ∼ Bin(Nki, πk) and set

(N∗
1 , . . . , N

∗
K) =

∑M
i=1(N

∗
1i, . . . , N

∗
Ki). Obviously, (N∗

1 , . . . , N
∗
K) satisfies (A.3) when condition-

ing is on
∑M

i=1(N1i, . . . , NKi). Now

(N∗
1i, . . . , N

∗
Ki, N1i−N∗

1i, . . . , NKi−N∗
Ki) ∼ Mult(1, (p1π1, . . . , pKπK , p1(1−π1), . . . , pK(1−πK)))

are independent for i = 1, . . . ,M so their sum is multinomial, and hence its marginals (given
their totals), with probabilities given by (A.4).

We now prove that Condition A ⇒ Condition B.
Setting N∗ = (N∗

1 , . . . , N
∗
K) and t = (t1, . . . , tK), we compute the generating function

gN∗(t) = E(
∏

k t
N∗

k
k ) in two ways. First, using condition A we have

E

(∏
k

t
N∗

k
k | M∗

)
=

∑
i1+...+iK=M∗

(
M∗

i1 . . . iK

)∏
k

(p∗ktk)
ik =

(
K∑
k=1

p∗ktk

)M∗

=

(
K∑
k=1

p∗ktk

)∑
k N∗

k

.

We compute the expectation of the latter expression to obtain gN∗(t) by first conditioning on
(N1, . . . , NK) using (A.3) and then taking expectation with respect to (N1, . . . , NK). We readily

obtain E

{(∑K
k=1 p

∗
ktk

)∑
k N∗

k | (N1, . . . , NK)

}
=
∏

k E
(
sXk
)
, where s =

∑K
k=1 p

∗
ktk and Xk ∼

Bin (Nk, πk). The latter binomial generating function is given by E(sXk) = (1 − πk + πks)
Nk

and we conclude that

gN∗(t) = E{
∏
k

(1− πk + πks)
Nk} = gN(1− π1 + π1s, . . . , 1− πK + πKs). (A.5)

We compute gN∗ again by first conditioning on (N1, . . . , NK) as follows:

gN∗(t) = E

{
E

(∏
k

t
N∗

k
k | N1, . . . , NK

)}
= E

{∏
k

(1− πk + πktk)
Nk

}
= gN(1− π1 + π1t1, . . . , 1− πK + πKtK). (A.6)
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From (A.5) and (A.6) it follows that gN(1− π1 + π1t1, . . . , 1− πK + πKtK) is constant over the
set Ts = {t :

∑K
k=1 p

∗
ktk = s} for any s, and for fixed π1, . . . , πK we can write

gN(1− π1 + π1t1, . . . , 1− πK + πKtK) = gN(1− π1 + π1s, . . . , 1− πK + πKs) = h(s). (A.7)

Recall
∂n1 · · · ∂nK

∂tn1
1 · · · ∂tnK

K

gN(t)
∣∣∣
t=0

=
∏
k

nk!P (N1 = n1, . . . , NK = nK).

In the same way

∂n1 · · · ∂nK

∂tn1
1 · · · ∂tnK

K

gN(1− π1 + π1t1, . . . , 1− πK + πKtK)
∣∣∣
{tk=(πk−1)/πk, k=1,...,K}

=
∏
k

(πnk
k nk!)P (N1 = n1, . . . , NK = nK). (A.8)

On the other hand from (A.7), and recalling s =
∑K

k=1 p
∗
ktk we have

∂n1 · · · ∂nK

∂tn1
1 · · · ∂tnK

K

gN(1− π1 + π1t1, . . . , 1− πK + πKtK)
∣∣∣
{tk=(πk−1)/πk, k=1,...,K}

=
∏
k

(p∗k)
nk h(m)

(∑
k

p∗k(πk − 1)/πk

)
(A.9)

where h(m) denotes the mth derivative of h defined in (A.7), and m =
∑

k nk. Set
∑

k p
∗
k(πk −

1)/πk = η. From (A.8) and (A.9) it follows that

P (N1 = n1, . . . , NK = nK) = h(m)(η)
∏
k

(
p∗k
πk

)nk ∏
k

1

nk!
, (A.10)

and

P (N1 + . . .+NK = m) = h(m)(η)
1

m!

(∑
k

p∗k
πk

)m

, (A.11)

so we conclude that

P (N1 = n1, . . . , NK = nK | N1 + . . .+NK = m) =

(
m

n1 . . . nk

)∏
k

(
p∗k
πk

/∑
k

p∗k
πk

)nk

, (A.12)

which is multinomial as required, with parameters that agree with (A.4).
Finally, the independent case is established by the following lemma, which is similar to a

characterization of the Poisson distribution given by Chatterji (1963).

Lemma 2. Let N1, . . . , NK be independent random variables taking values in N. Then, (N1, . . . , NK |∑K
k=1Nk = m) ∼ Mult(m, p = (p1, . . . , pK)) for each m for some probability vector p, if and

only if Nk ∼ Poisson(cpk) for some positive c.

Proof. The fact that forNk ∼ Poisson(cpk) independent (N1, . . . , NK |
∑K

k=1Nk = m) ∼Mult(m, p)

is well known. Assume (N1, . . . , NK |
∑K

k=1Nk = m) ∼Mult(m, p). For K = 2, 1 ≤ a ≤ m,
and k = 1, 2,

pk
1− pk

m− a+ 1

a
=

pr(Nk = a | N1 +N2 = m)

pr(Nk = a− 1 | N1 +N2 = m)
=

pr(Nk = a)pr(N3−k = m− a)

pr(Nk = a− 1)pr(N3−k = m− a+ 1)
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which for a = m gives for any m

pr(Nk = m)

pr(Nk = m− 1)
=

pk
1− pk

pr(N3−k = 1)

pr(N3−k = 0)

1

m
=

ck
m
,

a ratio which implies Nk ∼ Poisson(ck). It is easy to see directly that ck = E(Nk) = pkE(N1 +
N2), hence c = E(N1 + N2). For K > 2 one can prove Nk ∼ Poisson(cpk) by writing N−k =∑

j ̸=k Nj and using (Nk, N−k) | {
∑K

j=1Nj = m} ∼ Mult(m, pk, 1− pk).

A.2 Proofs of asymptotic results

Sketch of proof of Theorem 2. Recall that {Xki} are independent and identically distributed
and are independent of {Nk}. Denote the true parameter value by θ0. By (5), with X∗ ∼
G∗(· ; θ0),

1

M∗ ℓ(θ) =

1
ν

∑K
k=1

∑Nk

i=1 I(ak ≤ Xki) log
w(Xki)g(Xki;θ)

βθ

1
ν

∑K
k=1

∑Nk

j=1 I(ak ≤ Xki)
→ Eθ0 [log{g∗(X∗; θ)}] (A.13)

in probability, where the limit is obtained as follows. Starting with the denominator and
recalling that Nk/(νηk) → 1 in probability, the law of large numbers implies

K∑
k=1

1

ν

Nk∑
i=1

I(ak ≤ Xki) =
K∑
k=1

ηk
Nk

νηk

1

Nk

Nk∑
i=1

I(ak ≤ Xki) →
K∑
k=1

ηkḠθ0(ak−) = βθ0 . (A.14)

The same reasoning applied to the numerator of (A.13) yields

K∑
k=1

ηk
Nk

νηk

1

Nk

Nk∑
i=1

I(ak ≤ Xki) log
w(Xki)g(Xki; θ)

βθ

→
K∑
k=1

∫ ∞

0

ηkI(ak ≤ x) log{g∗(x; θ)}dG(x; θ0)

=

∫ ∞

0

K∑
k=1

ηkI(ak ≤ x) log{g∗(x; θ)}dG(x; θ0) = βθ0

∫ ∞

0

log{g∗(x; θ)}w(x)dG(x; θ0)

βθ0

= βθ0

∫ ∞

0

log{g∗(x; θ)}dG∗(x; θ0) = βθ0Eθ0 [log{g∗(X∗, θ)}]. (A.15)

Equations (A.15) and (A.14) imply (A.13). Identifiability and the information inequality assert
that Eθ0 [log{g∗(X∗, θ)}] obtains its maximum at θ = θ0; standard arguments guarantee the
existence of a consistent sequence of roots (e.g., Lehmann and Casella 1998).

Example A.1 (Inconsistency of the independence likelihood estimator). Consider the model
Xki ∼ Exp(θ) with K = 2, a1 = 0, a2 = 1 and η1 = η2, the exchangeable case. It is easy to see
that X∗

ki−k+1 ∼ Exp(θ). Simple calculations show that the independence likelihood estimator,

θ̂, solves the equation

1

θ̂
+

e−θ̂

1 + e−θ̂
=

N∗
1

N∗
1 +N∗

2

X̄∗
1 +

N∗
2

N∗
1 +N∗

2

X̄∗
2 ,

where X̄∗
k = (N∗

k )
−1
∑N∗

k
i=1X

∗
ki, (k = 1, 2). As ν → ∞, X̄∗

k → k − 1 + θ−1, k = 1, 2, and
N∗

k/Nk → e−θak in probability, so the estimating equation is approximately

1

θ̂
+

e−θ̂

1 + e−θ̂
≈ 1

θ
+

e−θ

N1

N2
+ e−θ

.
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The independence likelihood estimator is consistent if N1/N2 → η1/η2 = 1 in probability, but not
otherwise. As a concrete example, let Nk be independent and Nk = ν/4 or 3ν/4 with probability
1/2 each so that N1/N2 takes the values 1/3, 1, and 3 with corresponding probabilities 1/4, 1/2,
and 1/4, and the estimator converges to a non-degenerate random variable, and therefore is
inconsistent.

Proof of Theorem 3. Using consistency, Taylor expansion of 0 = ∂ℓ(θ̂ν)/∂θ around θ0, and
standard arguments yield the approximation

M1/2(θ̂ν − θ0) ≈
M−1/2

∑K
k=1

∑Nk

i=1
∂
∂θ
hk(Xki; θ0)

−M−1
∑K

k=1

∑Nk

i=1
∂2

∂θ2
hk(Xki; θ0)

. (A.16)

The conditions on N1, . . . , NK imply Nk/M → ηk in probability and the denominator of
(A.16) converges to −

∑K
k=1 ηkEθ0 [∂

2hk(X, θ0)/∂θ
2]. The analysis of the numerator is more

complicated:

M−1/2

K∑
k=1

Nk∑
i=1

∂

∂θ
hk(Xki; θ0) =

K∑
k=1

M−1/2

Nk∑
i=1

( ∂

∂θ
hk(Xki; θ0)− ck

)
+M−1/2

K∑
k=1

ckNk. (A.17)

A multivariate version of the proof in Rényi (1957) of Anscombe’s Theorem and Nk/(ηkM) → 1
in probability imply that

Nk
1/2

(ηkM)1/2
1

Nk
1/2

Nk∑
i=1

( ∂

∂θ
hk(Xki; θ0)− ck

)
converge jointly for k = 1, . . . , K to independent mean zero normal variables.

Therefore, in (A.17),

K∑
k=1

η
1/2
k

(ηkM)1/2

Nk∑
i=1

( ∂

∂θ
hk(Xki; θ0)− ck

)
→ W (A.18)

in distribution, where W ∼ N
(
0,
∑K

k=1 ηkvarθ0{∂hk(X; θ0)/∂θ}
)
.

Turning to the second term in (A.17), we haveM−1/2
∑K

k=1 ckNk = M−1/2
∑K

k=1 ck(Nk − ηkν) →
V in distribution, where we used the facts that

∑
k ηkck = 0, proved below, and ν−1M → 1 in

probability. Now, (7) is obtained from (A.16) by

M∗

M
=

K∑
k=1

Nk

M

1

Nk

Nk∑
j=1

I(ak ≤ Xkj) →
K∑
k=1

ηkḠ(ak−; θ0) = βθ0 . (A.19)

It remains to show
∑

k ηkck = 0 and independence of V and W . Interchanging the order of

integration and differentiation and recalling
∑K

k=1 ηkI(ak ≤ x) = w(x), we obtain as in (A.15)

K∑
k=1

ηkck =
∂

∂θ

∫ ∞

0

K∑
k=1

ηkI(ak ≤ x) log{g∗(x; θ)}dG(x; θ0)
∣∣∣
θ=θ0

= βθ0

∂

∂θ
Eθ0 [log{g∗(X∗, θ)}]

∣∣∣
θ=θ0

,

which vanishes since the maximum of Eθ0 [log{g∗(X∗, θ)}] is attained at θ = θ0.
To prove independence ofW and V , note that the assumptions on the entrance process imply

Nk/(ηkM) → 1 in probability, and by (A.18), it suffices to prove asymptotic independence of
U (ν) and

W (ν) =
K∑
k=1

(
ηk
Nk

)1/2 Nk∑
j=1

( ∂

∂θ
hk(Xkj; θ0)− ck

)
.

5



Given ϵ > 0 let n0 be such that nk > n0 for all k implies |pr(W (ν)/σ ≤ t | {Nk = nk})−Φ(t)| < ϵ,

where σ2 =
∑K

k=1 ηkvarθ0{∂hk(X; θ0)/∂θ}, and let ν be such that pr(N
(ν)
k > n0 for all k) > 1−ϵ.

For nk’s > n0 we have

pr(W (ν)/σ ≤ t, U (ν) ≤ u | {Nk = nk}) ≤ (Φ(t) + ϵ)I

(
K∑
k=1

ck
nk − ηkν

ν1/2
≤ u

)
.

Unconditioning by summing over all {nk} readily yields

pr(W (ν)/σ ≤ t, U (ν) ≤ u) ≤ (Φ(t) + ϵ)pr(U (ν) ≤ u) + ϵ.

A similar lower bound completes the proof.
Proof of Theorem 4. Since Nk → ∞ in probability, the weak law of large numbers yields

1

Nk

Nk∑
i=1

w(Xki)
−1I(ak ≤ Xki ≤ x) → γk(x)

in probability, which holds also for x = ∞. In addition, the assumptions imply Nk/M → ηk in

probability, and by (9) and (10), Ĝ(x) →
K∑
k=1

ηkγk(x)
/ K∑

k=1

ηkγk(∞) = G(x).

Proof of Theorem 5. By (9)

M1/2(Ĝ(x)−G(x)) =
M−1/2

∑K
k=1

∑Nk

i=1 w(Xki)
−1I(ak ≤ Xki)[I(Xki ≤ x)−G(x)]

M−1
∑K

k=1

∑Nk

i=1w(Xki)
−1I(ak ≤ Xki)

. (A.20)

The denominator in (A.20) converges in probability to 1 since Nk
−1∑Nk

i=1w(Xki)
−1I(ak ≤

Xki) → γk(∞) by the Law of Large Numbers, Nk/M → ηk, and
∑K

k=1 ηkγk(∞) = 1, see
(10).

Setting
Ski(x) = w(Xki)

−1I(ak ≤ Xki)[I(Xki ≤ x)−G(x)],

we have E{Ski(x)} = ck(x), and
∑

k ηkck(x) = 0. As in (A.19), M∗/M → β in probability; also,

in probability, M/ν → 1 and we obtain that M∗1/2{Ĝ(x)−G(x)} is asymptotically equivalent
to

β1/2

K∑
k=1

1

M1/2

Nk∑
i=1

{Ski(x)− ck(x)}+ β1/2

K∑
k=1

ck(x)(Nk − ηkν)

ν1/2
. (A.21)

We have M−1/2
∑Nk

i=1{Ski(x)− ck(x)} → N(0, ηkσ
2
k(x)) in distribution, and therefore,

K∑
k=1

M−1/2

Nk∑
i=1

{Ski(x)− ck(x)}
D−→ N

(
0,

K∑
k=1

ηkσ
2
k(x)

)
.

Independence of W (x) and V (x) follows by reasons as in the proof of Theorem 3.

A.3 Asymptotic normality in the multi-parameter case

Suppose that θ is p-dimensional and that the independence likelihood estimator is consistent.
Under standard regularity conditions, Taylor approximation gives

M1/2(θ̂ − θ0) ≈ MH−1(θ0)
1

M1/2
Dℓ(θ0), (A.22)
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where Dℓ(θ0) = (∂ℓ(θ0)/∂θ1, . . . , ∂ℓ(θ0)/∂θp)
t and H(θ0) = (∂2ℓ(θ0)/∂θs∂θt) is the p× p matrix

of second derivatives. Under conditions as in Theorem 3

MH−1(θ0) =

(
K∑
k=1

Nk

M

1

Nk

Nk∑
i=1

∂2

∂θs∂θt
hk(Xki; θ0)

)−1

→

(
K∑
k=1

ηkEθ0{
∂2

∂θs∂θt
hk(X, θ0)}

)−1

in probability.
Next, write M−1/2Dℓ(θ0) as a sum of two vectors:(

M−1/2

K∑
k=1

Nk∑
i=1

∂

∂θj
hk(Xki; θ0)

)
=

(
K∑
k=1

M−1/2

Nk∑
i=1

( ∂

∂θj
hk(Xki; θ0)− ckj

))
+M−1/2

(
K∑
k=1

Nkckj

)
,

(A.23)
where ckj = Eθ0{∂hk(X; θ0)/∂θj}, and note that(

M−1/2

Nk∑
i=1

( ∂

∂θ1
hk(Xki; θ0)− ck1

)
, . . . ,M−1/2

Nk∑
i=1

( ∂

∂θp
hk(Xki; θ0)− ckp

))
, k = 1, . . . , K

converge jointly to independent zero mean normal vectors with corresponding covariances
ηkcov{∂hk(X; θ0)/∂θs, ∂hk(X; θ0)/∂θt}. Therefore, the first term on the right hand side of

(A.23) satisfies
(∑K

k=1M
−1/2

∑Nk

i=1

(
∂hk(Xki; θ0)/∂θj − ckj

))
→ W in distribution, where

W ∼ Np

(
0,

K∑
k=1

ηkcov

{
∂

∂θs
hk(X; θ0),

∂

∂θt
hk(X; θ0)

})
. (A.24)

The second term in (A.23) vanishes if the Nk’s are constant, and otherwise can be treated as
in the single parameter case.

B Asymptotics with K

We study the asymptotic properties of the independence likelihood estimator in the following
setting. There is a sequence {Ak}Kk=1 of entrance points, a sequence {Nk}Kk=1 of non-negative
integer numbers, and a sequence {Xki}K, Nk

k=1,i=1 of lifetimes. We assume that the sequences
are independent, each consisting of independent and identically distributed random variables.
Specifically, we assume Ak ∼ W , Nk ∼ P , and Xki ∼ G, with the technical identifiability
requirement that W (xmin) > 0, where xmin is the left limit of the support of G. We assume
that ν := E(Nk) < ∞ and study the independence likelihood estimator when K → ∞. This
model assumes exchangeability because the distribution of Nk is independent of k. The analysis
is much simpler than in the setting considered in the paper as the likelihood (5) in the paper
becomes a sum of K independent and identically distributes random variables and K → ∞.

First recall that the marginal law of the X∗’s is dG∗(x) = W (x)dG(x)/β, where here the
weight function is given by W = P (A ≤ x), and β = P (A ≤ X). We prove consistency and
asymptotic normality for the parametric case. As in the proof of Theorem 2, we show that

1

M∗ ℓ(θ) =

1
νK

∑K
k=1

∑Nk

i=1 I(Ak ≤ Xki) log
W (Xki)dG(Xki;θ)

βθ

1
νK

∑K
k=1

∑Nk

j=1 I(Ak ≤ Xki)
→ Eθ0 [log{dG∗(X∗; θ)}] (B.1)

in probability. Starting with the denominator, we have that
∑Nk

j=1 I(Ak ≤ Xki) k = 1, . . . , K
are independent and identically distributed random variables with expectation νβ by Wald’s

7



Lemma, so by the law of large numbers, the denominator converges to βθ. Similarly,

Nk∑
i=1

I(Ak ≤ Xki) log
W (Xki)dG(Xki; θ)

βθ

are independent and identically distributed with expectation

ν

∫
log

W (x)dG(x; θ)

βθ

W (x)dG(x) = βθEθ0 [log{dG∗(X∗; θ)}].

Using again the law of large numbers, (B.1) is obtained, and the proof of consistency follows
the arguments in Theorem 2.

The asymptotic distribution is simpler than in Theorem 3. Denote

h(X,A; θ) =
∂

∂θ
I(A ≤ X) log

W (X)dG(X; θ0)

βθ0

.

Starting with a term similar to (A.16), we have:

K1/2(θ̂K − θ0) ≈
1

K1/2

∑K
k=1

∑Nk

i=1
∂
∂θ
h(Xki, Ak; θ0)

−1
K

∑K
k=1

∑Nk

i=1
∂2

∂θ2
h(Xki, Ak; θ0)

. (B.2)

The denominator converges to −νEθ0{∂2h(X,A; θ0)/∂θ
2}. For the numerator, note that

Eθ0{ ∂
∂θ
h(Xki, Ak; θ0)} = Eθ0{ ∂

∂θ
I(A ≤ X) log W (X)dG(X;θ0)

βθ0
}

= Eθ0{ ∂
∂θ

log dG∗(X; θ0)W (X)}

= βθ0Eθ0{ ∂
∂θ

log dG∗(X∗; θ0)} = 0,

so the numerator converges to a zero mean normal variable with variance

varθ0

(
Nk∑
i=1

∂

∂θ
h(Xki, Ak; θ0)

)
= νvarθ0

(
∂

∂θ
h(X,A; θ0)

)
.

Thus, unlike the setting where K is fixed and ν → ∞, the asymptotic distribution is always
normal.

Remark 2. A similar analysis applies for the case where the number of independent cross-
sectional samples increases, that is, K is fixed, Nkh is the number of patients in sample h who
entered at time −ak, and h → ∞.

C Asymptotic distribution of V - examples

Example C.1 (Independent Nk’s, Normal limit). Theorem 3 implies that M∗1/2(θ̂ν − θ0) is
asymptotically normal if V is a normal random variable, possibly degenerate. This condition
is also necessary by Cramér’s Theorem, e.g., Feller (1971) p. 525, which says that a sum
of independent random variables has a normal distribution if and only if the summands are
normal. Suppose that Nk’s are independent with E(Nk) = ηkν and var(Nk) = σ2

k, then

U (ν) =
K∑
k=1

ck(Nk − ηkν)

σk

×
(
σ2
k

ν

)1/2

.
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If (Nk−ηkν)/σk → N(0, 1) in distribution for k = 1, . . . , K, and σ2
k/ν → bk in probability, then

V ∼ N(0,
∑

bkc
2
k); this includes the case Nk ∼ Poisson(ηkν) where var(V ) =

∑
ηkc

2
k. A smaller

variance is obtained when Nk ∼ Binomial(ν, ηk) with var(V ) =
∑

ηk(1 − ηk)c
2
k. By Cramér’s

Theorem, as {ck(Nk − ηkν)/σk} are independent, the condition b
1/2
k (Nk − ηkν)/σk → N(0, bk)

is necessary for V and hence for the independence likelihood estimator to have a normal limit.
If bk = 0, e.g., for constant Nk ≡ ηkν, then ν−1/2

∑K
k=1 ck(Nk − ηkν) → 0, so V = 0.

Example C.2 (Dependent Nk’s). As a simple but natural example of a normal limit in the
presence of dependence, let Nk = N ′

0 +N ′
k, where N ′

0, N
′
1, . . . , N

′
K are such that E(Nk) = ηkν.

We have U = ν−1/2
∑K

k=1 ck(Nk − ηkν) = ν−1/2
∑K

k=1 ck{N ′
k − E(N ′

k)} + ν−1/2
∑K

k=1 ck{N ′
0 −

E(N ′
0)}. It is now easy to construct models having the same marginal distribution of the Nk’s,

but with different asymptotic distributions of V of Theorem 3, and therefore of the independence
likelihood estimator. This is in contrast to consistency, which by Theorem 2 depends only on
the marginal distributions of the cohort sizes. For example, the case of equal cohort sizes,
N1 = · · · = NK ∼ F corresponds to N ′

1 = · · · = N ′
K = 0 and ηk = 1/K, and recalling∑

k ckηk = 0 it is easy to see that V = 0. On the other hand, if the N ′
k ∼ F ’s are independent

and N ′
0 = 0, then Nk’s are independent having the same distribution F . In this case a non-

degenerate normal limit was demonstrated above.

Example C.3 (Multinomial model). Another natural model of dependent Nk’s that leads to
asymptotic normality is the following. See Remark 1 in the paper. Let M = M (ν) sat-
isfy E(M) = ν, and M/ν → 1 in probability, corresponding to the assumptions of Theorem
3. If (N1, . . . , Nk) | M ∼ Mult(M, (η1, . . . , ηK)), then V is Gaussian. To see this, write
Nk =

∑M
j=1 I(Zj = ek), where Zj ∼ Mult(1, (η1, . . . , ηK)) independently, and ek is a vec-

tor of K coordinates with the kth being 1 and the rest 0. Then, ν−1/2
∑K

k=1 ck(Nk − ηkν) =

ν−1/2
∑M

j=1

∑K
k=1 ckI(Zj = ek), which converges to the normal distribution by Anscombe’s The-

orem, see Rényi (1957).

Example C.4 (The effect of dependence among the Nk’s on var(V )). If pr(N1 = . . . = NK) = 1
then pr(V = 0) = 1, hence var(V ) = 0. The latter condition on the Nk’s is the strongest form
of dependence. This leads to the question of whether in natural cases var(V ) is decreasing as
a function of a suitable measure of dependence among the Nk’s. We restrict the discussion to
the case that the Nk’s have equal expectations and variances, so that ηk ≡ 1/K, in which case∑

k ck = 0; however, it is easy to generalize.
Let R denote the correlation matrix of (N1, . . . , NK). Then var(V ) is proportional to ctRc,

for c = (c1, . . . , cK). We consider two simple models for R with a dependence parameter ρ,
the intraclass correlation model, and the autoregressive model. For the intraclass correlation
matrix R = (1−ρ)I+ρ11t, where 1 here denotes a column vector of ones of length K. We have
ct11tc = 0 because

∑
k ck = 0, and therefore ctRc = (1 − ρ)

∑
k c

2
k, which is clearly decreasing

in ρ and hence so is var(V ).
Next consider the first order autoregressive correlation matrix with entries rij = ρ|i−j|. Ig-

noring a proportionality constant we have ∂var(V )/∂ρ = ctBc, where B = ∂R/∂ρ, having
entries bij = |i− j|ρ|i−j|−1. Since bij = limt↓0 t

−1(1− e−tbij) and
∑

k ck = 0, it is easy to see that
ctBc ≤ 0, that is, B is conditionally negative definite, provided the matrix with entries e−tbij

is positive definite. For ρ = 1 the latter matrix is again a first order autoregressive correlation
matrix which is positive definite, and thus var(V ) is decreasing in ρ near 1. However by direct
calculations one can see that for K ≥ 4 we do not have monotonicity of var(V ) for all ρ’s.

Example C.5 (Non-Normal limit). The limit of
∑K

k=1 ck(Nk−ν)/
√
ν may not be Normal, and

may not exist. Let N1, N2 be independent with E(Nk) = ν/2, and assume that pr(Nk = ν−a) =
pr(Nk = ν + a) = 1/2 for some a = a(ν). In order that Nk/E(Nk) → 1 in probability, a must
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satisfy a/ν → 0. Here η1 = η2 = 1/2 implying c1 + c2 = 0 and
∑2

k=1 ck(Nk − ν/2)/ν1/2 =
c1(N1−N2)/ν

1/2, which takes the values 0 or ±2ac1/ν
1/2. For a = ν1/2 the limiting distribution

is neither degenerate nor Normal, and for a = (2 + (−1)ν)ν1/2 the limit does not exist.

D Parametric models with covariates

Suppose that for each observed sojourn time, X∗
j , we observe covariates denoted by Z∗

j . We
aim to estimate the conditional distribution G(x | z; θ). The assumptions we made on the
X’s now apply to the pairs (X,Z)’s. Conditioning on the observed covariates values z∗j , the
independence likelihood of (4) is replaced by

L(θ) =
m∗∏
j=1

w(x∗
j)g(x

∗
j | z∗j ; θ)

βθ(z∗j )
, (D.1)

where βθ(z) = Eθ{w(X) | Z = z}, and the independence likelihood estimator θ̂ is the value
of θ that maximizes (D.1). Consistency and asymptotic normality in the sense of Theorems
2 and 3 can be proved in the same way, where the assumptions on g(x; θ) should hold for
g(x | z; θ), and in (6)-(8) βθ0 = E{βθ0(Z)}. Also hk(Xki; θ) as defined in (5) is replaced by
hk(Xki, Zki; θ) = I(ak ≤ Xki) log{w(Xki)g(Xki | Zki; θ)/βθ(Zki)}; we shall not repeat the proofs.

E Detailed results of simulation

We conducted a simulation study with K = 20 entrance points (ak = k − 1) and a Gamma
lifetime distribution with mean 12, variance 48. We considered several models of moderate
sample sizes with E(Nk) = 20 for all k, β = P (A ≤ X) = 0·5875 and therefore E(M∗) =
βE(M) = 235, and larger sample sizes with E(Nk) = 50 for all k and E(M∗) = 587. We also
considered a model with E(Nk)’s varying between about 15 to 26, and between 40 and 61.

The following models for the distribution of Nk were tested: independent Poisson entrance
numbers; mixtures of Poissons: 1/2Pois(15)+1/2Pois(25) in the small sample size scenario, and
1/2Pois(43) + 1/2Pois(57) in the large sample size scenario, which reflect moderate deviation
from the Poisson model; 1/2Pois(10) + 1/2Pois(30) and 1/2Pois(35) + 1/2Pois(65), reflecting
large deviation from the Poisson model; independent Geometric entrance numbers; a constant
number of entrances at each point; a symmetric multinomial model with M ≡ 400 and M ≡
1000 for the small and large sample size scenarios, respectively; non-exchangeable Nk’s, where
entrances are independent following Poisson variables with Nk ∼ Pois(exp(3·27− 0·027k)) in
the small sample scenario, and Nk ∼ Pois(exp(4·12− 0·021k)) in the large sample scenario.
These number were chosen so that the means of the Nk’s are around 20 and 50 respectively.

For each model, we simulated 1000 samples and estimated G nonparametrically and para-
metrically in the Gamma(α, β) family. In each framework and for each simulated sample, we
calculated the conditional and independence likelihood estimates of G, and averaged over the
1000 replications to obtain estimates for the MSE at the 10, 25, 50, 75, and 90 percentiles of
G. Results are provided in Table E.1. As expected, the results show a clear advantage for the
independence likelihood approach when Nk’s are Poisson, or when they are relatively stable,
such as constant Nk’s or mixtures with moderate deviation from the Poisson model, while for
more variable Nk’s, the conditional approach is preferable.

Figures E.1 shows the ratio MSE(conditional)/MSE(independence likelihood) as a function
of the variance of Nk. It shows that the ratio decreases with the variance, where the conditional
approach and the independence likelihood approach are equally good when the variance is 2-3
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times the expectation. It also reveals that the efficiency of the independence likelihood approach
is maximal for the degenerate case, where Nk ≡ N .

E(Nk) Model Method G−1(·10) G−1(·25) G−1(·50) G−1(·75) G−1(·90)
20 Pois(20) parm 1·15 1·17 1·21 1·24 1·20

non-parm 1·00 1·06 1·17 1·22 1·08
mix(15,25) parm 1·10 1·10 1·13 1·18 1·19

non-parm 1·05 1·06 1·10 1·18 1·15
mix(10,30) parm 0·83 0·82 0·81 0·84 0·90

non-parm 0·88 0·83 0·86 0·86 0·92
Geo(1/20) parm 0·53 0·46 0·39 0·37 0·43

non-parm 1·20 0·70 0·48 0·45 0·56
Constant=20 parm 1·30 1·34 1·42 1·45 1·33

non-parm 1·05 1·19 1·33 1·40 1·18
multinom parm 1·17 1·18 1·22 1·24 1·19

non-parm 0·99 1·10 1·19 1·21 1·14
inhomogeneous parm 0·67 0·69 0·68 0·67 0·75

non-parm 0·83 0·83 0·76 0·77 0·93
50 Pois(50) parm 1·15 1·19 1·24 1·28 1·23

non-parm 1·07 1·13 1·19 1·28 1·13
mix(43,57) parm 1·09 1·10 1·13 1·16 1·16

non-parm 1·05 1·08 1·08 1·18 1·13
mix(35,65) parm 0·89 0·87 0·85 0·87 0·92

non-parm 0·96 0·88 0·85 0·92 0·94
Geo(1/50) parm 0·31 0·26 0·21 0·20 0·23

non-parm 0·56 0·32 0·24 0·23 0·32
Constant=50 parm 1·28 1·34 1·43 1·47 1·37

non-parm 1·09 1·21 1·36 1·42 1·19
multinom parm 1·16 1·18 1·22 1·24 1·18

non-parm 1·04 1·14 1·18 1·22 1·12
inhomo parm 0·66 0·65 0·60 0·58 0·66

non-parm 0·88 0·78 0·66 0·64 0·80

Table E.1: Ratio of MSE of conditional and independent likelihood parametric and non-parametric estimators
of G at different percentiles, with K = 20 entrance points, E(Nk) = 20 or 50, and lifetime distribution
G=Gamma with mean 12 and variance 48. Models for the Nk’s were (in order of appearance in the table):
Poisson, mixture of Poisson variables mix(a, b) = 1/2Pois(a) + 1/2Pois(b), Geometric, Constant, exchangeable
multinomial, and inhomogeneous Poisson with Nk ∼ Pois(exp(3·27−0·027k)) and Nk ∼ Pois(exp(4·12−0·021k)).

So far, here and in the paper, we considered the case that the sample comprise all individuals
in the cross-sectional population. In the next simulation we study the effect of simple random
sampling from a large cross-sectional population. As before, we consider 20 entrance points
at times 0,-1,...,-19. The cohort sizes considered are independent negative binomial variables
with expectation ν = 5000 and standard deviations varying between 0·1ν and 0·5ν, Poisson(ν)
where the standard deviation is

√
ν, and a degenerate distribution (standard deviation=0).

Lifetimes were generated from a Gamma distribution with mean 12 and variance 48. This
process generated the cross sectional population of about 50-60 thousand individuals according
to the criterion A ≤ X. From the cross-sectional population at time 0, random samples of
m∗ = 400 and m∗ = 1000 individuals were selected and the conditional/unconditional para-
metric/nonparametric estimators were calculated. The MSE ratio of the conditional to the
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unconditional parametric estimators in the 0·1, 0·5, and 0·9 quantiles are compared in Table
E.2 for the various standard deviations. These are based on 1000 replications. The results are
similar for non-parametric estimation and for the other simulation studies: the independence
likelihood approach is more efficient for cohort sizes that have variance similar to the expecta-
tion or smaller, and the conditional approach is more efficient when the variance is much larger
than the expectation.

m∗ SD= 0
√
ν 0·1ν 0·2ν 0·3ν 0·4ν 0·5ν

400 q0·10 1·20 1·12 1·14 1·05 1·01 0·80 0·63
q0·50 1·33 1·20 1·21 1·10 0·98 0·78 0·55
q0·90 1·29 1·29 1·21 1·15 1·02 0·91 0·69

1000 q0·10 1·13 1·17 1·05 0·87 0·66 0·51 0·39
q0·50 1·23 1·26 1·09 0·86 0·61 0·45 0·31
q0·90 1·27 1·23 1·12 0·94 0·74 0·57 0·41

Table E.2: MSE ratio - parametric model. Cohorts sizes, all having expectation ν = 5000, are constant
(SD=0), Poisson (SD=

√
ν) and Negative Binomial with varying standard deviations (SDs). Random sampling

of m∗ = 400 and 1000 individuals from the cross-sectional population
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Figure E.1: The effect of variance on the ratio MSE(conditional)/MSE(independent likelihood) at the 0·1, 0·5,
and 0·9 quantiles, from top to bottom, calculated from 1000 replications. Entrance process - 20 entrance points,
independent cohort sizes with E(Nk) = 50. Left - a mixture of a Poisson random variable and a constant:
αPois(ν) + (1 − α)ν, right - Negative Binomial model with varying variance. Circles and solid curves denote
parametric results and a regression fit, and pluses and dashed curves non-parametric results.
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